Skip to main content

The Discretization of the Basic Semiconductor Equations

  • Chapter

Abstract

The system of partial differential equations which forms the basic semiconductor equations together with appropriate boundary conditions has been investigated and characterized analytically in the previous chapter. This system cannot be solved explicitly in general. Therefore, the solution must be calculated by means of numerical approaches. We shall consider in this chapter such Solution procedures for the sealed equations which read:

$$\lambda ^2 \cdot \text{div}\,\text{grad}\,\psi - (n - p - C) = 0$$
(6-1)
$$\text{div}(D_n \cdot \text{grad}\,n - \mu _\text{n} \cdot n \cdot \text{grad}\,\psi ) - R(\psi ,n,p) = \frac{{\partial n}} {{\partial t}}$$
(6-2)
$$\text{div}(D_p \cdot \text{grad}\,p - \mu _\text{p} \cdot p \cdot \text{grad}\,\psi ) - R(\psi ,n,p) = \frac{{\partial p}} {{\partial t}}$$
(6-3)

Any numerical approach for the Solution of such a system consists essentially of three tasks. First, the domain, i.e. the Simulation geometry of the device, has to be partitioned into a finite number of subdomains, in which the Solution can be approximated easily with a desired accuracy. Secondly, the differential equations have to be approximated in each of the subdomains by algebraic equations which involve only values of the continuous dependent variables at discrete points in the domain and knowledge of the structure of the chosen funetions which approximate the dependent variables within each of the subdomains. In that way one obtains a fairly large system of, in general nonlinear, algebraic equations with unknowns comprised of approximations of the continuous dependent variables at discrete points. The Solution of this system is the final third task to be carried out. As this problem can be viewed rather independently it will be treated separately in Chapter 7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M. S.: A Method for Achieving and Choosing Variable Density Grids in Finite Difference Formulations and the Importance of Degeneracy and Band Gap Narrowing in Device Modeling. Proc. NASECODE I Conf., pp. 3–30. Dublin: Boole Press 1979.

    Google Scholar 

  2. Adler, M. S.: A Method for Terminating Mesh Lines in Finite Difference Formulations of the Semiconductor Device Equations. Solid-State Electron. 23, 845–853 (1980).

    Article  Google Scholar 

  3. Agier, W.: Die numerische Lösung der transienten Halbleitergleichungen. Diplomarbeit, Technische Universität Wien, 1983.

    Google Scholar 

  4. Babuska, I., Rheinboldt, W. C.: A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems. SIAM J. Numer. Anal 18, No. 3, 565–589 (1981).

    Article  Google Scholar 

  5. Barnes, J. J.: A Two-Dimensional Simulation of MESFET’s. Dissertation, University of Michigan, 1976.

    Google Scholar 

  6. Buturla, E. M., Cottrell, P. E., Grossman, B. M., Salsburg, K. A.: Finite-Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Dev. 25, 218–231 (1981).

    Article  Google Scholar 

  7. Clough, R. W.: The Finite Element in Plane Stress Analysis. Proc. Conf. on Electronic Computation, pp. 345–378 (1960).

    Google Scholar 

  8. Cottrell, P. E., Buturla, E. M.: Two-Dimensional Static and Transient Simulation of Mobile Carrier Transport in a Semiconductor. Proc. NASECODE I Conf., pp. 31–64. Dublin: Boole Press 1979.

    Google Scholar 

  9. Davies, A. J.: The Finite Element Method: A First Approach. Oxford: Clarendon Press 1980.

    Google Scholar 

  10. Doolan, E. P., Miller, J. J. H., Schilders, W. H. A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Dublin: Boole Press 1980.

    Google Scholar 

  11. Engl, W. L., Dirks, H.: Numerical Device Simulation Guided by Physical Approaches. Proc. NASECODE I Conf., pp. 65–93. Dublin: Boole Press 1979.

    Google Scholar 

  12. Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).

    Article  Google Scholar 

  13. Forsythe, G. E., Wasow, W. R.: Finite Difference Methods for Partial Differential Equations. New York: Wiley 1960.

    Google Scholar 

  14. Fox, L.: Finite-Difference Methods in Elliptic Boundary-Value Problems. In: The State of the Art in Numerical Analysis, pp. 799–881. London: Academic Press 1977.

    Google Scholar 

  15. Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markovich, P.: Finite Boxes — A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation IEEE Trans. Electron Devices ED-30, No. 9, 1070–1082 (1983).

    Article  Google Scholar 

  16. Gummel, H. K.: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Trans. Electron Devices ED-11, 455–465 (1964).

    Article  Google Scholar 

  17. Hachtel, G. D., Mack, M. H., O’Brien, R. R., Speelpennig, B.: Semiconductor Analysis Using Finite Elements — Part 1: Computational Aspects. IBM J. Res. Dev. 25, 232–245 (1981).

    Article  Google Scholar 

  18. Hachtel, G. D., Mack, M. H., O’Brien, R. R.: Semiconductor Analysis Using Finite Elements — Part 2: IGFET and BJT Case Studies. IBM J. Res. Dev. 25, 246–260 (1981).

    Article  Google Scholar 

  19. Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J.: Computer Approximations. New York: Wiley 1968.

    Google Scholar 

  20. Hockney, R. W., Eastwood, J. W.: Computer Simulation Using Particles. New York: McGraw-Hill 1981.

    Google Scholar 

  21. Hrenikoff, A.: Solution of Problems in Elasticity by the Framework Method. J. Appl. Mech. A8, 169–175 (1941).

    Google Scholar 

  22. Kellogg, R. B.: Analysis of a Difference Approximation for a Singular Perturbation Problem in Two Dimensions. Proc. BAIL I Conf, pp. 113–117. Dublin: Boole Press 1980.

    Google Scholar 

  23. Kellogg, R. B., Shubin, G. R., Stephens, A. B.: Uniqueness and the Cell Reynolds Number. SIAM J. Numer. Anal. 17, No. 6, 733–739 (1980).

    Article  Google Scholar 

  24. Kellogg, R. B., Han, H.: The Finite Element Method for a Singular Perturbation Problem Using Enriched Subspaces. Report BN-978, University of Maryland, 1981.

    Google Scholar 

  25. Kraut, E. A., Murphy, W. D.: Application of Parabolic Partial Differential Equations to Semiconductor Device Modeling. Proc. NASECODE III Conf, pp. 150–154. Dublin: Boole Press 1983.

    Google Scholar 

  26. Kreskowsky, J. P., Grubin, H. L.: Numerical Solution of the Transient, Multidimensional Semiconductor Equations Using the LBI Techniques. Proc. NASECODE III Conf., pp. 155–160. Dublin: Boole Press 1983.

    Google Scholar 

  27. Kumar, R., Chamberlain, S. G., Roulston, D. J.: An Algorithm for Two-Dimensional Simulation of Reverse-Biased Beveled p-n Junctions. Solid-State Electron. 24, 309–311 (1981).

    Article  Google Scholar 

  28. Kumar, R., Roulston, D. J., Chamberlain, S. G.: Accurate Two-Dimensional Simulation of Double-Beveled p-n Junctions. Solid-State Electron. 24, 377–379 (1981).

    Article  Google Scholar 

  29. Laux, S. E.: Two-Dimensional Simulation of Gallium-Arsenide MESFET’s Using the Finite-Element Method. Dissertation, University of Michigan, 1981.

    Google Scholar 

  30. Laux, S. E., Lomax, R. J.: Numerical Investigation of Mesh Size Convergence Rate of the Finite Element Method in MESFET Simulation. Solid-State Electron. 24, 485–493 (1981).

    Article  CAS  Google Scholar 

  31. Machek, J., Selberherr, S.: A Novel Finite Element Approach to Device Modelling. IEEE Trans. Electron Devices ED-30, No. 9, 1083–1092 (1983).

    Article  Google Scholar 

  32. Markowich, P. A., Ringhofer, C. A., Selberherr, S., Lentini, M.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. IEEE Trans. Electron Devices ED-30, No.9, 1165–1180 (1983).

    Article  Google Scholar 

  33. Markowich, P. A., Ringhofer, C. A., Selberherr, S.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. Report 2482, MRC, University of Wisconsin, 1983.

    Google Scholar 

  34. Marsal, D.: Die Numerische Lösung partieller Differentialgleichungen. Mannheim: Bibliographisches Institut 1976.

    Google Scholar 

  35. McHenry, D.: A Lattice Analogy for the Solution of Plane Stress Problems. J. Inst. Civ. Eng. 21, 59–82 (1943).

    Article  Google Scholar 

  36. Meis, T., Marcowitz, U.: Numerische Behandlung partieller Differentialgleichungen. Berlin-Heidelberg-New York: Springer 1978.

    Google Scholar 

  37. Mock, M. S.: On the Computation of Semiconductor Device Current Characteristics by Finite Difference Methods. J. Eng. Math. 7, No. 3, 193–205 (1973).

    Article  Google Scholar 

  38. Mock, M. S.: An Initial Value Problem from Semiconductor Device Theory. SIAM J. Math. Anal. 5, No.4, 597–612 (1974).

    Article  Google Scholar 

  39. Mock, M. S.: Time Discretization of a Nonlinear Initial Value Problem. J. Comp. Phys. 21, 20–37 (1976).

    Article  Google Scholar 

  40. Mock, M. S.: The Charge-Neutral Approximation and Time Dependent Simulation. Proc. NASECODE I Conf., pp. 120–135. Dublin: Boole Press 1979.

    Google Scholar 

  41. Mock, M. S.: A Time-Dependent Numerical Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 24, 959–966 (1981).

    Article  CAS  Google Scholar 

  42. Mock, M. S.: The Stability Problem for Time-Dependent Models. In: An Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 63–67. Dublin: Boole Press 1981.

    Google Scholar 

  43. Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.

    Google Scholar 

  44. Mock, M. S.: Convergence and Accuracy in Stationary Numerical Models. In: An Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 58–62. Dublin: Boole Press 1981.

    Google Scholar 

  45. O’Riordan, E.: Finite Element Methods for Singularly Perturbed Problems. Proc. BAIL II Conf., pp. 52–57. Dublin: Boole Press 1982.

    Google Scholar 

  46. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  47. Parter, S. V.: Numerical Methods for Partial Differential Equations. New York: Academic Press 1979.

    Google Scholar 

  48. Scharfetter, D. L., Gummel, H. K.: Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969).

    Article  Google Scholar 

  49. Schwarz, H. R.: Methode der finiten Elemente. Stuttgart: Teubner 1980.

    Google Scholar 

  50. Smith, G. D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford: Clarendon Press 1978.

    Google Scholar 

  51. Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Englewood Cliffs, N.J.: Prentice-Hall 1973.

    Google Scholar 

  52. Sutherland, A. D.: An Algorithm for Treating Interface Surface Charge in the Two-Dimensional Discretization of Poisson’s Equation for the Numerical Analysis of Semiconductor Devices such as MOSFET’s. Solid-State Electron. 23, 1085–1087 (1980).

    Article  CAS  Google Scholar 

  53. Szuhar, M.: Accurate Interface Handling for Mathematical Simulation of MOS Devices. Solid-State Electron. 25, No. 9, 963–965 (1982).

    Article  CAS  Google Scholar 

  54. Zarantonello, E. H.: Solving Functional Equations by Contractive Averaging. Report 160, MRC, University of Wisconsin, 1960.

    Google Scholar 

  55. Zienkiewicz, O. C.: The Finite Element Method. London: McGraw-Hill 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag/Wien

About this chapter

Cite this chapter

Selberherr, S. (1984). The Discretization of the Basic Semiconductor Equations. In: Analysis and Simulation of Semiconductor Devices. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8752-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8752-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8754-8

  • Online ISBN: 978-3-7091-8752-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics