Advertisement

Analytical Investigations About the Basic Semiconductor Equations

  • Siegfried Selberherr

Abstract

In this chapter we review some of the existing analytical results which characterize the basic semiconductor equations. Of particular concern will be the questions of existence, uniqueness and structure and smoothness of solutions. These are of importance in both the theoretical context and the practical context, since the knowledge of the structure and smoothness properties of solutions is indeed essential for the selection of appropriate numerical Solution procedures. The basic semiconductor equations as given in Chapter2 are:
$$\text{div}\,\text{grad}\,\psi = \frac{q} {\varepsilon } \cdot (n - p - c)$$
(5-1)
$$\text{div}\,\vec J_n - q \cdot \frac{{\partial n}} {{\partial t}} = q \cdot R(\psi ,n,p)$$
(5-2)
$$\text{div}\,\vec J_p + q \cdot \frac{{\partial n}} {{\partial t}} = - q \cdot R(\psi ,n,p)$$
(5-3)
$$\vec J_n = - q \cdot (\mu _n \cdot n \cdot \text{grad}\,\psi - D_n \cdot \text{grad}\,n)$$
(5-4)
$$\vec J_n = - q \cdot (\mu _p \cdot p \cdot \text{grad}\,\psi - D_p \cdot \text{grad}\,p)$$
(5-5)
We have omitted in the current relations (5-4) and (5-5) terms which account for current components caused by bandgap narrowing and temperature gradients. All these effects are considered to be only small perturbations which just make the essential analytical results about the basic semiconductor equations less transparent. One should also bear in mind that the current relations will become potentially incorrect if one of the above cited effects would change the equations in a dominating manner (cf. Section 2.3). We shall also ignore the impact of a non- homogeneous temperature distribution on the basic semiconductor equations for the following analytical investigations.

Keywords

Stream Function Electrostatic Potential Ohmic Contact Semiconductor Device Current Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [5.1]
    Adachi, T., Yoshii, A., Sudo, T.: Two-Dimensional Semiconductor Analysis Using Finite-Element Method. IEEE Trans. Electron Devices ED-26, 1026–1031 (1979).CrossRefGoogle Scholar
  2. [5.2]
    Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Device Modeling. Report 82–11274-2, Bell Laboratories (1982).Google Scholar
  3. [5.3]
    Chryssafis, A., Love, W.: A Computer-Aided Analysis of One-Dimensional Thermal Transients in n-p-n Power Transistors. Solid-State Electron. 22, 249–256 (1979).CrossRefGoogle Scholar
  4. [5.4]
    Crowell, C. R., Beguwala, M.: Recombination Velocity Effects on Current Diffusion and IMREF in Schottky Barriers. Solid-State Electron. 4, No. 11, 1149–1157 (1971).CrossRefGoogle Scholar
  5. [5.5]
    DeMari, A.: An Accurate Numerical Steady-State One-Dimensional Solution of the P-N Junction. Solid-State Electron. 11, 33–58 (1968).CrossRefGoogle Scholar
  6. [5.6]
    DeMari, A.: An Accurate Numerical One-Dimensional Solution of the P-N Junction under Arbitrary Transient Conditions. Solid-State Electron. 11, 1021–2053 (1968).CrossRefGoogle Scholar
  7. [5.7]
    Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Amsterdam: North-Holland 1979.Google Scholar
  8. [5.8]
    Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).CrossRefGoogle Scholar
  9. [5.9]
    Fife, P. C.: Semilinear Elliptic Boundary Value Problems with Small Parameters. Arch. Rat. Mech. Anal. 52, 205–232 (1973).CrossRefGoogle Scholar
  10. [5.10]
    Fontana, T. P., McGregor, D. M., Lowther, R. P.: DEFINES: A Semiconductor Device Finite Element Simulation. Electrocon International Inc. 1982.Google Scholar
  11. [5.11]
    Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P.: Finite Boxes-A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-30, No.9, 1070–1082 (1983).CrossRefGoogle Scholar
  12. [5.12]
    Hachtel, G. D., Mack, M. H., O’Brien, R. R., Speelpennig, B.: Semiconductor Analysis Using Finite Elements — Part 1: Computational Aspects. IBM J. Res. Dev. 25, 232–245 (1981).CrossRefGoogle Scholar
  13. [5.13]
    Hachtel, G. D., Mack, M. H., O’Brien, R. R.: Semiconductor Analysis Using Finite Elements — Part 2: IGFET and BJT Case Studies. IBM J. Res. Dev. 25, 246–260 (1981).CrossRefGoogle Scholar
  14. [5.14]
    Heimeier, H. H.: A Two-Dimensional Numerical Analysis of a Silicon N-P-N Transistor. IEEE Trans. Electron Devices ED-20, 708–714 (1973).CrossRefGoogle Scholar
  15. [5.15]
    Kurata, M.: Numerical Analysis for Semiconductor Devices. Lexington, Mass.: Lexington Press 1982.Google Scholar
  16. [5.16]
    Laux, S. E.: Two-Dimensional Simulation of Gallium-Arsenide MESFET’s Using the Finite-Element Method. Dissertation, University of Michigan, 1981.Google Scholar
  17. [5.17]
    Laux, S. E., Lomax, R. J.: Effect of Mesh Spacing on Static Negative Resistance in GaAs MESFET Simulation. IEEE Trans. Electron Devices ED-28, No. 1, 120–122 (1981).CrossRefGoogle Scholar
  18. [5.18]
    Manck, O., Heimeier, H. H., Engl, W. L.: High Injection in a Two-Dimensional Transistor. IEEE Trans. Electron Devices ED-21, 403–409 (1974).CrossRefGoogle Scholar
  19. [5.19]
    Markowich, P. A., Ringhofer, C. A., Selberherr, S., Langer, E.: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. Report 2388, MRC, University of Wisconsin, 1982.Google Scholar
  20. [5.20]
    Markowich, P. A., Ringhofer, C. A., Langer, E., Selberherr, S.: An Asymptotic Analysis of Single-Junction Semiconductor Devices. Report 2527, MRC, University of Wisconsin, 1983.Google Scholar
  21. [5.21]
    Markowich, P. A., Ringhofer, C. A., Selberherr, S.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. Report 2482, MRC, University of Wisconsin, 1983.Google Scholar
  22. [5.22]
    Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. Habilitation, Technische Universität Wien, 1983.Google Scholar
  23. [5.23]
    Markowich, P. A.: A Qualitative Analysis of the Fundamental Semiconductor Device Equations. COMPEL 2, No. 3, 97–115 (1983).CrossRefGoogle Scholar
  24. [5.24]
    Mock, M. S.: On Equations Describing Steady-State Carrier Distributions in a Semiconductor Device. Comm. Pure and Appl. Math. 25, 781–792 (1972).CrossRefGoogle Scholar
  25. [5.25]
    Mock, M. S.: A Two-Dimensional Mathematical Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 16, 601–609 (1973).CrossRefGoogle Scholar
  26. [5.26]
    Mock, M. S.: An Initial Value Problem from Semiconductor Device Theory. SIAM J. Math. Anal. 5, No. 4, 597–612 (1974).CrossRefGoogle Scholar
  27. [5.27]
    Mock, M. S.: Asymptotic Behaviour of Solutions of Transport Equations for Semiconductor Devices. J. Math. Anal. Appl. 49, 215–255 (1975).CrossRefGoogle Scholar
  28. [5.28]
    Mock, M. S.: An Example of Nonuniqueness of Stationary Solutions in Semiconductor Device Models. COMPEL 1, No. 3, 165–174 (1982).CrossRefGoogle Scholar
  29. [5.29]
    Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.Google Scholar
  30. [5.30]
    Ringhofer, C., Selberherr, S.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. Report 2513, MRC, University of Wisconsin, 1983.Google Scholar
  31. [5.31]
    Schütz, A., Selberherr, S., Pötzl, H. W.: A Two-Dimensional Model of the Avalanche Effect in MOS Transistors. Solid-State Electron. 25, 177–183 (1982).CrossRefGoogle Scholar
  32. [5.32]
    Schütz, A., Selberherr, S., Pötzl, H. W.: Analysis of Breakdown Phenomena in MOSFET’s. IEEE Trans. Computer-Aided-Design of Integrated Circuits CAD-1, 77–85 (1982).CrossRefGoogle Scholar
  33. [5.33]
    Seidman, T. I.: Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis, Theory, Methods Appl. 4, No. 3, 623–637 (1980).CrossRefGoogle Scholar
  34. [5.34]
    Selberherr, S., Ringhofer, C.: Discretization Methods for the Semiconductor Equations. Proc. NASECODE III Conf., pp. 31–45. Dublin: Boole Press 1983.Google Scholar
  35. [5.35]
    Selberherr, S., Ringhofer, C.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. IEEE Trans. Computer-Aided Design of Integrated Circuits CAD-3, No. 1, 52–64 (1984).CrossRefGoogle Scholar
  36. [5.36]
    Slotboom, J. W.: Iterative Scheme for 1- and 2-Dimensional D.C.-Transistor Simulation. Electron. Lett. 5, 677–678 (1969).CrossRefGoogle Scholar
  37. [5.37]
    Slotboom, J. W.: Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE Trans. Electron Devices ED-20, 669–679 (1973).CrossRefGoogle Scholar
  38. [5.38]
    Smith, D. R.: On a Singularly Perturbed Boundary Value Problem Arising in the Physical Theory of Semiconductors. Report 10–80-M 21–200/1-FMA, Technische Universität München, 1980.Google Scholar
  39. [5.39]
    Sze, S. M.: Physics of Semiconductor Devices. New York: Wiley 1969.Google Scholar
  40. [5.40]
    Toyabe, T., Asai, S., Yamaguchi, K.: Internal Documents on the CADDET Program. Hitachi, Tokyo, 1979.Google Scholar
  41. [5.41]
    Toyabe, T., Mock, M. S., Okabe, T., Ujiie, K., Nagata, M.: A Two-Dimensional Analysis of I2L with Multi-Stream Function Technique. Proc. NASECODE I Conf., pp. 290–292. Dublin: Boole Press 1979.Google Scholar
  42. [5.42]
    Van Dell, W. R.: Accuracy and Efficiency in High Power Semiconductor Device Modeling. Proc. NASECODE III Conf., pp. 281–286. Dublin: Boole Press 1983.Google Scholar
  43. [5.43]
    Vasil’eva, A. B., Stel’makh, V. G.: Singularly Disturbed Systems of the Theory of Semiconductor Devices. Math. Fiz. 17, No. 2, 339–348 (1977).Google Scholar
  44. [5.44]
    Vasil’eva, A. B., Butuzov, V. F.: Singularly Perturbed Equations in the Critical Case. Translated Report 2039, MRC, University of Wisconsin, 1978.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Siegfried Selberherr
    • 1
  1. 1.Institut für Allgemeine Elektrotechnik und ElektronikTechnische Universität WienAustria

Personalised recommendations