# Analytical Investigations About the Basic Semiconductor Equations

• Siegfried Selberherr
Chapter

## Abstract

In this chapter we review some of the existing analytical results which characterize the basic semiconductor equations. Of particular concern will be the questions of existence, uniqueness and structure and smoothness of solutions. These are of importance in both the theoretical context and the practical context, since the knowledge of the structure and smoothness properties of solutions is indeed essential for the selection of appropriate numerical Solution procedures. The basic semiconductor equations as given in Chapter2 are:
$$\text{div}\,\text{grad}\,\psi = \frac{q} {\varepsilon } \cdot (n - p - c)$$
(5-1)
$$\text{div}\,\vec J_n - q \cdot \frac{{\partial n}} {{\partial t}} = q \cdot R(\psi ,n,p)$$
(5-2)
$$\text{div}\,\vec J_p + q \cdot \frac{{\partial n}} {{\partial t}} = - q \cdot R(\psi ,n,p)$$
(5-3)
$$\vec J_n = - q \cdot (\mu _n \cdot n \cdot \text{grad}\,\psi - D_n \cdot \text{grad}\,n)$$
(5-4)
$$\vec J_n = - q \cdot (\mu _p \cdot p \cdot \text{grad}\,\psi - D_p \cdot \text{grad}\,p)$$
(5-5)
We have omitted in the current relations (5-4) and (5-5) terms which account for current components caused by bandgap narrowing and temperature gradients. All these effects are considered to be only small perturbations which just make the essential analytical results about the basic semiconductor equations less transparent. One should also bear in mind that the current relations will become potentially incorrect if one of the above cited effects would change the equations in a dominating manner (cf. Section 2.3). We shall also ignore the impact of a non- homogeneous temperature distribution on the basic semiconductor equations for the following analytical investigations.

## Keywords

Stream Function Electrostatic Potential Ohmic Contact Semiconductor Device Current Component
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [5.1]
Adachi, T., Yoshii, A., Sudo, T.: Two-Dimensional Semiconductor Analysis Using Finite-Element Method. IEEE Trans. Electron Devices ED-26, 1026–1031 (1979).
2. [5.2]
Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Device Modeling. Report 82–11274-2, Bell Laboratories (1982).Google Scholar
3. [5.3]
Chryssafis, A., Love, W.: A Computer-Aided Analysis of One-Dimensional Thermal Transients in n-p-n Power Transistors. Solid-State Electron. 22, 249–256 (1979).
4. [5.4]
Crowell, C. R., Beguwala, M.: Recombination Velocity Effects on Current Diffusion and IMREF in Schottky Barriers. Solid-State Electron. 4, No. 11, 1149–1157 (1971).
5. [5.5]
DeMari, A.: An Accurate Numerical Steady-State One-Dimensional Solution of the P-N Junction. Solid-State Electron. 11, 33–58 (1968).
6. [5.6]
DeMari, A.: An Accurate Numerical One-Dimensional Solution of the P-N Junction under Arbitrary Transient Conditions. Solid-State Electron. 11, 1021–2053 (1968).
7. [5.7]
Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Amsterdam: North-Holland 1979.Google Scholar
8. [5.8]
Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).
9. [5.9]
Fife, P. C.: Semilinear Elliptic Boundary Value Problems with Small Parameters. Arch. Rat. Mech. Anal. 52, 205–232 (1973).
10. [5.10]
Fontana, T. P., McGregor, D. M., Lowther, R. P.: DEFINES: A Semiconductor Device Finite Element Simulation. Electrocon International Inc. 1982.Google Scholar
11. [5.11]
Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P.: Finite Boxes-A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-30, No.9, 1070–1082 (1983).
12. [5.12]
Hachtel, G. D., Mack, M. H., O’Brien, R. R., Speelpennig, B.: Semiconductor Analysis Using Finite Elements — Part 1: Computational Aspects. IBM J. Res. Dev. 25, 232–245 (1981).
13. [5.13]
Hachtel, G. D., Mack, M. H., O’Brien, R. R.: Semiconductor Analysis Using Finite Elements — Part 2: IGFET and BJT Case Studies. IBM J. Res. Dev. 25, 246–260 (1981).
14. [5.14]
Heimeier, H. H.: A Two-Dimensional Numerical Analysis of a Silicon N-P-N Transistor. IEEE Trans. Electron Devices ED-20, 708–714 (1973).
15. [5.15]
Kurata, M.: Numerical Analysis for Semiconductor Devices. Lexington, Mass.: Lexington Press 1982.Google Scholar
16. [5.16]
Laux, S. E.: Two-Dimensional Simulation of Gallium-Arsenide MESFET’s Using the Finite-Element Method. Dissertation, University of Michigan, 1981.Google Scholar
17. [5.17]
Laux, S. E., Lomax, R. J.: Effect of Mesh Spacing on Static Negative Resistance in GaAs MESFET Simulation. IEEE Trans. Electron Devices ED-28, No. 1, 120–122 (1981).
18. [5.18]
Manck, O., Heimeier, H. H., Engl, W. L.: High Injection in a Two-Dimensional Transistor. IEEE Trans. Electron Devices ED-21, 403–409 (1974).
19. [5.19]
Markowich, P. A., Ringhofer, C. A., Selberherr, S., Langer, E.: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. Report 2388, MRC, University of Wisconsin, 1982.Google Scholar
20. [5.20]
Markowich, P. A., Ringhofer, C. A., Langer, E., Selberherr, S.: An Asymptotic Analysis of Single-Junction Semiconductor Devices. Report 2527, MRC, University of Wisconsin, 1983.Google Scholar
21. [5.21]
Markowich, P. A., Ringhofer, C. A., Selberherr, S.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. Report 2482, MRC, University of Wisconsin, 1983.Google Scholar
22. [5.22]
Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. Habilitation, Technische Universität Wien, 1983.Google Scholar
23. [5.23]
Markowich, P. A.: A Qualitative Analysis of the Fundamental Semiconductor Device Equations. COMPEL 2, No. 3, 97–115 (1983).
24. [5.24]
Mock, M. S.: On Equations Describing Steady-State Carrier Distributions in a Semiconductor Device. Comm. Pure and Appl. Math. 25, 781–792 (1972).
25. [5.25]
Mock, M. S.: A Two-Dimensional Mathematical Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 16, 601–609 (1973).
26. [5.26]
Mock, M. S.: An Initial Value Problem from Semiconductor Device Theory. SIAM J. Math. Anal. 5, No. 4, 597–612 (1974).
27. [5.27]
Mock, M. S.: Asymptotic Behaviour of Solutions of Transport Equations for Semiconductor Devices. J. Math. Anal. Appl. 49, 215–255 (1975).
28. [5.28]
Mock, M. S.: An Example of Nonuniqueness of Stationary Solutions in Semiconductor Device Models. COMPEL 1, No. 3, 165–174 (1982).
29. [5.29]
Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.Google Scholar
30. [5.30]
Ringhofer, C., Selberherr, S.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. Report 2513, MRC, University of Wisconsin, 1983.Google Scholar
31. [5.31]
Schütz, A., Selberherr, S., Pötzl, H. W.: A Two-Dimensional Model of the Avalanche Effect in MOS Transistors. Solid-State Electron. 25, 177–183 (1982).
32. [5.32]
Schütz, A., Selberherr, S., Pötzl, H. W.: Analysis of Breakdown Phenomena in MOSFET’s. IEEE Trans. Computer-Aided-Design of Integrated Circuits CAD-1, 77–85 (1982).
33. [5.33]
Seidman, T. I.: Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis, Theory, Methods Appl. 4, No. 3, 623–637 (1980).
34. [5.34]
Selberherr, S., Ringhofer, C.: Discretization Methods for the Semiconductor Equations. Proc. NASECODE III Conf., pp. 31–45. Dublin: Boole Press 1983.Google Scholar
35. [5.35]
Selberherr, S., Ringhofer, C.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. IEEE Trans. Computer-Aided Design of Integrated Circuits CAD-3, No. 1, 52–64 (1984).
36. [5.36]
Slotboom, J. W.: Iterative Scheme for 1- and 2-Dimensional D.C.-Transistor Simulation. Electron. Lett. 5, 677–678 (1969).
37. [5.37]
Slotboom, J. W.: Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE Trans. Electron Devices ED-20, 669–679 (1973).
38. [5.38]
Smith, D. R.: On a Singularly Perturbed Boundary Value Problem Arising in the Physical Theory of Semiconductors. Report 10–80-M 21–200/1-FMA, Technische Universität München, 1980.Google Scholar
39. [5.39]
Sze, S. M.: Physics of Semiconductor Devices. New York: Wiley 1969.Google Scholar
40. [5.40]
Toyabe, T., Asai, S., Yamaguchi, K.: Internal Documents on the CADDET Program. Hitachi, Tokyo, 1979.Google Scholar
41. [5.41]
Toyabe, T., Mock, M. S., Okabe, T., Ujiie, K., Nagata, M.: A Two-Dimensional Analysis of I2L with Multi-Stream Function Technique. Proc. NASECODE I Conf., pp. 290–292. Dublin: Boole Press 1979.Google Scholar
42. [5.42]
Van Dell, W. R.: Accuracy and Efficiency in High Power Semiconductor Device Modeling. Proc. NASECODE III Conf., pp. 281–286. Dublin: Boole Press 1983.Google Scholar
43. [5.43]
Vasil’eva, A. B., Stel’makh, V. G.: Singularly Disturbed Systems of the Theory of Semiconductor Devices. Math. Fiz. 17, No. 2, 339–348 (1977).Google Scholar
44. [5.44]
Vasil’eva, A. B., Butuzov, V. F.: Singularly Perturbed Equations in the Critical Case. Translated Report 2039, MRC, University of Wisconsin, 1978.Google Scholar