Skip to main content

Analytical Investigations About the Basic Semiconductor Equations

  • Chapter

Abstract

In this chapter we review some of the existing analytical results which characterize the basic semiconductor equations. Of particular concern will be the questions of existence, uniqueness and structure and smoothness of solutions. These are of importance in both the theoretical context and the practical context, since the knowledge of the structure and smoothness properties of solutions is indeed essential for the selection of appropriate numerical Solution procedures. The basic semiconductor equations as given in Chapter2 are:

$$\text{div}\,\text{grad}\,\psi = \frac{q} {\varepsilon } \cdot (n - p - c)$$
(5-1)
$$\text{div}\,\vec J_n - q \cdot \frac{{\partial n}} {{\partial t}} = q \cdot R(\psi ,n,p)$$
(5-2)
$$\text{div}\,\vec J_p + q \cdot \frac{{\partial n}} {{\partial t}} = - q \cdot R(\psi ,n,p)$$
(5-3)
$$\vec J_n = - q \cdot (\mu _n \cdot n \cdot \text{grad}\,\psi - D_n \cdot \text{grad}\,n)$$
(5-4)
$$\vec J_n = - q \cdot (\mu _p \cdot p \cdot \text{grad}\,\psi - D_p \cdot \text{grad}\,p)$$
(5-5)

We have omitted in the current relations (5-4) and (5-5) terms which account for current components caused by bandgap narrowing and temperature gradients. All these effects are considered to be only small perturbations which just make the essential analytical results about the basic semiconductor equations less transparent. One should also bear in mind that the current relations will become potentially incorrect if one of the above cited effects would change the equations in a dominating manner (cf. Section 2.3). We shall also ignore the impact of a non- homogeneous temperature distribution on the basic semiconductor equations for the following analytical investigations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, T., Yoshii, A., Sudo, T.: Two-Dimensional Semiconductor Analysis Using Finite-Element Method. IEEE Trans. Electron Devices ED-26, 1026–1031 (1979).

    Article  Google Scholar 

  2. Bank, R. E., Jerome, J. W., Rose, D. J.: Analytical and Numerical Aspects of Semiconductor Device Modeling. Report 82–11274-2, Bell Laboratories (1982).

    Google Scholar 

  3. Chryssafis, A., Love, W.: A Computer-Aided Analysis of One-Dimensional Thermal Transients in n-p-n Power Transistors. Solid-State Electron. 22, 249–256 (1979).

    Article  CAS  Google Scholar 

  4. Crowell, C. R., Beguwala, M.: Recombination Velocity Effects on Current Diffusion and IMREF in Schottky Barriers. Solid-State Electron. 4, No. 11, 1149–1157 (1971).

    Article  Google Scholar 

  5. DeMari, A.: An Accurate Numerical Steady-State One-Dimensional Solution of the P-N Junction. Solid-State Electron. 11, 33–58 (1968).

    Article  Google Scholar 

  6. DeMari, A.: An Accurate Numerical One-Dimensional Solution of the P-N Junction under Arbitrary Transient Conditions. Solid-State Electron. 11, 1021–2053 (1968).

    Article  Google Scholar 

  7. Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Amsterdam: North-Holland 1979.

    Google Scholar 

  8. Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).

    Article  Google Scholar 

  9. Fife, P. C.: Semilinear Elliptic Boundary Value Problems with Small Parameters. Arch. Rat. Mech. Anal. 52, 205–232 (1973).

    Article  Google Scholar 

  10. Fontana, T. P., McGregor, D. M., Lowther, R. P.: DEFINES: A Semiconductor Device Finite Element Simulation. Electrocon International Inc. 1982.

    Google Scholar 

  11. Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P.: Finite Boxes-A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-30, No.9, 1070–1082 (1983).

    Article  Google Scholar 

  12. Hachtel, G. D., Mack, M. H., O’Brien, R. R., Speelpennig, B.: Semiconductor Analysis Using Finite Elements — Part 1: Computational Aspects. IBM J. Res. Dev. 25, 232–245 (1981).

    Article  Google Scholar 

  13. Hachtel, G. D., Mack, M. H., O’Brien, R. R.: Semiconductor Analysis Using Finite Elements — Part 2: IGFET and BJT Case Studies. IBM J. Res. Dev. 25, 246–260 (1981).

    Article  Google Scholar 

  14. Heimeier, H. H.: A Two-Dimensional Numerical Analysis of a Silicon N-P-N Transistor. IEEE Trans. Electron Devices ED-20, 708–714 (1973).

    Article  Google Scholar 

  15. Kurata, M.: Numerical Analysis for Semiconductor Devices. Lexington, Mass.: Lexington Press 1982.

    Google Scholar 

  16. Laux, S. E.: Two-Dimensional Simulation of Gallium-Arsenide MESFET’s Using the Finite-Element Method. Dissertation, University of Michigan, 1981.

    Google Scholar 

  17. Laux, S. E., Lomax, R. J.: Effect of Mesh Spacing on Static Negative Resistance in GaAs MESFET Simulation. IEEE Trans. Electron Devices ED-28, No. 1, 120–122 (1981).

    Article  CAS  Google Scholar 

  18. Manck, O., Heimeier, H. H., Engl, W. L.: High Injection in a Two-Dimensional Transistor. IEEE Trans. Electron Devices ED-21, 403–409 (1974).

    Article  Google Scholar 

  19. Markowich, P. A., Ringhofer, C. A., Selberherr, S., Langer, E.: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. Report 2388, MRC, University of Wisconsin, 1982.

    Google Scholar 

  20. Markowich, P. A., Ringhofer, C. A., Langer, E., Selberherr, S.: An Asymptotic Analysis of Single-Junction Semiconductor Devices. Report 2527, MRC, University of Wisconsin, 1983.

    Google Scholar 

  21. Markowich, P. A., Ringhofer, C. A., Selberherr, S.: A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations. Report 2482, MRC, University of Wisconsin, 1983.

    Google Scholar 

  22. Markowich, P. A.: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. Habilitation, Technische Universität Wien, 1983.

    Google Scholar 

  23. Markowich, P. A.: A Qualitative Analysis of the Fundamental Semiconductor Device Equations. COMPEL 2, No. 3, 97–115 (1983).

    Article  Google Scholar 

  24. Mock, M. S.: On Equations Describing Steady-State Carrier Distributions in a Semiconductor Device. Comm. Pure and Appl. Math. 25, 781–792 (1972).

    Article  Google Scholar 

  25. Mock, M. S.: A Two-Dimensional Mathematical Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 16, 601–609 (1973).

    Article  Google Scholar 

  26. Mock, M. S.: An Initial Value Problem from Semiconductor Device Theory. SIAM J. Math. Anal. 5, No. 4, 597–612 (1974).

    Article  Google Scholar 

  27. Mock, M. S.: Asymptotic Behaviour of Solutions of Transport Equations for Semiconductor Devices. J. Math. Anal. Appl. 49, 215–255 (1975).

    Article  Google Scholar 

  28. Mock, M. S.: An Example of Nonuniqueness of Stationary Solutions in Semiconductor Device Models. COMPEL 1, No. 3, 165–174 (1982).

    Article  Google Scholar 

  29. Mock, M. S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.

    Google Scholar 

  30. Ringhofer, C., Selberherr, S.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. Report 2513, MRC, University of Wisconsin, 1983.

    Google Scholar 

  31. Schütz, A., Selberherr, S., Pötzl, H. W.: A Two-Dimensional Model of the Avalanche Effect in MOS Transistors. Solid-State Electron. 25, 177–183 (1982).

    Article  Google Scholar 

  32. Schütz, A., Selberherr, S., Pötzl, H. W.: Analysis of Breakdown Phenomena in MOSFET’s. IEEE Trans. Computer-Aided-Design of Integrated Circuits CAD-1, 77–85 (1982).

    Article  Google Scholar 

  33. Seidman, T. I.: Steady State Solutions of Diffusion-Reaction Systems with Electrostatic Convection. Nonlinear Analysis, Theory, Methods Appl. 4, No. 3, 623–637 (1980).

    Article  Google Scholar 

  34. Selberherr, S., Ringhofer, C.: Discretization Methods for the Semiconductor Equations. Proc. NASECODE III Conf., pp. 31–45. Dublin: Boole Press 1983.

    Google Scholar 

  35. Selberherr, S., Ringhofer, C.: Implications of Analytical Investigations about the Semiconductor Equations on Device Modeling Programs. IEEE Trans. Computer-Aided Design of Integrated Circuits CAD-3, No. 1, 52–64 (1984).

    Article  Google Scholar 

  36. Slotboom, J. W.: Iterative Scheme for 1- and 2-Dimensional D.C.-Transistor Simulation. Electron. Lett. 5, 677–678 (1969).

    Article  Google Scholar 

  37. Slotboom, J. W.: Computer-Aided Two-Dimensional Analysis of Bipolar Transistors. IEEE Trans. Electron Devices ED-20, 669–679 (1973).

    Article  Google Scholar 

  38. Smith, D. R.: On a Singularly Perturbed Boundary Value Problem Arising in the Physical Theory of Semiconductors. Report 10–80-M 21–200/1-FMA, Technische Universität München, 1980.

    Google Scholar 

  39. Sze, S. M.: Physics of Semiconductor Devices. New York: Wiley 1969.

    Google Scholar 

  40. Toyabe, T., Asai, S., Yamaguchi, K.: Internal Documents on the CADDET Program. Hitachi, Tokyo, 1979.

    Google Scholar 

  41. Toyabe, T., Mock, M. S., Okabe, T., Ujiie, K., Nagata, M.: A Two-Dimensional Analysis of I2L with Multi-Stream Function Technique. Proc. NASECODE I Conf., pp. 290–292. Dublin: Boole Press 1979.

    Google Scholar 

  42. Van Dell, W. R.: Accuracy and Efficiency in High Power Semiconductor Device Modeling. Proc. NASECODE III Conf., pp. 281–286. Dublin: Boole Press 1983.

    Google Scholar 

  43. Vasil’eva, A. B., Stel’makh, V. G.: Singularly Disturbed Systems of the Theory of Semiconductor Devices. Math. Fiz. 17, No. 2, 339–348 (1977).

    Google Scholar 

  44. Vasil’eva, A. B., Butuzov, V. F.: Singularly Perturbed Equations in the Critical Case. Translated Report 2039, MRC, University of Wisconsin, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag/Wien

About this chapter

Cite this chapter

Selberherr, S. (1984). Analytical Investigations About the Basic Semiconductor Equations. In: Analysis and Simulation of Semiconductor Devices. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8752-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8752-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8754-8

  • Online ISBN: 978-3-7091-8752-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics