Advertisement

Abstract

The basic semiconductor equations, the derivation of which we have thoroughly discussed in Chapter 2, just determine the structure of the set of equations which we shall have to solve in order to simulate the internal behavior of a device. Process modeling, as sketched in Chapter 3, delivers information about the geometry of a device and the distribution of dopants, whieh can also be considered to be a physical Parameter. As we have already noticed, a couple of additional physical parameters are inherently associated with the basic semiconductor equations. Any quantitative, or even qualitative, Simulation of a device relies heavily on applicable models for these parameters. In addition, a mathematieal characterization of the problem of solving the basic semiconductor equations is only fqasible with at least qualitative knowledge of the associated parameters (e.g. sign, smoothness, order of magnitude). Therefore, we shall discuss in this chapter the most important models for the physical parameters. A review has also been presented in [4.41].

Keywords

Valence Band Physical Review Impact Ionization Ionization Rate Free Carrier Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4.1]
    Adler, M. S.: Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors. IEEE Trans. Electron Devices ED-25, No. 1, 16–22 (1978).CrossRefGoogle Scholar
  2. [4.2]
    Adler, M. S., Temple, V. A. K., Rustay, R. C.: Theoretical Basis for Field Calculations on Multi-Dimensional Reverse Biased Semiconductor Devices. Solid-State Electron. 25, No. 12, 1179–1186 (1982).CrossRefGoogle Scholar
  3. [4.3]
    Adler, M. S.: Accurate Numerical Models for Transistors and Thyristors. In: Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 5–8. Dublin: Boole Press 1981.Google Scholar
  4. [4.4]
    Akers, L. A., Portnoy, W. M.: Numerical Analysis of the Steady-State Behaviour of a MOS Field Effect Transistor. Int. J. Num. Meth. Eng. 15, 1221–1238 (1980).CrossRefGoogle Scholar
  5. [4.5]
    Albrecht, H., Müller, R.: The Anomalous Breakdown. IEEE Trans. Electron Devices ED-27, 970–911 (1980).CrossRefGoogle Scholar
  6. [4.6]
    Alley, G. D.: High-Voltage Two-Dimensional Simulations of Permeable Base Transistors. IEEE Trans. Electron Devices ED-30, No. 1, 52–60 (1983).CrossRefGoogle Scholar
  7. [4.7]
    Anderson, C. L., Crowell, C. R.: Threshold Energies for Electron-Hole Pair Generation by Impact Ionization in Semiconductors. Physical Review B5, 2267–2272 (1972).Google Scholar
  8. [4.8]
    Antoniadis, D. A., Gonzales, A. G., Dutton, R. W.: Boron in Near-Intrinsic (100) and (111) Silicon under Inert and Oxidizing Ambients. J. Electrochem. Soc. 125, 813–819 (1978).CrossRefGoogle Scholar
  9. [4.9]
    Arora, N. D., Hauser, J. R., Roulston, D. J.: Electron and Hole Mobiiities in Silicon as a Function of Concentration and Temperature. IEEE Trans. Electron Devices ED-29, 292–295 (1982).CrossRefGoogle Scholar
  10. [4.10]
    Baccarani, G., Ostoja, P.: Electron Mobility Empirically Related to the Phosphorus Concentration in Silicon. Solid-State Electron. 18, 579–580 (1975).CrossRefGoogle Scholar
  11. [4.11]
    Baccarani, G., Wordeman, M. R.: Transconductance Degradation in Thin-Oxide MOSFET’s. Proc. Int. Electron Devices Meeting, pp. 278–281 (1982).Google Scholar
  12. [4.12]
    Baraff, G. A.: Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors. Physical Review 128, 2507–2517 (1962).CrossRefGoogle Scholar
  13. [4.13]
    Barnes, J. J., Lomax, R. J., Haddad, G. I.: Finite-Element Simulation of GaAs MESFET’s with Lateral Doping Profiles and Submicron Gates. IEEE Trans. Electron Devices ED-23, No. 9, 1042–1048 (1976).CrossRefGoogle Scholar
  14. [4.14]
    Bennett, H. S.: Improved Concepts for Predicting the Electrical Behavior of Bipolar Structures in Silicon. IEEE Trans. Electron Devices ED-30, No. 8, 920–927 (1983).CrossRefGoogle Scholar
  15. [4.15]
    Blatt, F. J.: Physics of Electronic Conduction in Solids. New York: McGraw-Hill 1968.Google Scholar
  16. [4.16]
    Bourgoin, J., Lannoo, M.: Point Defects in Semiconductors II. Berlin-Heidelberg-New York: Springer 1983.CrossRefGoogle Scholar
  17. [4.17]
    Brooks, H.: Scattering by Ionized Impurities in Semiconductors. Physical Review 83, 879 (1951).Google Scholar
  18. [4.18]
    Bulman, G. E., Robbins, V. M., Brennan, K. F., Hess, K., Stillman, G. E.: Experimental Determination of Impact Ionization Coefficients in (100) GaAs. IEEE Electron Device Lett. EDL-4, No. 6, 181–185 (1983).CrossRefGoogle Scholar
  19. [4.19]
    Canali, C., Majni, G., Minder, R., Ottaviani, G.: Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature. IEEE Trans. Electron Devices ED-22, 1045–1047 (1975).CrossRefGoogle Scholar
  20. [4.20]
    Capasso, F., Pearsall, T. P., Thornber, K. K.: The Effect of Collisional Broadening on Monte Carlo Simulations of High-Field Transport in Semiconductor Devices. IEEE Electron Device Lett. EDL-2, 295 (1981).CrossRefGoogle Scholar
  21. [4.21]
    Caughey, D. M., Thomas, R. E.: Carrier Mobiiities in Silicon Empirically Related to Doping. and Field. Proc. IEEE 52, 2192–2193 (1967).CrossRefGoogle Scholar
  22. [4.22]
    Chryssafis, A., Love, W.: A Computer-Aided Analysis of One-Dimensional Thermal Transients in n-p-n Power Transistors. Solid-State Electron. 22, 249–256 (1979).CrossRefGoogle Scholar
  23. [4.23]
    Chwang, R., Kao, C.-W., Crowell, C. R.: Normalized Theory of Impact Ionization and Velocity Saturation in Nonpolar Semiconductors via a Markov Chain Approach. Solid-State Electron. 22, 599–620 (1979).CrossRefGoogle Scholar
  24. [4.24]
    Chynoweth, A. G.: Ionization Rates for Electrons and Holes in Silicon. Physical Review 109, 1537–1540 (1958).CrossRefGoogle Scholar
  25. [4.25]
    Coen, R. W., Muller, R. S.: Velocity of Surface Carriers in Inversion Layers on Silicon. Solid-State Electron. 23, 35–40 (1980).CrossRefGoogle Scholar
  26. [4.26]
    Collins, T. W., Churchill, J. N.: Exact Modeling of the Transient Response of an MOS Capacitor. IEEE Trans. Electron Devices ED-22, No. 3, 90–101 (1975).CrossRefGoogle Scholar
  27. [4.27]
    Conradt, R.: Auger-Rekombination in Halbleitern. In: Festkörperprobleme XII, pp.449–464. Braunschweig: Vieweg 1972.CrossRefGoogle Scholar
  28. [4.28]
    Conwell, E., Weisskopf, V. F.: Theory of Impurity Scattering in Semiconductors. Physical Review 77, No. 3, 388–390 (1950).CrossRefGoogle Scholar
  29. [4.29]
    Conwell, E. M.: High Field Transport in Semiconductors. New York: Academic Press 1967.Google Scholar
  30. [4.30]
    Cooper, J. A., Nelson, D. F.: Measurement of the High-Field Drift Velocity of Electrons in Inversion Layers on Silicon. IEEE Electron Device Lett. EDL-2, No. 7, 171–173 (1981).CrossRefGoogle Scholar
  31. [4.31]
    Crowell, C. R., Sze, S. M.: Temperature Dependence of Avalanche Multiplication in Semiconductors. Appl. Phys. Lett. 9, 242–244 (1966).CrossRefGoogle Scholar
  32. [4.32]
    Curtice, W. R.: Direct Comparison of the Electron Temperature Model with the Particle Mesh (Monte-Carlo) Model for the GaAs MESFET. IEEE Trans. Electron Devices ED-29, No. 12, 1942–1943 (1982).CrossRefGoogle Scholar
  33. [4.33]
    D’Avanzo, D. C., Vanzi, M., Dutton, R. W.: One-Dimensional Semiconductor Device Analysis (SEDAN). Report G-201–5, Stanford University, 1979.Google Scholar
  34. [4.34]
    Dang, L. M., Konaka, M.: A Two-Dimensional Computer Analysis of Triode-Like Characteristics of Short-Channel MOSFET’s. IEEE Trans. Electron Devices ED-27, 1533–1539 (1980).CrossRefGoogle Scholar
  35. [4.35]
    Debye, P. P., Conwell, E. M.: Electrical Properties of N-Type Germanium. Physical Review 93, 693–706 (1954).CrossRefGoogle Scholar
  36. [4.36]
    Dhanasekaran, P. C., Gopalam, B.S.Y.: The Physical Behaviour of an n +p Silicon Solar Cell in Concentrated Sunlight. Solid-State Electron. 25, No. 8, 719–722 (1982).CrossRefGoogle Scholar
  37. [4.37]
    Dhariwal, S. R., Kothari, L. S., Jain, S. C.: On the Recombination of Electrons and Holes at Traps with Finite Relaxation Time. Solid-State Electron. 24, No. 8, 749–752 (1981).CrossRefGoogle Scholar
  38. [4.38]
    Dorkel, J. M., Leturcq, Ph.: Carrier Mobiiities in Silicon Semi-Empirically Related to Temperature, Doping and Injection Level. Solid-State Electron. 24, 821–825 (1981).CrossRefGoogle Scholar
  39. [4.39]
    Dziewior, J., Schmid, W.: Auger Coefficients for Highly Doped and Highly Excited Silicon. Appl. Phys. Lett. 31, 346–348 (1977).CrossRefGoogle Scholar
  40. [4.40]
    Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).CrossRefGoogle Scholar
  41. [4.41]
    Engl, W. L., Dirks, H.: Models of Physical Parameters. In: Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 42–46. Dublin: Boole Press 1981.Google Scholar
  42. [4.42]
    Ezawa, H.: Inversion Layer Mobility with Intersubband Scattering. Surface Science 58, 25–32 (1976).CrossRefGoogle Scholar
  43. [4.43]
    Fossum, J. G.: Computer-Aided Numerical Analysis of Silicon Solar Cells. Solid-State Electron. 19, 269–277 (1976).CrossRefGoogle Scholar
  44. [4.44]
    Fossum, J. G., Lee, D. S.: A Physical Model for the Dependence of Carrier Lifetime on Doping Density in Nondegenerate Silicon. Solid-State Electron. 25, No. 8, 741–747 (1982).CrossRefGoogle Scholar
  45. [4.45]
    Fossum, J. G., Mertens, R. P., Lee, D. S., Nijs, J. F.: Carrier Recombination and Lifetime in Highly Doped Silicon. Solid-State Electron. 26, No. 6, 569–576 (1983).CrossRefGoogle Scholar
  46. [4.46]
    Gaur, S. P., Navon, D. H.: Two-Dimensional Carrier Flow in a Transistor Structure Under Nonisothermal Conditions. IEEE Trans. Electron Devices ED-23, 50–57 (1976).CrossRefGoogle Scholar
  47. [4.47]
    Gaur, S. P.: Performance Limitations of Silicon Bipolar Transistors. IEEE Trans. Electron Devices ED-26, 415–421 (1979).CrossRefGoogle Scholar
  48. [4.48]
    Glasbrenner, C. J., Slack, G. A.: Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point. Physical Review 134, No. 4A, A1058-A1069 (1964).CrossRefGoogle Scholar
  49. [4.49]
    Grant, W. N.: Electron and Hole Ionization Rates in Epitaxial Silicon at High Electric Fields. Solid-State Electron. 16, 1189–1203 (1973).CrossRefGoogle Scholar
  50. [4.50]
    Grove, A. S.: Physics and Technology of Semiconductor Devices. New York: Wiley 1967.Google Scholar
  51. [4.51]
    Hall, R. N.: Electron-Hole Recombination in Germanium. Physical Review 87, 387 (1952).CrossRefGoogle Scholar
  52. [4.52]
    Haug, A.: Strahlungslose Rekombination in Halbleitern (Theorie). In: Festkörperprobleme XII, pp. 411–447. Braunschweig: Vieweg 1972.CrossRefGoogle Scholar
  53. [4.53]
    Hauser, J. R.: Threshold Energy for Avalanche Multiplication in Semiconductors. J. Appl. Phys. 37, 507–509 (1966).CrossRefGoogle Scholar
  54. [4.54]
    Heimeier, H. H.: Zweidimensionale numerische Lösung eines nichtlinearen Randwertproblems am Beispiel des Transistors im stationären Zustand. Dissertation, Technische Hochschule Aachen, 1973.Google Scholar
  55. [4.55]
    Herring, C.: Transport Properties of a Many-Valley Semiconductor. Bell Syst. Techn. J. 34, No. 2, 237–290 (1955).Google Scholar
  56. [4.56]
    Hess, K.: Comment on “Effect of Collisional Broadening on Monte Carlo Simulations of High-Field Transport in Semiconductor Devices”. IEEE Electron Device Lett. EDL-2, No. 11, 297–298 (1981).CrossRefGoogle Scholar
  57. [4.57]
    Heywang, W., Pötzl, H. W.: Bandstruktur und Stromtransport. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  58. [4.58]
    Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A. A.: A Review of Some Charge Transport Properties of Silicon. Solid-State Electron. 20, 77–89 (1977).CrossRefGoogle Scholar
  59. [4.59]
    Jaggi, R.: High-Field Drift Velocities in Silicon and Germanium. Helv. Phys. Acta 42, 941–943 (1969).Google Scholar
  60. [4.60]
    Jaggi, R., Weibel, H.: High-Field Electron Drift Velocities and Current Densities in Silicon. Helv. Phys. Acta 42, 631–632 (1969).Google Scholar
  61. [4.61]
    Kireev, P. S.: Semiconductor Physics. Moscow: MIR Publishers 1978.Google Scholar
  62. [4.62]
    Kotani, N., Kawazu, S.: Computer Analysis of Punch-Through in MOSFET’s. Solid-State Electron. 22, 63–70 (1979).CrossRefGoogle Scholar
  63. [4.63]
    Kotani, N., Kawazu, S.: A Numerical Analysis of Avalanche Breakdown in Short-Channel MOSFET’s. Solid-State Electron. 24, 681–687 (1981).CrossRefGoogle Scholar
  64. [4.64]
    Landsberg, P. T., Robbins, D. J.: The First 70 Semiconductor Auger Processes. Solid-State Electron. 21, 1289–1294 (1978).CrossRefGoogle Scholar
  65. [4.65]
    Landsberg, P T., Abrahams, M. S.: Surface Recombination Statistics at Traps. Solid-State Electron. 26, No.9, 841–849 (1983).CrossRefGoogle Scholar
  66. [4.66]
    Laux, S. E., Lomax, R. J.: Numerical Investigation of Mesh Size Convergence Rate of the Finite Element Method in MESFET Simulation. Solid-State Electron. 24, 485–493 (1981).CrossRefGoogle Scholar
  67. [4.67
    Law, M.: Simulation of Recessed Gate FET’s. Workshop on CAD of VLSI Processes, Stanford, 1982.Google Scholar
  68. [4.68]
    Lee, C. A., Logan, R. A., Batdorf, R. L., Kleimack, J. J., Wiegmann, W.: Ionization Rates of Holes and Electrons in Silicon. Physical Review 134, A761–773 (1964).CrossRefGoogle Scholar
  69. [4.69]
    Li, S. S., Thurber, W. R.: The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon. Solid-State Electron. 20, 609–616 (1977).CrossRefGoogle Scholar
  70. [4.70]
    Li, S. S.: The Dopant Density and Temperature Dependence of Hole Mobility and Resistivity in Boron Doped Silicon. Solid-State Electron. 21, 1109–1117 (1978).CrossRefGoogle Scholar
  71. [4.71]
    Müller, W., Risch, L., Schütz, A.: Analysis of Short Channel MOS Transistors in the Avalanche Multiplication Regime. IEEE Trans. Electron Devices ED-29, No. 11, 1778–1784 (1982).CrossRefGoogle Scholar
  72. [4.72]
    Manck, O.: Numerische Analyse des Schaltverhaltens eines zweidimensionalen bipolaren Transistors. Dissertation, Technische Hochschule Aachen, 1975.Google Scholar
  73. [4.73]
    Masetti, G., Severi, M., Solmi, S.: Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-and Boron-Doped Silicon. IEEE Trans. Electron Devices ED-30, No. 7, 764–769 (1983).CrossRefGoogle Scholar
  74. [4.74]
    Maycock, P. D.: Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys. Solid-State Electron. 10, 161–168 (1967).CrossRefGoogle Scholar
  75. [4.75]
    Miller, S. L.: Ionization Rates for Holes and Electrons in Silicon. Physical Review 105, 1246–1249 (1957).CrossRefGoogle Scholar
  76. [4.76]
    Moll, J. L., VanOverstraeten, R.: Charge Multiplication in Silicon p-n Junctions. Solid-State Electron. 6, 147–157 (1963).CrossRefGoogle Scholar
  77. [4.77]
    Mott, N. F.: Recombination: A Survey. Solid-State Electron. 21, 1275–1280 (1978).CrossRefGoogle Scholar
  78. [4.78]
    Nakagawa, A.: One-Dimensional Device Model of the npn Bipolar Transistor Including Heavy Doping Effects under Fermi Statistics. Solid-State Electron. 22, 943–949 (1979).CrossRefGoogle Scholar
  79. [4.79]
    Navon, D. H., Wang, C. T.: Numerical Modeling of Power MOSFET’s. Solid-State Electron. 26, No. 4, 287–290 (1983).CrossRefGoogle Scholar
  80. [4.80]
    Newman, D. S., Ferry, D. K., Sites, J. R.: Measurement and Simulation of GaAs FET’s under Electron Beam Irradiation. IEEE Trans. Electron Devices ED-30, No. 7, 849–855 (1983).CrossRefGoogle Scholar
  81. [4.81]
    Norton, P., Braggins, T., Levinstein, H.: Impurity and Lattice Scattering Parameters as Determined from Hall and Mobility Analysis in n-type Silicon. Phys. Rev. B8, No. 12, 5632–5653 (1973).Google Scholar
  82. [4.82]
    Ogawa, T.: Avalanche Breakdown and Multiplication in Silicon pin Junctions. Jap. J. Appl. Phys. 4, 473–484 (1965).CrossRefGoogle Scholar
  83. [4.83]
    Oh, S. Y., Ward, D. E., Dutton, R. W.: Transient Analysis of MOS Transistors. IEEE Trans. Electron Devices ED-27, 1571–1578 (1980).Google Scholar
  84. [4.84]
    Oka, H., Nishiuchi, K., Nakamura, T., Ishikawa, H.: Two-Dimensional Numerical Analysis of Normally-Off Type Buried Channel MOSFET’s. Proc. Int. Electron Devices Meeting, pp. 30–33 (1979).Google Scholar
  85. [4.85]
    Oka, H., Nishiuchi, K., Nakamura, T., Ishikawa, H.: Computer Analysis of a Short-Channel BC MOSFET. IEEE Trans. Electron Devices ED-27, 1514–1520 (1980).CrossRefGoogle Scholar
  86. [4.86]
    Okuto, Y., Crowell, C. R.: Energy Conservation Considerations in the Characterization of Impact Ionization in Semiconductors. Physical Review B6, 3076–3081 (1972).Google Scholar
  87. [4.87]
    Okuto, Y., Crowell, C. R.: Ionization Coefficients in Semiconductors: A Nonlocalized Property. Physical Review B10, 4284–4296 (1974).Google Scholar
  88. [4.88]
    Okuto, Y., Crowell, C. R.: Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid-State Electron. 18, 161–168 (1975).CrossRefGoogle Scholar
  89. [4.89]
    Omura, Y., Sano, E., Ohwada, K.: A Negative Drain Conductance Property in a Super-Thin Film Buried-Channel MOSFET on a Buried Insulator. IEEE Trans. Electron Devices ED-30, No. 1, 67–73 (1983).CrossRefGoogle Scholar
  90. [4.90]
    Paul, R.: Halbleiterphysik. Heidelberg: Hüthig-Verlag 1975.Google Scholar
  91. [4.91]
    Plunkett, J. C., Stone, J. L., Leu, A.: A Computer Algorithm for Accurate and Repeatable Profile Analysis Using Anodization and Stripping of Silicon. Solid-State Electron. 20, 447–453 (1977).CrossRefGoogle Scholar
  92. [4.92]
    Queisser, H. J.: Recombination at Deep Traps. Solid-State Electron. 21, 1495–1503 (1978).CrossRefGoogle Scholar
  93. [4.93]
    Reiser, M.: A Two-Dimensional Numerical FET Model for DC, AC, and Large-Signal Analysis. IEEE Trans. Electron Devices ED-20, 35–44 (1973).CrossRefGoogle Scholar
  94. [4.94]
    Resta, R., Resca, L.: Ionized Impurity Scattering in Semiconductors. Physical Review B20, No. 8, 3254–3257 (1979).Google Scholar
  95. [4.95]
    Robinson, J. E., Rodriguez, S.: Ionized Impurity Scattering in Degenerate Many-Valley Semiconductors. Physical Review 135, No. 3A, A779-A784 (1964).CrossRefGoogle Scholar
  96. [4.96]
    Roulston, D. J., Arora, N. D., Chamberlain, S. G.: Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+p Silicon Diodes. IEEE Trans. Electron Devices ED-29, No.2, 284–291 (1982).Google Scholar
  97. [4.97]
    Roychoudhury, D., Basu, P. K.: A New Mobility-Field Expression for the Calculation of Mosfet Characteristics. Solid-State Electron. 9, 656–657 (1976).CrossRefGoogle Scholar
  98. [4.98]
    Ruch, J. G., Kino, G. S.: Measurement of the Velocity-Field Characteristic of Gallium Arsenide. Appl. Phys. Lett. 10, No. 2, 40–42 (1967).CrossRefGoogle Scholar
  99. [4.99]
    Ruch, J. G., Kino, G. S.: Transport Properties of GaAs. Physical Review 174, No. 3, 921–931 (1968).CrossRefGoogle Scholar
  100. [4.100]
    Ruch, J. G., Fawcett, W.: Temperature Dependence of the Transport Properties of Gallium Arsenide Determined by a Monte Carlo Method. J. Appl. Phys. 41, No. 9, 3843–3849 (1970).CrossRefGoogle Scholar
  101. [4.101]
    Sabnis, A. G., Clemens, J. T.: Characterization of the Electron Mobility in the Inverted (100) Sl-Surface. Proc. International Electron Devices Meeting, pp. 18–21 (1979).Google Scholar
  102. [4.102]
    Sah, C. T., Chan, P. C. H., Wang, C.-K., Sah, R. L. Y., Yamakawa, K. A., Lutwack, R.: Effect of Zinc Impurity in Silicon Solar-Cell Efflciency. IEEE Trans. Electron Devices ED-28, No. 3, 304–313 (1981).Google Scholar
  103. [4.103]
    Scarfone, L. M., Richardson, L. M.: Electron Mobiiities Based on an Exact Numerical Analysis of the Dielectric Function Dependent Linearized Poisson’s Equation for the Potential of Impurity Ions in Semiconductors. Physical Review B22, No. 2, 982–990 (1980).Google Scholar
  104. [4.104]
    Schütz, A., Selberherr, S., Pötzl, H. W.: A Two-Dimensional Model of the Avalanche Effect in MOS Transistors. Solid-State Electron. 25, 177–183 (1982).CrossRefGoogle Scholar
  105. [4.105]
    Schütz, A., Selberherr, S., Pötzl, H. W.: Analysis of Breakdown Phenomena in MOSFET’s. IEEE Trans. Computer-Aided-Design of Integrated Circuits CAD-1, 77–85 (1982).CrossRefGoogle Scholar
  106. [4.106]
    Scharfetter, D. L., Gummel, H. K.: Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969).CrossRefGoogle Scholar
  107. [4.107]
    Schmid, W.: Experimental Comparison of Localized and Free Carrier Auger Recombination in Silicon. Solid-State Electron. 21, 1285–1287 (1978).CrossRefGoogle Scholar
  108. [4.108]
    Seeger, K.: Semiconductor Physics. Wien-New York: Springer 1973.Google Scholar
  109. [4.109]
    Selberherr, S.: Zweidimensionale Modellierung von MOS-Transistoren. Dissertation, Technische Universität Wien, 1981.Google Scholar
  110. [4.110]
    Selberherr, S., Schütz, A., Pötzl, H.: Two Dimensional MOS-Transistor Modeling. In: Process and Device Simulation for Integrated Circuit Design, pp. 490–581. The Hague: Martinus Nijhoff 1983.Google Scholar
  111. [4.111]
    Shekhar, C., Khokle, W. S.: Transient Behaviour of Impact Ionization in Silicon. IEEE Trans. Electron Devices ED-23, 1109–1110 (1976).CrossRefGoogle Scholar
  112. [4.112]
    Shichijo, H., Hess, K.: Band Structure Dependent Transport and Impact Ionization in GaAs. Physical Review B23, No. 8, 4197–4207 (1981).Google Scholar
  113. [4.113]
    Shichijo, H., Hess, K., Stillman, G. E.: Simulation of High-Field Transport in GaAs Using a Monte Carlo Method and Pseudopotential Band Structures. Appl. Phys. Lett. 38, 89–91 (1981).CrossRefGoogle Scholar
  114. [4.114]
    Shockley, W.: Hot Electrons in Germanium and Ohm’s Law. Bell System Technical J. 30, 990–1034 (1951).Google Scholar
  115. [4.115]
    Shockley, W., Read, W. T.: Statistics of the Recombinations of Holes and Electrons. Physical Review 87, No. 5, 835–842 (1952).CrossRefGoogle Scholar
  116. [4.116]
    Shockley, W.: Problems Related to p-n.Functions in Silicon. Solid-State Electron. 2, 35–67 (1961).CrossRefGoogle Scholar
  117. [4.117]
    Smith, R. A.: Semiconductors. Cambridge: Cambridge University Press 1978.Google Scholar
  118. [4.118]
    Spirito, P.: Avalanche Multiplication Factors in Ge and Si Abrupt.Functions. IEEE Trans. Electron Devices ED-21, 226–231 (1974).CrossRefGoogle Scholar
  119. [4.119]
    Stone, J. L., Plunkett, J. C.: Ion Implantation Processes in Silicon. In: Impurity Doping Processes in Silicon, pp. 56–146. Amsterdam: North-Holland 1981.Google Scholar
  120. [4.120]
    Sun, S. C., Plummer, J. D.: Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces. IEEE Trans. Electron Devices ED-27, 1497–1508 (1980).CrossRefGoogle Scholar
  121. [4.121]
    Sutherland, A. D.: An Improved Empirical Fit to Baraffs Universal Curves for the Ionization Coefficients of Electron and Hole Multiplication in Semiconductors. IEEE Trans. Electron Devices ED-27, No.7, 1299–1300 (1980).CrossRefGoogle Scholar
  122. [4.122]
    Sze, S. M., Gibbons, G.: Avalanche Breakdown Voltages of Abrupt and Linearly Graded p-n Junetions in Ge, Si, GaAs, and GaP. Appl. Phys. Lett. 8, 111–113 (1966).CrossRefGoogle Scholar
  123. [4.123]
    Sze, S. M.: Physics of Semiconductor Devices. New York: Wiley 1969.Google Scholar
  124. [4.124]
    Tamer, A. A., Rauch, K., Moll, J. L.: Numerical Comparison of DMOS, VMOS and UMOS Power Transistors. IEEE Trans. Electron Devices ED-30, No. 1, 73–76 (1983).CrossRefGoogle Scholar
  125. [4.125]
    Tang, J. Y., Shichijo, H., Hess, K., Iafrate, G. J.: Band Structure Dependent Impact Ionization in Silicon and Gallium Arsenide. Journal de Physique C7, No. 10, 63–69 (1981).Google Scholar
  126. [4.126]
    Tauber, G. E.: Transport Phenomena in Germanium and Silicon. J. Phys. Chem. Solids 23, 7–18 (1962).CrossRefGoogle Scholar
  127. [4.127]
    Temple, V. A. K., Adler, M. S.: Calculation of the Diffusion Curvature Related Avalanche Breakdown in High-Voltage Planar p-n Junctions. IEEE Trans. Electron Devices ED-22, 910–916 (1975).CrossRefGoogle Scholar
  128. [4.128]
    Thornber, K. K.: Relation of Drift Velocity to Low-Field Mobility and High-Field Saturation Velocity. J. Appl. Phys. 51, 2127–2136 (1980).CrossRefGoogle Scholar
  129. [4.129]
    Thornber, K. K.: Applications of Scaling to Problems in High-Field Electronic Transport. J. Appl. Phys. 52, 279–290 (1981).CrossRefGoogle Scholar
  130. [4.130]
    Toyabe, T., Asai, S., Yamaguchi, K.: Internal Documents on the CADDET Program. Hitachi, Tokyo, 1979.Google Scholar
  131. [4.131]
    Tyagi, M. S., Van Overstraeten, R.: Minority Carrier Recombination in Heavily Doped Silicon. Solid-State Electron. 26, No. 6, 577–597 (1983).CrossRefGoogle Scholar
  132. [4.132]
    Van Overstraeten, R., DeMan, H.: Measurement of the Ionization Rates in Diflfused Silicon p-n Junctions. Solid-State Electron. 13, 583–608 (1970).CrossRefGoogle Scholar
  133. [4.133]
    Vass, E., Hess, K.: Energy Loss of Warm and Hot Carriers in Surface Inversion Layers of Polar Semiconductors. Z. Physik B25, 323–325 (1976).Google Scholar
  134. [4.134]
    Warner, R. M., Ju, D.-H., Grung, B. L.: Electron-Velocity Saturation at a BJT Collector Junction under Low-Level Conditions. IEEE Trans. Electron Devices ED-30, No. 3, 230–236 (1983).CrossRefGoogle Scholar
  135. [4.135]
    Weast, R. C., Astle, M. J.: CRC Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press 1981.Google Scholar
  136. [4.136]
    Weaver, H. T., Nasby, R. D.: Analysis of High Efficiency Süicon Solar Cells. IEEE Trans. Electron Devices ED-28, No. 5, 465–472 (1981).CrossRefGoogle Scholar
  137. [4.137]
    Wolff, P. A.: Theory of Multiplication in Silicon and Germanium. Physical Review 95, 1415–1420 (1954).CrossRefGoogle Scholar
  138. [4.138]
    Yamaguchi, K.: Field-Dependant Mobility Model for Two-Dimensional Numerical Analysis of MOSFET’s. IEEE Trans. Electron Devices ED-26, 1068–1074 (1979).CrossRefGoogle Scholar
  139. [4.139]
    Yamaguchi, K.: A Mobility Model for Carriers in the MOS Inversion Layer. IEEE Trans. Electron Devices ED-30, No. 6, 658–663 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Siegfried Selberherr
    • 1
  1. 1.Institut für Allgemeine Elektrotechnik und ElektronikTechnische Universität WienAustria

Personalised recommendations