Advertisement

Abstract

To enable the Simulation of the electric behavior of a device the configuration of the device (i. e. geometry and composition of the material it is made of) is, obviously, one of the prerequisite pieces of input information. Optimal design of a device necessitates the capability to predict the effect of modifying any of the various process steps involved in device fabrication. One principle barrier for predictive device Simulation is the uncertainty of the results of process models due to still inadequate understanding of their underlying solid-state physics and chemistry. Particularly in the development of devices for integrated circuits and their technology, the need for process models is growing dramatically due to the tight coupling of two and three dimensional device effects with the doping profile [3.18]. Owing to these purposes, many Computer programs capable of modeling quite generally the various processing steps of device fabrication have been developed, and they have proven to be extremely valuable tools, e. g. ICECREM [3.64], [3.67]; LADIS [3.76]; MEMBRE [3.54]; RECIPE [3.73]; SUPRA [3.15], [3.38], [3.39], [3.50] and the extraordinarily well established SUPREM program [3.4], [3.5], [3.50], [3.51], [3.59].

Keywords

Frequency Function Pearson Type Field Enhancement Factor Intrinsic Diffusion Coefficient Phosphorus Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    Anthony, P. J.: Alteration of Diffusion Profiles in Semiconductors due to p-n Junctions. Solid-State Electron. 25, No. 10, 1003–1009 (1982).CrossRefGoogle Scholar
  2. [3.2]
    Antognetti, P., Antoniadis, D. A., Dutton, R. W., Oldham, W. G.: Process and Device Simulation for MOS-VLSI Circuits. The Hague: Martinus Nijhoff 1983.Google Scholar
  3. [3.3]
    Antoniadis, D. A., Gonzales, A. G., Dutton, R. W.: Boron in Near-Intrinsic (100) and (111) Silicon under Inert and Oxidizing Ambients. J. Electrochem. Soc. 125, 813–819 (1978).CrossRefGoogle Scholar
  4. [3.4]
    Antoniadis, D. A., Hansen, S. E., Dutton, R. W.: SUPREM II — a Program for IC Process Modeling and Simulation. Report 5019–2, Stanford University, 1978.Google Scholar
  5. [3.5]
    Antoniadis, D. A., Dutton, R. W.: Models for Computer Simulation of Complete IC Fabrication Process. IEEE J. Solid State Circuits SC-14, No. 2, 412–422 (1979).CrossRefGoogle Scholar
  6. [3.6]
    Antoniadis, D. A., Moskowitz, I.: Diffusion of Indium in Silicon Inert and Oxidizing Ambients. J. Appl. Phys. 53, No. 12, 9214–9216 (1982).CrossRefGoogle Scholar
  7. [3.7]
    Antoniadis, D. A., Moskowitz, I.: Diffusion of Substitutional Impurities in Silicon at Short Oxidation Times: An Insight into Point Defect Kinetics. J. Appl. Phys. 53, No. 10, 6788–6796 (1982).CrossRefGoogle Scholar
  8. [3.8]
    Antoniadis, D. A.: Diffusion in Silicon. In: Process and Device Simulation for MOS-VLSI Circuits, pp. 1–47. The Hague: Martinus Nijhoff 1983.Google Scholar
  9. [3.9]
    Antoniadis, D. A.: One-Dimensional Simulation of IC Fabrication Processes. In: Process and Device Simulation for MOS-VLSI Circuits, pp. 226–263. The Hague: Martinus Nijhoff 1983.Google Scholar
  10. [3.10]
    Biersack, J. P.: Calculation of Projected Ranges — Analytical Solutions and a Simple General Algorithm. Nuclear Instruments and Methods, No. 182/183, 199–206 (1981).CrossRefGoogle Scholar
  11. [3.11]
    Biersack, J. P.: New Projected Range Algorithm as Derived from Transport Equations. Z. Phys. A305, 95–101 (1982).Google Scholar
  12. [3.12]
    Cherednichenko, D. I., Gruenberg, H., Sarkar, T., K.: Solution to a Diffusion Problem with Mixed Boundary Conditions. Solid-State Electron. 17, 315–318 (1974).CrossRefGoogle Scholar
  13. [3.13]
    Chin, D., Oh, S. Y., Hu, S. M., Dutton, R. W., Moll, J. L.: Two-Dimensional Oxidation Modeling. IEEE Trans. Electron Devices ED-30, No. 7, 744–749 (1983).CrossRefGoogle Scholar
  14. [3.14]
    Chin, D. J., Kump, M. R., Lee, H. G., Dutton, R. W.: Process Design Using Coupled 2D Process and Device Simulators. Proc. Int. Electron Devices Meeting, 1981.Google Scholar
  15. [3.15]
    Chin, D., Kump, M. R., Lee, H. G., Dutton, R. W.: Process Design Using Coupled Two-Dimensional Process and Device Simulators. IEEE Trans. Electron Devices ED-29, No. 2, 336–340 (1982).CrossRefGoogle Scholar
  16. [3.16]
    Christel, L. A., Gibbons, J. F., Mylroie, S.: An Application of the Boltzmann Transport Equation to Ion Range and Damage Distribution in Multilayered Targets. J. Appl. Phys. 51, No. 12, 6176–6182 (1981).CrossRefGoogle Scholar
  17. [3.17]
    Deal, B. E., Grove, A. S.: General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36, 3770–3778 (1965).CrossRefGoogle Scholar
  18. [3.18]
    Dutton, R. W., Hansen, S. E.: Process Modeling of Integrated Circuit Device Technology. Proc. IEEE 69, 1305–1320 (1981).CrossRefGoogle Scholar
  19. [3.19]
    Fair, R. B., Tsai, J. C. C.: A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect. J. Electrochem. Soc. 124, No. 7, 1107–1117 (1977).CrossRefGoogle Scholar
  20. [3.20]
    Fair, R. B.: Concentration Profiles of Diffused Dopants. In: Impurity Doping Processes in Silicon, pp. 315–442. Amsterdam: North-Holland 1981.Google Scholar
  21. [3.21]
    Frank, W., Gösele, U., Mehrer, H., Seeger, A.: Diffusion in Silicon and Germanium. In: Diffusion in Solids II. New York: Academic Press 1983.Google Scholar
  22. [3.22]
    Furukawa, S., Ishiwara, H.: Range Distribution Theory Based on Energy Distribution of Implanted Ions. J. Appl. Phys. 43, No. 3, 1268–1273 (1972).CrossRefGoogle Scholar
  23. [3.23]
    Furukawa, S., Matsumura, H., Ishiwara, H.: Theoretical Considerations on Lateral Spread of Implanted Ions. Jap. J. Appl. Phys. 11, No.2, 134–142 (1972).CrossRefGoogle Scholar
  24. [3.24]
    Gemmel, D. S.: Channeling and Related Effects in the Motion of Charged Particles through Crystals. Rev. Mod. Phys. 46, No. 1, 129–227 (1974).CrossRefGoogle Scholar
  25. [3.25]
    Gibbons, J. F., Johnson, W. S., Mylroie, S. W.: Projected Range Statistics. Strandsberg: Halstead Press 1975.Google Scholar
  26. [3.26]
    Gibbons, J. F., Mylroie, S.: Estimation of Impurity Profiles in Ion-Implanted Amorphous Targets Using Joined Half-Gaussian Distributions. Appl. Phys. Lett. 22, No. 11, 568–569 (1973).CrossRefGoogle Scholar
  27. [3.27]
    Grove, A. S.: Physics and Technology of Semiconductor Devices. New York: Wiley 1967.Google Scholar
  28. [3.28]
    Guerrero, E., Pötzl, H., Tielert, R., Grasserbauer, M., Stingeder, G.: Generalized Model for the Clustering of AS Dopants in Si. J. Electrochem. Soc. 129, No. 8, 1826–1831 (1982).CrossRefGoogle Scholar
  29. [3.29]
    Haberger, K., Ryssel, H., Prinke, G., Hoffmann, K.: Diffusionsmechanismen in Halbleitern. Bericht RY1/6, pp. 1–46, Institut für Festkörpertechnologie, München, 1979.Google Scholar
  30. [3.30]
    Hofker, W. K.: Concentration Profiles of Boron Implantations in Amorphous and Polycrystalline Silicon. Philips Research Reports 8 , 41–57 (1975).Google Scholar
  31. [3.31]
    Hu, S. M.: Formation of Stacking Faults and Enhanced Diffusion in the Oxidation of Silicon. J. Appl. Phys. 45, No.4, 1567–1573 (1974).CrossRefGoogle Scholar
  32. [3.32]
    Hu, S. M.: New Oxide Growth Law and the Thermal Oxidation of Silicon. Appl. Phys. Lett. 42, No. 10, 872–874 (1983).CrossRefGoogle Scholar
  33. [3.33]
    Jain, R. K., Van Overstraeten, R. J.: Accurate Theoretical Arsenic Diffusion Profiles in Silicon from Processing Data. J. Electrochem. SOG. 122, No.4, 552–557 (1975).CrossRefGoogle Scholar
  34. [3.34]
    Johnson, N. L., Kotz, S.: Continuous Univariate Distributions — 1. Boston: Houghton Mifflin 1970.Google Scholar
  35. [3.35]
    Kennedy, D. P., O’Brien, R. R.: Analysis of the Impurity Atom Distribution Near the Diffusion Mask for a Planar p-n Junetion. IBM J. Res. Dev. 9, 179–186 (1965).CrossRefGoogle Scholar
  36. [3.36]
    Krimmel, E. F., Oppolzer, H., Runge, H.: Transmission Electron Microscopical Imaging of Lateral Implantation Effects Near Mask Edges in B+ Implanted Si Wafers. Revue de Physique Appliquee 13, 791–795 (1978).CrossRefGoogle Scholar
  37. [3.37]
    Lee, H. G., Sansbury, J. D., Dutton, R. W., Moll, J. L.: Modeling and Measurement of Surface Impurity Profiles of Laterally Diffused Regions. IEEE J. Solid-State Circuits SC-13, 455–461 (1978).CrossRefGoogle Scholar
  38. [3.38]
    Lee, H. G.: Two-Dimensional Impurity Diffusion Studies: Process Models and Test Structures for Low-Concentration Boron Diffusion. Report G-201–8, Stanford University, 1980.Google Scholar
  39. [3.39]
    Lee, H. G., Dutton, R. W.: Two Dimensional Low Concentration Boron Profiles: Modeling and Measurement. IEEE Trans. Electron Devices ED-28, No. 10, 1136–1147 (1981).Google Scholar
  40. [3.40]
    Lindhard, J., Scharff, M., Schiatt, H. E.: Range Concepts and Heavy Ion Ranges. Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 14, 1–42 (1963).Google Scholar
  41. [3.41]
    Maes, H., Vandervorst, W., VanOverstraeten, R.: Impurity Profile of Implanted Ions in Silicon. In: Impurity Doping Processes in Silicon, pp. 443–638. Amsterdam: North-Holland 1981.Google Scholar
  42. [3.42]
    Masetti, G., Negrini, P., Solmi, S., Soncini, G.: Boron Drive-In in Silicon in Oxidizing Atmospheres, Alta Frequenza 42, No. 8, 346–353 (1973).Google Scholar
  43. [3.43]
    Masetti, G., Solmi, S., Soncini, G.: On Phosphorus Diffusion in Silicon under Oxidizing Atmospheres. Solid-State Electron. 16, 1419–1421 (1973).CrossRefGoogle Scholar
  44. [3.44]
    Matsumoto, S., Niimi, T.: Phosphorus Diffusion under the Condition of Controlled Surface Concentration. Jap. J. Appl. Phys. 15, No. 11, 2077–2082 (1976).CrossRefGoogle Scholar
  45. [3.45]
    Matsumoto, S., Arai, E., Nakamura, H., Niimi, T.: The Distribution of the Excess Vacancies in the Bulk at the Diffusion of Phosphorus into Silicon. Jap. J. Appl. Phys. 16, No. 7, 1177–1185 (1977).Google Scholar
  46. [3.46]
    Matsumoto, S., Akao, Y., Kohiyama, K., Niimi, T.: Effect of Diffusion Induced Strain and Dislocation on Phosphorus Diffusion Into Silicon. J. Electrochem. Soc. 125, No. 11, 1840–1845 (1978).CrossRefGoogle Scholar
  47. [3.47]
    Matsumura, H., Furukawa, S.: Lateral Spread of Damage Formed by Ion Implantation. J. Appl. Phys. 47, No. 5, 1746–1751 (1976).CrossRefGoogle Scholar
  48. [3.48]
    Mazzone, A. M.: Formation and Growth of a Damaged Layer Düring Implantation: A Three Dimensional Monte Carlo Simulation. Proc. NASECODE III Conf., pp. 179–184. Dublin: Boole Press 1983.Google Scholar
  49. [3.49]
    McLellan, R. B.: Thermodynamics and Diffusion Behavior of Interstitial Solute Atoms in Crystals. Acta Metallurgica 27, 1655–1663 (1979).CrossRefGoogle Scholar
  50. [3.50]
    Mei, L., Dutton, R. W., Hansen, S. E., Kump, M., Greenfield, J. A., Price, C. H.: An Overview of Process Models and Two-Dimensional Analysis Tools. Report G-201–13, Stanford University, 1982.Google Scholar
  51. [3.51]
    Mei, L., Dutton, R. W.: A Process Simulation Model for Multilayer Structures Involving Polycrystalline Silicon. IEEE Trans. Electron Devices ED-29, No. 11, 1726–1734 (1982).CrossRefGoogle Scholar
  52. [3.52]
    Meindl, J. D., Dutton, R. W., Gibbons, J. F., Helms, C. R., Plummer, J. D. Tiller, W. A., Ho, C. P., Saraswat, K. C., Deal, B. E., Kamins, T. I.: Computer-Aided Engineering of Semiconductor Integrated Circuits. Report TRDXG501, ICL17–78, Stanford University, 1980.Google Scholar
  53. [3.53]
    Murch, G. E.: Monte Carlo Calculation as an Aid in Teaching Solid-State Diffusion. Am. J. Phys. 47, No. 1, 78–80 (1979).CrossRefGoogle Scholar
  54. [3.54]
    Murphy, W. D., Hall, W. F., Maldonado, C. D., Louie, S. A.: MEMBRE: An Efficient Two-Dimensional Process Code for VLSI. COMPEL 1, No.4, 219–239 (1982).CrossRefGoogle Scholar
  55. [3.55]
    Nuyts, W., Van Overstraeten, R.: Computer Calculations of Impurity Profiles in Silicon. Phys. Stat. Sol. 15, 329–341 (1973).CrossRefGoogle Scholar
  56. [3.56]
    Oldham, W. G., Nandgaonkar, S. N., Neureuther, A. R., O’Toole, M.: A General Simulator for VLSI Lithography and Etching Processes: Part I — Application to Projection Lithography. IEEE Trans. Electron Devices ED-26, No.4, 717–722 (1979).CrossRefGoogle Scholar
  57. [3.57]
    Oldham, W. G., Neureuther, A. R., Sung, C., Reynolds, J. L., Nandgaonkar, S. N.: A General Simulator for VLSI Lithography and Etching Processes: Part II — Application to Deposition and Etching. IEEE Trans. Electron Devices ED-27, No. 8, 1455–1459 (1980).CrossRefGoogle Scholar
  58. [3.58]
    Penumalli, B. R.: Lateral Oxidation and Redistribution of Dopants. Proc. NASECODE II Conf., pp. 264–269. Dublin: Boole Press 1981.Google Scholar
  59. [3.59]
    Plummer, J. D., Dutton, R. W., Gibbons, J. F., Helms, C. R., Meindl, J. D., Tiller, W. A., Christel, L. A., Ho, C. P., Mei, L., Saraswat, K. C., Deal, B. E., Kamins, T. I.: Computer-Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices. Report TRDXG501–82, ICL17–79, Stanford University, 1982.Google Scholar
  60. [3.60]
    Plunfimer, J. D., Deal, B. E.: Thermal Oxidation: Kinetics, Charges, Physical Models, and Interaction with Other Processes in VLSI Devices. In: Process and Device Simulation for MOS-VLSI Circuits, pp.48–87. The Hague: Martinus Nijhoff 1983.Google Scholar
  61. [3.61]
    Poncet, A.: Two-Dimensional Simulation of Local Oxidation in VLSI Processes. Proc. VLSI Process and Device Modeling, pp. 1–45, Katholieke Universiteit Leuven, 1983.Google Scholar
  62. [3.62]
    Runge, H.: Distribution of Implanted Ions under Arbitrarily Shaped Mask Edges. Phys. Stat. Sol. (a)39, 595–599 (1977).CrossRefGoogle Scholar
  63. [3.63]
    Ryssel, H., Rüge, I.: Ionenimplantation. Stuttgart: Teubner 1978.Google Scholar
  64. [3.64]
    Ryssel, H., Haberger, K., Hoffmann, K., Prinke, G., Dümcke, R., Sachs, A.: Simulation of Doping Processes. IEEE Trans. Electron Devices ED-27, 1484–1492 (1980).CrossRefGoogle Scholar
  65. [3.65]
    Ryssel, H., Prinke, G., Haberger, K., Hoffmann, K., Müller, K., Henkelmann, R.: Range Parameters of Boron Implanted into Silicon. J. Appl. Phys. 24, 39–43 (1981).CrossRefGoogle Scholar
  66. [3.66]
    Ryssel, H., Hoffmann, K.: Ion Implantation. In: Process and Device Simulation for MOS-VLSI Circuits, pp. 125–179. The Hague: Martinus Nijhoff 1983.Google Scholar
  67. [3.67]
    Ryssel, H.: Implantation and Diffusion Models for Process Simulation. Proc. VLSI Process and Device Modeling, pp. 1–41, Katholieke Universiteit Leuven, 1983.Google Scholar
  68. [3.68]
    Seeger, A., Chick, K.P.: Diffusion Mechanisms and Point Defects in Silicon and Germanium. Phys. Stat. Sol. 29, 455–542 (1968).CrossRefGoogle Scholar
  69. [3.69]
    Seidl, A.: Mathematical Implementation of Segregation Model for Two-Dimensional Process Simulation. IEEE Trans. Electron Devices ED-30, No. 6, 722–723 (1983).CrossRefGoogle Scholar
  70. [3.70]
    Seidl, A.: A Multi Grid Method for Solution of the Diffusion Equation in VLSI Process Modelling. IEEE Trans. Electron Devices ED-30, No. 9, 999–1004 (1983).CrossRefGoogle Scholar
  71. [3.71]
    Selberherr, S., Guerrero, E.: Simple and Accurate Representation of Implantation Parameters by Low Order Polynomais. Solid-State Electron. 24, 591–593 (1981).CrossRefGoogle Scholar
  72. [3.72]
    Shaw, D.: Seif- and Impurity Diffusion in Ge and Si. Phys. Stat. Sol. (b)72, 11–39 (1975).Google Scholar
  73. [3.73]
    Smith, G. E., Steckl, A. J.: RECIPE — A Two-Dimensional VLSI Process Modeling Program. IEEE Trans. Electron Devices ED-29, No. 2, 216–221 (1982).CrossRefGoogle Scholar
  74. [3.74]
    Stone, J. L., Plunkett, J. C.: Ion Implantation Processes in Silicon. In: Impurity Doping Processes in Silicon, pp. 56–146. Amsterdam: North-Holland 1981.Google Scholar
  75. [3.75]
    Taniguchi, K., Kashiwagi, M., Iwai, H.: Two Dimensional Computer Simulation Models for MOSLSI Fabrication Processes. IEEE Trans. Electron Devices ED-28, No. 5, 574–580 (1981).CrossRefGoogle Scholar
  76. [3.76]
    Tielert, R.: Two-Dimensional Numerical Simulation of Impurity Redistribution in VLSI Processes. IEEE Trans. Electron Devices ED-27, No. 8, 1479–1483 (1980).CrossRefGoogle Scholar
  77. [3.77]
    Titov, A. I., Christodoulides, C. E., Carter, G., Nobes, M. J.: The Depth Distribution of Disorder Produced by Room Temperature 40 keV N + Ion Irradiation of Silicon. Radiation Effects 41, 107–111 (1979).CrossRefGoogle Scholar
  78. [3.78]
    Troxell, J. R.: Ion-Implantation Associated Defect Production in Silicon. Solid-State Electron. 26, No. 6, 539–548 (1983).CrossRefGoogle Scholar
  79. [3.79]
    Tsai, M. Y., Morehead, F. F., Baglin, J. E. E., Michel, A. E.: Shallow Junctions by High-Dose AS Implants in Si: Experiments and Modeling. J. Appl. Phys. 51, No. 6, 3230–3235 (1980).CrossRefGoogle Scholar
  80. [3.80]
    Wang, F. F. Y.: Impurity Doping Processes in Silicon. Amsterdam: North-Holland 1981.Google Scholar
  81. [3.81]
    Wilson, R. G., The Pearson IV Distribution and Its Application to Ion Implanted Depth Profiles. Radiation Effects 46, 141–148 (1980).CrossRefGoogle Scholar
  82. [3.82]
    Winterbon, K. B., Sigmund, P., Sanders, J. B.: Spatial Distribution of Energy Deposited by Atomic Particles in Elastic Collisions. Mat. Fys. Medd. Dan.Vid. Selsk. J7, No. 14, 1–3 (1970).Google Scholar
  83. [3.83]
    Winterbon, K. B.: Ion Implantation Range and Energy Deposition Distributions, Vol. 2: Low Incident Ion Energies. New York: IFI/Plenum 1975.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Siegfried Selberherr
    • 1
  1. 1.Institut für Allgemeine Elektrotechnik und ElektronikTechnische Universität WienAustria

Personalised recommendations