Advertisement

Abstract

At the outset it seems necessary to clarify the frequently used terms analysis, Simulation and modeling. By tracing the literature one often has the impression that authors use these terms in a fairly arbitrary manner. A while ago I picked up a heavy dictionary and, among many others, I have found the following interpretations to be quite appropriate: Analysis
  • Separation of a whole into its component parts, possibly with comment and judgement

  • examination of a complex, its elements, and their relations in order to learn about

Simulation
  • imitative representation of the functioning of one system or process by means of the functioning of another

  • examination of a problem not subject to experimentation

Modeling
  • to produce a representation or Simulation of a problem or process

  • to make a description or analogy used to help visualize something that cannot be directly observed

Therefore, as difficult as it might be to decide in an individual case, analysis is at least intended to mean “exact analysis” and Simulation must mean “approximate Simulation” by inference. Modeling is obviously a necessity for analysis and Simulation.

Keywords

Electron Device Semiconductor Device Bipolar Transistor Device Modeling Integrate Circuit Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenees

  1. [1.1]
    Adachi, T., Yoshii, A., Sudo, T.: Two-Dimensional Semiconductor Analysis Using Finite-Element Method. IEEE Trans. Electron Devices ED-26, 1026–1031 (1979).Google Scholar
  2. [1.2]
    Adler, M. S.: Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors. IEEE Trans. Electron Devices ED-25, No. 1, 16–22 (1978).CrossRefGoogle Scholar
  3. [1.3]
    Adler, M. S.: A Method for Achieving and Choosing Variable Density Grids in Finite Difference Formulations and the Importance of Degeneracy and Band Gap Narrowing in Device Modeling. Proc. NASECODE I Conf., pp. 3–30. Dublin: Boole Press 1979.Google Scholar
  4. [1.4]
    Agajanian, A. H.: A Bibliography on Semiconductor Device Modeling. Solid-State Electron. 18, 917–929 (1975).CrossRefGoogle Scholar
  5. [1.5]
    Antognetti, P., Antoniadis, D. A., Dutton, R. W., Oldham, W. G.: Process and Device Simulation for MOS-VLSI Circuits. The Hague: Martinus Nijhoff 1983.Google Scholar
  6. [1.6]
    Baliga, B. J., Adler, M. S., Gray, P. V., Love, R. P., Zommer, N.: The Insulated Gate Rectifier (IGR): A New Power Switching Device. Proc. International Electron Devices Meeting, pp. 264–267 (1982).Google Scholar
  7. [1.7]
    Barnes, J. J.: A Two-Dimensional Simulation of MESFET’s. Dissertation, University of Michigan, 1976.Google Scholar
  8. [1.8]
    Barnes, J. J., Lomax, R. J., Haddad, G. I.: Finite-Element Simulation of GaAs MESFET’s with Lateral Doping Profiles and Submicron Gates. IEEE Trans. Electron Devices ED-23, No. 9, 1042–1048 (1976).CrossRefGoogle Scholar
  9. [1.9]
    Barnes, J. J., Lomax, R. J.: Finite-Element Methods in Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-24, 1082–1089 (1977).CrossRefGoogle Scholar
  10. [1.10]
    Bozler, C. O., Alley, G. D.: Fabrication and Numerical Simulation of the Permeable Base Transistor. IEEE Trans. Electron Devices ED-27, 1128–1141 (1980).Google Scholar
  11. [1.11]
    Browne, B. T., Miller, J. J. H.: Numerical Analysis of Semiconductor Devices. Dublin: Boole Press 1979.Google Scholar
  12. [1.12]
    Browne, B. T., Miller, J. J. H.: Numerical Analysis of Semiconductor Devices and Integrated Circuits. Dublin: Boole Press 1981.Google Scholar
  13. [1.13]
    Buturla, E. M., Cottrell, P. E., Grossman, B. M., Salsburg, K. A., Lawlor, M. B., McMullen, C. T.: Three-Dimensional Finite Element Simulation of Semiconductor Devices. Proc. Int. Solid-State Circuits Conf., pp. 76–77 (1980).Google Scholar
  14. [1.14]
    Buturla, E. M., Cottrell, P. E., Grossman, B. M., Salsburg, K. A.: Finite-Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Dev. 25, 218–231 (1981).CrossRefGoogle Scholar
  15. [1.15]
    Chamberlain, S. G., Husain, A.: Three-Dimensional Simulation of VLSI MOSFET’s. Proc. Int. Electron Devices Meeting, pp. 592–595 (1981).Google Scholar
  16. [1.16]
    Colak, S., Singer, B., Stupp, E.: Lateral DMOS Power Transistor Design. IEEE Electron Dev. Lett. EDL-1, 51–53 (1980).CrossRefGoogle Scholar
  17. [1.17]
    Cook, R. K., Frey, J.: Two-Dimensional Numerical Simulation of Energy Transport Effects in Si and GaAs MESFET’s. IEEE Trans. Electron Devices ED-29, No. 6, 970–977 (1982).CrossRefGoogle Scholar
  18. [1.18]
    DeMari, A.: An Accurate Numerical Steady-State One-Dimensional Solution of the P-N Junetion. Solid-State Electron. 11, 33–58 (1968).CrossRefGoogle Scholar
  19. [1.19]
    DeMari, A.: An Accurate Numerical One-Dimensional Solution of the P-N Junetion under Arbitrary Transient Conditions. Solid-State Electron. 11, 1021–2053 (1968).CrossRefGoogle Scholar
  20. [1.20]
    DeMeyer, K. M.: VLSI Process and Device Modeling. Katholieke Universiteit Leuven, 1983.Google Scholar
  21. [1.21]
    Dubock, P., D.C. Numerical Model for Arbitrarily Biased Bipolar Transistors in Two Dimensions. Electron. Lett. 6, 53–55 (1970).CrossRefGoogle Scholar
  22. [1.22]
    Engl, W. L., Dirks, H. K., Meinerzhagen, B.: Device Modeling. Proc. IEEE 71, No. 1, 10–33 (1983).CrossRefGoogle Scholar
  23. [1.23]
    Engl, W. L., Manck, O., Wieder, A. W.: Device Modeling. In: Process and Device Modeling for Integrated Circuit Design, pp. 3–17. Leyden: Noordhoff 1977.Google Scholar
  24. [1.24]
    Fortino, A. G., Nadan, J. S.: An Efficient Method for the Small-Signal AC Analysis of MOS Capacitors. IEEE Trans. Electron Devices ED-24, No. 9, 1137–1147 (1977).CrossRefGoogle Scholar
  25. [1.25]
    Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P.: Finite Boxes — A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-30, No. 9, 1070–1082 (1983).CrossRefGoogle Scholar
  26. [1.26]
    Franz, G. A., Franz, A. F., Selberherr, S., Markowich, P.: A Quasi Three Dimensional Semiconductor Device Simulation Using Cylindrical Coordinates. Proc. NASECODE III Conf., pp. 122–127. Dublin: Boole Press 1983.Google Scholar
  27. [1.27]
    Gaur, S. P., Navon, D. H.: Two-Dimensional Carrier Flow in a Transistor Structure under Nonisothermal Conditions. IEEE Trans. Electron Devices ED-23, 50–57 (1976).CrossRefGoogle Scholar
  28. [1.28]
    Greenfield, J. A., Dutton, R. W.: Nonplanar VLSI Device Analysis Using the Solution of Poisson’s Equation. IEEE Trans. Electron Devices ED-27, 1520–1532 (1980).CrossRefGoogle Scholar
  29. [1.29]
    Gummel, H. K.: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Trans. Electron Devices ED-11, 455–465 (1964).CrossRefGoogle Scholar
  30. [1.30]
    Hachtel, G. D., Mack, M. H., O’Brien, R. R., Speelpennig, B.: Semiconductor Analysis Using Finite Elements — Part 1: Computational Aspects. IBM J. Res. Dev. 25, 232–245 (1981).CrossRefGoogle Scholar
  31. [1.31]
    Hachtel, G. D., Mack, M. H., O’Brien, R. R.: Semiconductor Analysis Using Finite Elements-Part 2: IGFET and BJT Case Studies. IBM J. Res. Dev. 25, 246–260 (1981).CrossRefGoogle Scholar
  32. [1.32]
    Heimeier, H.H.: Zweidimensionale numerische Lösung eines nichtlinearen Randwertproblems am Beispiel des Transistors im stationären Zustand. Dissertation, Technische Hochschule Aachen, 1973.Google Scholar
  33. [1.33]
    Heimeier, H. H.: A Two-Dimensional Numerical Analysis of a Silicon N-P-N Transistor. IEEE Trans. Electron Devices ED-20, 708–714 (1973).CrossRefGoogle Scholar
  34. [1.34]
    Himsworth, B.: A Computer Aided Two-Dimensional Analysis of Gallium Arsenide and Silicon Junction Field Effect Transistors. Int. J. Electronics 31, No. 4, 365–371 (1971).CrossRefGoogle Scholar
  35. [1.35]
    Hori, R., Masuda, H., Minato, O., Nishimatu, S., Sato, K., Kubo, M.: Short Channel MOS-IC Based on Accurate Two Dimensional Device Design. Jap. J. Appl. Phys. 15, 193–199 (1976).CrossRefGoogle Scholar
  36. [1.36]
    Jesshope, C. R.: Bipolar Transistor Modelling with Numerical Solutions to the 2-Dimensional DC and Transient Problems. Dissertation, University of Southampton, 1976.Google Scholar
  37. [1.37]
    Kani, K.: A Survey of Semiconductor Device Analysis in Japan. Proc. NASECODE I Conf., pp. 104–119. Dublin: Boole Press 1979.Google Scholar
  38. [1.38]
    Kataoka, S., Tateno, H., Kawashima, M.: Two-Dimensional Computer Analysis of Dielectric-Surface-Loaded GaAs Bulk Element. Electron. Lett. 6, No.6, 169–171 (1970).CrossRefGoogle Scholar
  39. [1.39]
    Kennedy, D. P., O’Brien, R. R.: Two-Dimensional Mathematical Analysis of a Planar Type Junction Field-Effect Transistor. IBM J. Res. Dev. 13, 662–614 (1969).CrossRefGoogle Scholar
  40. [1.40]
    Kennedy, D. P., O’Brien, R. R.: Two-Dimensional Analysis of JFET Structures Containing a Low-Conductivity Substrate. Electron. Lett. 7, No. 24, 714–717 (1971).CrossRefGoogle Scholar
  41. [1.41]
    Kennedy, D. P., Murley, P. C.: Steady State Mathematical Theory for the Insulated Gate Field Effect Transistor. IBM J. Res. Dev. 17, 2–12 (1973).CrossRefGoogle Scholar
  42. [1.42]
    Kilpatrick, J. A., Ryan, W. D.: Two-Dimensional Analysis of Lateral-Base Transistors. Electron. Lett. 7, No.9, 226–227 (1971).CrossRefGoogle Scholar
  43. [1.43]
    Kotani, N., Kawazu, S.: Computer Analysis of Punch-Through in MOSFET’s. Solid-State Electron. 22, 63–70 (1979).CrossRefGoogle Scholar
  44. [1.44]
    Kotani, N., Kawazu, S.: A Numerical Analysis of Avalanche Breakdown in Short-Channel MOSFET’s. Solid-State Electron. 24, 681–687 (1981).CrossRefGoogle Scholar
  45. [1.45]
    Kurata, M.: Hybrid Two-Dimensional Device Modelling. Proc. NASECODE II Conf., pp. 88–112. Dublin: Boole Press 1981.Google Scholar
  46. [1.46]
    Kurata, M.: Numerical Analysis for Semiconductor Devices. Lexington, Mass.: Lexington Press 1982.Google Scholar
  47. [1.47]
    Latif, M., Bryant, P. R.: Network Analysis Approach to Multi-Dimensional Modeling of Transistors Including Thermal Effects. Proc. Int. Symp. Circuits and Systems 1981.Google Scholar
  48. [1.48]
    Laux, S. E.: Two-Dimensional Simulation of Gallium-Arsenide MESFET’s Using the Finite-Element Method. Dissertation, University of Michigan, 1981.Google Scholar
  49. [1.49]
    Loeb, H. W., Andrew, R., Love, W.: Application of 2-Dimensional Solutions of the Shockley-Poisson Equation to Inversion-Layer M.O.S.T. Devices. Electron Lett. 4, 352–354 (1968).CrossRefGoogle Scholar
  50. [1.50]
    Machek, J., Fulop, W.: Harmonie Distortion in a One-Dimensional p-n-p Transistor. Solid-State Electron. 26, No. 6, 525–536 (1983).CrossRefGoogle Scholar
  51. [1.51]
    Manck, O., Heimeier, H. H., Engl, W. L.: High Injection in a Two-Dimensional Transistor. IEEE Trans. Electron Devices ED-21, 403–409 (1974).CrossRefGoogle Scholar
  52. [1.52]
    Manck, O.: Numerische Analyse des Schaltverhaltens eines zweidimensionalen bipolaren Transistors. Dissertation, Technische Hochschule Aachen, 1975.Google Scholar
  53. [1.53]
    Manck, O., Engl, W. L.: Two-Dimensional Computer Simulation for Switching a Bipolar Transistor Out of Saturation. IEEE Trans. Electron Devices ED-22, No. 6, 339–347 (1975).CrossRefGoogle Scholar
  54. [1.54]
    Miller, J. J. H.: Numerical Analysis of Semiconductor Devices and Integrated Circuits. Dublin: Boole Press 1983.Google Scholar
  55. [1.55]
    Mock, M. S.: A Two-Dimensional Mathematieal Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 16, 601–609 (1973).CrossRefGoogle Scholar
  56. [1.56]
    Mock, M. S.: A Time-Dependent Numerical Model of the Insulated-Gate Field-Effect Transistor. Solid-State Electron. 24, 959–966 (1981).CrossRefGoogle Scholar
  57. [1.57]
    Mock, M. S.: Analysis of Mathematieal Models of Semiconductor Devices. Dublin: Boole Press 1983.Google Scholar
  58. [1.58]
    Moglestue, C, Beard, S. J.: A Particle Model Simulation of Field Effect Transistors. Proc. NASECODE I Conf., pp. 232–236. Dublin: Boole Press 1979.Google Scholar
  59. [1.59]
    Moglestue, C.: A Monte-Carlo Particle Model Study of the Influence of the Doping Profiles on the Characteristics of Field-Effect Transistors. Proc. NASECODE II Conf., pp. 244–249. Dublin: Boole Press 1981.Google Scholar
  60. [1.60]
    Navon, D. H., Wang, C. T.: Numerical Modeling of Power MOSFET’s. Solid-State Electron. 26, No. 4, 287–290 (1983).CrossRefGoogle Scholar
  61. [1.61]
    Newton, A. R.: Computer-Aided Design of VLSI Circuits. Proc. IEEE 69, 1189–1199 (1981).CrossRefGoogle Scholar
  62. [1.62]
    Oh, S. Y., Ward, D. E., Dutton, R. W.: Transient Analysis of MOS Transistors. IEEE Trans. Electron Devices ED-27, 1571–1578 (1980).Google Scholar
  63. [1.63]
    Oka, H., Nishiuchi, K., Nakamura, T., Ishikawa, H.: Two-Dimensional Numerical Analysis of Normally-Off Type Buried Channel MOSFET’s. Proc. Int. Electron Devices Meeting, pp. 30–33 (1979).Google Scholar
  64. [1.64]
    Oka, H., Nishiuchi, K., Nakamura, T., Ishikawa, H.: Computer Analysis of a Short-Channel BC MOSFET. IEEE Trans. Electron Devices ED-27, 1514–1520 (1980).CrossRefGoogle Scholar
  65. [1.65]
    Pone, J. F., Castagne, R. C., Courat, J. P., Arnodo, C.: Two-Dimensional Particle Modeling of Submicrometer Gate GaAs FET’s Near Pinchoff. IEEE Trans. Electron Devices ED-29, No. 8, 1244–1255 (1982).CrossRefGoogle Scholar
  66. [1.66]
    Price, C. H.: Two-Dimensional Numerical Simulation of Semiconductor Devices. Dissertation, Stanford University, 1980.Google Scholar
  67. [1.67]
    Rahali, F.: Analyse Numerique a 2 Dimensions de Transistors MOS par la Methode des Elements Finis. Laboratoire d’electronique generale, Lausanne, 1982.Google Scholar
  68. [1.68]
    Regier, F.: A New Analysis of Field Effect Transistors. Dissertation, Yale University, 1968.Google Scholar
  69. [1.69]
    Reiser, M.: Difference Methods for the Solution of the Time-Dependent Semiconductor Flow-Equations. Electron. Lett. 7, 353–355 (1971).CrossRefGoogle Scholar
  70. [1.70]
    Reiser, M.: A Two-Dimensional Numerical FET Model for DC, AC, and Large-Signal Analysis. IEEE Trans. Electron Devices ED-20, 35–44 (1973).CrossRefGoogle Scholar
  71. [1.71]
    Schütz, A., Selberherr, S., Pötzl, H. W.: Numerical Analysis of Breakdown Phenomena in MOSFET’s. Proc. NASECODE II Conf., pp. 270–274. Dublin: Boole Press 1981.Google Scholar
  72. [1.72]
    Schütz, A.: Simulation des Lawinendurchbruchs in MOS-Transistoren. Dissertation, Technische Universität Wien, 1982.Google Scholar
  73. [1.73]
    Schütz, A., Selberherr, S., Pötzl, H. W.: A Two-Dimensional Model of the Avalanche Effect in MOS Transistors. Solid-State Electron. 25, 177–183 (1982).CrossRefGoogle Scholar
  74. [1.74]
    Schütz, A., Selberherr, S., Pötzl, H. W.: Analysis of Breakdown Phenomena in MOSFET’s. IEEE Trans. Computer-Aided-Design of Integrated Circuits CAD-1, 77–85 (1982).CrossRefGoogle Scholar
  75. [1.75]
    Scharfetter, D. L., Gummel, H. K.: Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969).CrossRefGoogle Scholar
  76. [1.76]
    Schroeder, J. E., Muller, R. S.: IGFET Analysis Through Numerical Solution of Poisson’s Equation. IEEE Trans. Electron Devices ED-15, No. 12, 954–961 (1968).CrossRefGoogle Scholar
  77. [1.77]
    Selberherr, S., Fichtner, W., Pötzl, H. W.: MINIMOS — a Program Package to Facilitate MOS Device Design and Analysis. Proc. NASECODE I Conf., pp. 275–279. Dublin: Boole Press 1979.Google Scholar
  78. [1.78]
    Selberherr, S., Schütz, A., Pötzl, H. W.: MINIMOS-a Two-Dimensional MOS Transistor Analyzer. IEEE Trans. Electron Devices ED-27, 1540–1550 (1980).CrossRefGoogle Scholar
  79. [1.79]
    Selberherr, S.: Zweidimensionale Modellierung von MOS-Transistoren. Dissertation, Technische Universität Wien, 1981.Google Scholar
  80. [1.80]
    Seltz, D., Kidron, I.: A Two-Dimensional Model for the Lateral p-n-p Transistor. IEEE Trans. Electron Devices ED-21, No. 9, 587–592 (1974).CrossRefGoogle Scholar
  81. [1.81]
    Shigyo, N., Konaka, M., Dang, R. L. M.: Three-Dimensional Simulation of Inverse Narrow-Channel Effect. Electron. Lett. 18, No. 6, 114–215 (1982).CrossRefGoogle Scholar
  82. [1.82]
    Slotboom, J. W.: Iterative Scheme for 1- and 2-Dimensional D.C.-Transistor Simulation. Electron. Lett. 5, 677–678 (1969).CrossRefGoogle Scholar
  83. [1.83]
    Toyabe, T., Yamaguchi, K., Asai, S., Mock, M. S.: A Numerical Model of Avalanche Breakdown in MOSFET’s. IEEE Trans. Electron Devices ED-25, 825–832 (1978).CrossRefGoogle Scholar
  84. [1.84]
    Toyabe, T., Yamaguchi, K., Asai, S., Mock, M. S.: A Two-Dimensional Avalanche Breakdown Model of Submicron MOSFET’s. Proc. Int. Electron Devices Meeting, pp. 432–435 (1980).Google Scholar
  85. [1.85]
    Toyabe, T., Mock, M. S., Okabe, T., Ujiie, K., Nagata, M.: A Two-Dimensional Analysis of I2L with Multi-Stream Function Technique. Proc. NASECODE I Conf., pp. 290–292. Dublin: Boole Press 1979.Google Scholar
  86. [1.86]
    Van DeWiele, F., Engl, W. L., Jespers, P. G.: Process and Device Modeling for Integrated Circuit Design. Leyden: Noordhoff 1977.Google Scholar
  87. [1.87]
    Van Roosbroeck, W. V.: Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Techn. J. 29, 560–607 (1950).Google Scholar
  88. [1.88]
    Vandorpe, D., Xuong, N. H.: Mathematical 2-Dimensional Model of Semiconductor Devices. Electron. Lett. 7, 47–50 (1971).CrossRefGoogle Scholar
  89. [1.89]
    Vandorpe, D., Borel, J., Merckel, G., Saintot, P.: An Accurate Two-Dimensional Numerical Analysis of the MOS Transistor. Solid-State Electron. 15, 547–557 (1972).CrossRefGoogle Scholar
  90. [1.90]
    Wilson, C. L., Blue, J. L.: Two-Dimensional Finite Element Charge-Sheet Model of a Short Channel MOS Transistor. Solid-State Electron. 25, No. 6, 461–477 (1982).CrossRefGoogle Scholar
  91. [1.91]
    Yamaguchi, K., Toyabe, T., Kodera, H.: Two-Dimensional Analysis of Triode-Like Operation of Junction Gate FET’s. IEEE Trans. Electron Devices ED-22, 1047–1049 (1975).CrossRefGoogle Scholar
  92. [1.92]
    Yamaguchi, K., Takahashi, S.: Theoretical Characterization and High-Speed Performance Evaluation of GaAs IGFET’s. IEEE Trans. Electron Devices ED-28, No. 5, 581–587 (1981).CrossRefGoogle Scholar
  93. [1.93]
    Yamaguchi, K.: A Time Dependent and Two-Dimensional Numerical Model for MOSFET Device Operation. Solid-State Electron. 26, No. 9, 907–916 (1983).CrossRefGoogle Scholar
  94. [1.94]
    Zaluska, E. J., Dubock, P. A., Kemhadhan, H. A.: Practical 2-Dimensional Bipolar-Transistor-Analysis Algorithm. Electron. Lett. 9, 599–600 (1973).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Siegfried Selberherr
    • 1
  1. 1.Institut für Allgemeine Elektrotechnik und ElektronikTechnische Universität WienAustria

Personalised recommendations