Advertisement

Flüssiger Wasserstoff als Kraftstoff

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Seit mehr als hundert Jahren stellen Kohlenwasserstoffe aus Rohöl fast ausschließlich die Basis für alle im Verkehr verwendeten Kraftstoffe dar. Ein Verkehr ohne Benutzung von Kraftstoffen auf Kohlenwasserstoffbasis für Motoren, Triebwerke, Antriebsmaschinen usw. ist heute nahezu unvorstellbar. Lediglich in Mangelsituationen wie beispielsweise den beiden Weltkriegen oder aber als Folge politischer Einflußnahme der — relativ geringen Anzahl — außereuropäischen Ölförderländer wird der Allgemeinheit die enorme Abhängigkeit vom Öl bewußt, für welches man paradoxerweise während der Mitte des vorigen Jahrhunderts trotz intensiver Bemühungen außer zur Füllung von Petroleumlampen und im medizinischen Bereich kaum Anwendungen sah.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Marchetti, C.: Hydrogen, Master Key to the Energy Market. Euro-Spectra 10, 117–129 (1971).Google Scholar
  2. 2.
    Marchetti, C.: Hydrogen and Energy. Chem. Econ. Eng. Rev. 5, 7–25 (1973).Google Scholar
  3. 3.
    Marchetti, C., Nakicenovic, N.: The Dynamics of Energy Systems and the Logistic Subsituation Model. Ar-78-, Int. Inst, for Appl. Systems Analysis (IASA), 1978.Google Scholar
  4. 4.
    Manne, A. S., Marchetti, C.: Hydrogen: Mechanisms and Strategies of Market Penetration, pp. 1193–1209 of “Hydrogen Energy”, Part P. Veziroglu, T. N. (ed.). New York: Plenum Press 1974.Google Scholar
  5. 5.
    Marchetti, C.: The Evolution of the Energy Systems and the Aircraft Industry. Proc. Symp. Hydrogen in Air Transportation, DFVLR, Stuttgart 1979.Google Scholar
  6. 6.
    Jones, L. W.: Liquid Hydrogen as a Fuel for the Future. Science 174,367–370(1971).ADSCrossRefGoogle Scholar
  7. 7.
    Bain, A.: LH2-Spacecraft Experience Applicable to Aircraft Operations. Proc. Working Symp. on Liquid Hydrogen-Fueled Aircraft. NASA-Langley Res. Center, Hampton, VA, May 15–16, 1973.Google Scholar
  8. 8.
    Cleaver, A. V.: Cryogenic Fluids in the Aerospace Industry. Cryotech. 73, 107–111. Prod. Ind. Gases, Proc. Conf. 1973, Guüdford, England, IPC Sci., Technol. Press 1974.Google Scholar
  9. 9.
    Pinkel, I. I.: Alternative Fuels for Aviation. Impaets Mil. Res. Dev., AGARD, Annual Meeting, 31–36,1974.Google Scholar
  10. 10.
    Escher, W. J. D., Brewer, G. D.: Hydrogen: Make Sense Fuel for an American Supersonic Transport. J. Aircr. 12, 3–10 (1975).CrossRefGoogle Scholar
  11. 11.
    Silverstein, A., Hall, E. W.: Liquid Hydrogen as a Jet Fuel for High Altitude Aircraft. RME 55C28a, NACA, 1–2 (1955).Google Scholar
  12. 12.
    Gammon, B. E.: Preliminary Evaluation of the Air and Fuel Speciflc-Impulse Characteristics of Several Potential Ram-Jet Fuels, IV: Hydrogen, Methylnaphtalene and Carbon. RME 51F05, NACA (1951).Google Scholar
  13. 13.
    Mikolowski, W. T., Noggle, L. W.: The Potential of Liquid Hydrogen as a Military Aircraft Fuel. Int. J. Hydrogen Energy 3, 449–460 (1978).CrossRefGoogle Scholar
  14. 14.
    Carson, L. K., Davis, G. W., Versaw, E. F., et al.: Study of Methane Fuel for Subsonic Transport Aircraft. NASA-CR-159320, Lockheed Calif. Corp. 1980.Google Scholar
  15. 15.
    Brewer, G. D.: The Prospects for Liquid Hydrogen Fueled Aircraft. Int. J. Hydrogen Energy 7, 21–41 (1982), see also: Proc. 17th IECEC, Los Angeles 1982.Google Scholar
  16. 16.
    Witkofski, R. D.: Comparison of Alternate Fuels for Aircraft. NASA-TM-70155, 1979.Google Scholar
  17. 17.
    Witkofski, R. D.: Alternate Aircraft Fuels — Prospects and Operational Implications. NASA-TM-X-74030, 1977.Google Scholar
  18. 18.
    Sloop, J. F.: Liquid Hydrogen as a Propulsion Fuel 1945–1959. NASA-SP-44–4, Stock- No. 033-000-00707-8, U.S. Governm. Printing Office, Washington, D.C., 1978.Google Scholar
  19. 19.
    Brewer, G. D.: Hydrogen Usage in Air Transportation. Int. J. Hydrogen Energy 3, 217–229(1978).CrossRefGoogle Scholar
  20. 20.
    Escher, W. J. D.: Prospects for Liquid Hydrogen Fueled Commercial Aircraft. Escher- Foster Technol. Ass. Rep. PR-37, 1973.Google Scholar
  21. 21.
    Escher, W. J. D.: Liquid Hydrogen Future Aircraft Fuel: Background, Payoff and Cryogenic Engineering Challenge. Adv. Cryog. Eng., Vol. 20, pp. 70–81. New York: Plenum Press 1974.Google Scholar
  22. 22.
    Brewer, G. D., Morris, R. E.: Study of LH2 Fueled Subsonic Passenger Transport Aircraft, NASA CR-144935, Lockheed — California Company, January, 1976.Google Scholar
  23. 23.
    Brewer, G. D.: Is LH2 the High Cost Option for Aircraft Fuel? Proc. 17th IECEC-Conf., Los Angeles, Vol. 3, 1191, 1982.Google Scholar
  24. 24.
    Anon.: An Exploratory Study to Determine the Integrated Technological Air Transportation System Ground Requirements of Liquid Hydrogen Fueled Subsonic, Long-Haul Civil Air Transports. The Boeing Commercial Airplane Corp., NASA-CR-2699, 1976.Google Scholar
  25. 25.
    Anon.: IEA-Programme of Research and Development on the Production of Hydrogen from Water: Task III, Assessment of Potential Future Markets for the Production of Hydrogen from Water. Consolidated Final Report, S. 38, 39. Comm. of the European Communities, Brüssels 1980.Google Scholar
  26. 26.
    Weiss, S.: The Use of Hydrogen for Aircraft Propulsion in View of the Fuel Crisis. NASA- TM-X-68242, 1973.Google Scholar
  27. 27.
    Anon.: Wasserstoff als Sekundärenergieträger, Vorschlag für ein Forschungs- und Entwicklungsprogramm. DFVLR-Mitt. 81–10(1981).Google Scholar
  28. 28.
    Escher, W. J. D., Foster, R. W., Tison, R, R., Hanson, J. A.: Solar/Hydrogen Systems Assessment. DOE/JPL-955492, U.S. Dept. of Energy, Div. of Energy Storage Systems, Vol. 1, 130 S., Vol. 2, 487 S. (1980), see also: Int. J. Hydrogen Energy 7, 3–20(1982).ADSCrossRefGoogle Scholar
  29. 29.
    Johnson, J. E.: The Economics of Liquid Hydrogen Supply for Air Transportation, Adv. Cryog. Eng., Vol. 19, pp. 12–22. New York: Plenum Press 1973.Google Scholar
  30. 30.
    Prandtl, L.: Führer durch die Strömungslehre, 3. Aufl. Braunschweig: Vieweg 1949.Google Scholar
  31. 31.
    Schlichting, H.: Grenzschichttheorie, 483 S. Karlsruhe: G. Braun 1958.Google Scholar
  32. 32.
    Lees, L.: The Stability of the Laminar Boundary-Layer in a Compressible Fluid. NACA- Rep., 876, 1947.Google Scholar
  33. 33.
    Reshotko, E.: Drag Reduction by Cryo-Fuel. Astronaut, and Aeroaut.10, 1 (1978).Google Scholar
  34. 34.
    Mulready, R. C.: Liquid Hydrogen Engines. In: Technology and Uses of Liquid Hydrogen, Scott, R. G. (ed.), 149–180. New York: Pergamon Press 1964.Google Scholar
  35. 35.
    Pratt, D. T., Allwine, K. J., Malte, P. C.: Hydrogen as a Turbojet Engine Fuel — Technological, Economical and Environmental Impact. Proc. 2nd Int. Symp., on Air Breathing Engines, Sheffield, England, Royal Aeronaut. Soc., 1974.Google Scholar
  36. 36.
    Riple, J. C., Baerst, C. F.: Preliminary Studies of a Turbofan Engine and Fuel System for Use with Liquid Hydrogen. Proc. Int. Symp. Hydrogen in Air Transportation, DFVLR, Stuttgart 1979.Google Scholar
  37. 37.
    Dupont, A. A.: Liquid Hydrogen as a Supersonic Transport Fuel. Adv. Cryog. Eng., Vol. 12, pp. 1–20. New York: Plenum Press 1967.Google Scholar
  38. 38.
    Whitlow, J. B., Jr., Weber, R. J., Civinkas, K. C.: Preliminary Appraisal of Hydrogen and Methane Fuels in a March 2,7 Supersonic Transport. NASA-TM-X-6822, 1973.Google Scholar
  39. 39.
    Brewer, G. D., Morris, R. E.: Minimum Energy Liquid Hydrogen Supersonic Cruise Vehicle Study. NASA-CR-137776, Lockheed Calif., Comp., 1975.Google Scholar
  40. 40.
    Brewer, G. D.: Advanced Supersonic Technology Concept Study — Hydrogen Fueled Configuration. NASA-CR-114718, Lockheed Calif. Comp., 1974.Google Scholar
  41. 41.
    Jones, R. A., Huber, P. W.: Toward Scramjet Aircraft. Astronaut, and Aeronaut., February 1978.Google Scholar
  42. 42.
    Henry, R. J., Anderson, G. Y.: Design Considerations for the Airframe-Integrated Scramjet. NASA-TM-X-2895, 1973.Google Scholar
  43. 43.
    Waltrup, P. J., Anderson, G. Y., Stull, F. D.: Supersonic Combustion Ramjet (Scramjet) Engine Development in the United States. Proc. 3rd Fut. Symp. on Airbreathing Engines. Munich: DGL-Fachbuch Nr. 6, 1976.Google Scholar
  44. 44.
    Pinckney, S. Z.: Internal Performance Predictions for Langley Scramjet Engine Module. NAS A-TM-X-74038, 1977.Google Scholar
  45. 45.
    Becker, J. V., Kirkham, F. S.: Hypersonic Transports. NASA-SP-292, 1971.Google Scholar
  46. 46.
    Brewer, G. D., Morris, R. E., Lange, R. H., Moore, J. W.: Study of the Application of Hydrogen Fuel to Long-Range Subsonic Transport Aicraft. NASA-CR-132559, Lockheed Calif. Comp, and Lockheed Georgia Comp., 1975.Google Scholar
  47. 47.
    Brewer, G. D., Wittlin, G., Versaw, E. F., et al.: Assessment of Crash Fire Hazard of LH2- Fueled Aircraft. Final Report, NASA-CR-165525,1981.Google Scholar
  48. 48.
    Brewer, G. D., Morris, R. E., Davis, D. W., et al.: Final Report Study of Fuel Systems for LH2-Fueled Subsonic Transport Aircraft. NASA-CR-145319, Lockheed Calif. Comp., 1977.Google Scholar
  49. 49.
    Anthony, F. M., Colt, J. Z., Helenbrock, R. G.: Development and Validation of Cryogenic Foam Insulation for LH2 Subsonic Transports. NASA-CR-3404,1981.Google Scholar
  50. 50.
    Cunnington, G. R., Jr.: Analysis and Design of Insulation System for LH2-Fueled Aircraft. Proc. Int. Symp. Hydrogen in Air Transportation, DFVLR, Stuttgart 1979.Google Scholar
  51. 51.
    Brewer, G. D.: Some Environmental and Safety Aspects of Using Hydrogen as a Fuel. Int. J. Hydrogen Energy 3,461–474 (1979).ADSCrossRefGoogle Scholar
  52. 52.
    Grobman, J., Norgreen, C.: Turbojet Emissions, Hydrogen Versus JP. NASA-TM-X- 68258,1973.Google Scholar
  53. 53.
    Broesbeck, D. E., Prince, W. R., Ciepluch, C. C.: Evaluation of Hydrogen Fuel in a Füll Scale Afterburner. NACA-RM-E57H06, 1957.Google Scholar
  54. 54.
    Straight, D. M., Smith, A. L., Christenson, H. H.: Brief Studies of Turbojet Combustor and Fuel System Operation with Hydrogen Fuel at -400 F. NACA-RM-E56K27a, 1957.Google Scholar
  55. 55.
    Ferri, A., Agnone, A.: Jet Engine Design that can Drastically Reduce Oxides of Nitrogen. AIAA-Paper, 74–160(1974).Google Scholar
  56. 56.
    Korycinski, P. F.: Air Terminals and Liquid Hydrogen Commercial Air Transports. Int. J. Hydrogen Energy 3,231–250 (1978).CrossRefGoogle Scholar
  57. 57.
    Brewer, G. D. (ed.): LH2-Airport Requirements Study. Lockheed Calif. Comp., NASA- CR-2700,1976.Google Scholar
  58. 58.
    Johnson, J. E.: The Economics of Liquid Hydrogen Supply for Air Transportation. Adv. Cryog. Eng., Vol. 19. New York: Plenum Press 1974.Google Scholar
  59. 59.
    Hävens, J. A.: A Description and Assessment of the SIGMET LNG-Vapor Dispersion Model. Rep. CG-M-3–79, NTIS, Springfield, VA 22161,1979.Google Scholar
  60. 60.
    Gideon, D. N., Putnam, A. A.: Dispersion Hazard from Spills of LNG on Land and on Water. Cryogenics, 9–15 (January 1977).Google Scholar
  61. 61.
    Gifford, N., Frandkin, A., Jr.: An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere. In: Meteorology and Atomic Energy, Slade, D. H. (ed.), Rep. TID- 24190, NTIS, Springfield, VA 22161, 1978.Google Scholar
  62. 62.
    Raymer, J. A.: Operation of an Aircraft Engine Using Liquefied Methane Fuel. Adv. Cryog. Eng., Vol. 26, pp. 1001–1006. New York: Plenum Press 1981.Google Scholar
  63. 63.
    Witkofski, R. D.: Dispersion of Flammable Vapor Clouds Resulting from Large Spill of Liquid Hydrogen. NASA-TM-83131, 1981.Google Scholar
  64. 64.
    Fay, J.: Unusual Fire Hazard of LNG Tanker Spills. Comb. Sci. and Technology 7, 225–237(1973).Google Scholar

Kraftfahrzeuge

  1. 1.
    Jones, L. W.: Liquid Hydrogen as a Fuel for the Future. Science 174,367–370(1971).ADSCrossRefGoogle Scholar
  2. 2.
    Swain, M. R., Adt, R. R.: The Hydrogen-Air Fueled Automobile.Proc. 7th IECEC, paper 729217, publ. ACS, 1972.Google Scholar
  3. 3.
    Escher, W. J. D.: On the Higher Energy Form of Water (H20*) in Automotive Vehicle Advanced Power Systems. Proc. 7th IECEC, paper 729119, publ. ACS, 1972Google Scholar
  4. 4.
    Winsche, W. E., Hoffmann, K. C., Salzano, F. J.: Economics of Hydrogen Fuel for Transportation and Other Residential Application, Proc. 7th IECEC, paper 729215, publ. ACS, 1972.Google Scholar
  5. 5.
    Jones, L. W.: Liquid Hydrogen as a Fuel for Motorvehicles: A Comparison with Other Systems. Proc. 7th Intersoc. Energy Conv. Eng. Conf. (IECEC), paper 729213, publ. ACS, 1972.Google Scholar
  6. 6.
    Stewart, W. F., Edeskuty, F. J.: Alternate Fuels for Transportation, Part 2: Hydrogen for the Automobile. Mech. Engineering, June 1974.Google Scholar
  7. 7.
    Gann, A.: On the Application of Hydrogen as a Fuel for Automotive Vehicles. ESRO TT-132, 14 S. (1973), DLR-Mitt. 73–22, Über die Verwendung von Wasserstoff als Treibstoff für Automobile, DFVLR, 1973.Google Scholar
  8. 8.
    Ohta, T.: Liquid Hydrogen as Engine Fuel. Cryog. Eng. (Tokyo) 8, 52–58 (1973).Google Scholar
  9. 9.
    Williams, L. O.: Hydrogen Powered Automobiles Must Use Liquid Hydrogen. Cryogenics 13,693–698 (1973).CrossRefGoogle Scholar
  10. 10.
    BMFT, Referat für Öffentlichkeitsarbeit: Neuen Kraftstoffen auf der Spur — Alternative Kraftstoffe für Kraftfahrzeuge. Wasserstoff ISBN 3–8725-3-0992, 285–578 (1974).Google Scholar
  11. 11.
    Peschka, W.: Wasserstoff als Alternativkraftstoff im Kraftfahrzeug. Int. Verkehrswesen 32,447–453(1980).Google Scholar
  12. 12.
    Cloyd, D. R., Murphy, W. J.: Handling Hazardous Materials. NASA-SP-5032, 1965.Google Scholar
  13. 13.
    Hoffmann, K. C., et al.: Metal Hydrides as a Source of Fuel for Vehicular Propulsion. Proc. Int. Automotive Eng. Congr., Paper 690232. Detroit, Mich., 1969.CrossRefGoogle Scholar
  14. 14.
    Wiswall, R. H., Jr., Reüly, J. J.: Metal Hydrides for Energy Storage. Proc. 7th IECEC, Paper 729210, publ. ACS, 1972.CrossRefGoogle Scholar
  15. 15.
    Reilly, J. J., Wiswall, R. H., Jr: The Formation and Properties of Iron-Titanium Hydride. Inorg. Chem. 13, 218–222(1974).CrossRefGoogle Scholar
  16. 16.
    Reilly, J. J., Wiswall, R. H., Jr.: The Reaction of Hydrogen with Alloys of Magnesium and Nickel. Inorg. Chem. 7, 2254 (1968).CrossRefGoogle Scholar
  17. 17.
    Buchner, H.: The Hydrogen/Hydride Energy Concept. Proc. 2nd World Hydrogen Energy Conf., Zürich 4, 1749–1792 (1978), see also: Topler, J., Bernauer, O., Buchner H.: The Use of Hydrides in Motor Vehicles. J. Less Common Metals 74, 385–399 (1980); Buchner, H.: Perspectives for Metal Hydride Technology. Prog. Energy Combust. Sci. 6, 331–346 (1980).Google Scholar
  18. 18.
    Buchner, H.: Energiespeicherung in Metallhydriden (Innovative Energietechnik). Wien- New York: Springer 1982.Google Scholar
  19. 19.
    Sultan, O., Shaw, M.: Study of Automotive Storage of Hydrogen Using Recylable Liquid Chemical Carriers. TEC-75/003, ERDA, Ann Arbor 1975.Google Scholar
  20. 20.
    Taube, M., Taube, P.: Liquid Organic Carrier for Hydrogen as Automobüe Fuel. EIR Würenlingen Rep., 1979, see also: Int. J. Hydrogen Energy 8, 213–227 (1983).CrossRefGoogle Scholar
  21. 21.
    Justi, W., Winsel, A.: Kalte Verbrennung. Wiesbaden: Franz Steiner Verlags Gm 1962.Google Scholar
  22. 22.
    Vielstich, W.: Brennstoffelemente. Weinheim/Bergstraße: Verlag Chemie 1965.Google Scholar
  23. 23.
    Kordesch, K. V.: Handbook of Fuel Cell Technology, Berger, C. (ed.). Englewood, Cliffs., N.Y.: Prentice Hall Inc. 1968.Google Scholar
  24. 24.
    Dietz, H., Jahnke, H., Reber, H.: Forschungsarbeiten über elektrochemische Energiequellen. Bosch Tech. Ber. 3, August 1971.Google Scholar
  25. 25.
    Dören, H. v., Euler, K. J.: Brennstoffelemente. VARTA Fachbuchreihe, Bd. 6. Düsseldorf: VDI-Verlag GmbH 1971.Google Scholar
  26. 26.
    Plust, H. G.: Aktuelle Probleme bei elektrischen Antriebssystemen für Straßenfahrzeuge. ATZ 13, Hefte 9 und 11 (1971).Google Scholar
  27. 27.
    Weh, H.: Problematik der Energiespeicher und des elektrischen Antriebs. ATZ 76, Heft 6 (1974).Google Scholar
  28. 28.
    Finegold, J. G., Van Vorst, W. D.: Engine Performance with Gasne and Hydrogen Fuels. A Comparative Study. Proc., The Hydrogen Economy (Miami) Energy (THEME)- Conf., 1974.Google Scholar
  29. 29.
    Sturm, F.: Kraftgasverwendung im Luftschiff „Graf Zeppelin”. Zeitschr. d. Vereins Deutscher Ingenieure (VDI), September 1929.Google Scholar
  30. 30.
    Weil, K. H.: The Hydrogen I.C. Engine — Its Origins and Future in the Emerging Energy- Transportation-Environment System. Proc. 7th Intersoc. Energy Conversion Engineering Conf., 1355–1363, American Chemical Soc., 1972.Google Scholar
  31. 31.
    Anon.: Use of Hydrogen for Driving Engines, Tests in Holland. Genie Civü 72, 224 (1918).Google Scholar
  32. 32.
    Ricardo, H. R.: Further Notes on Fuel Research. Proc. Inst. Automobüe Engrs. 18, 327–341 (1924).Google Scholar
  33. 33.
    Burstall, A. F.: Experiments on the Behaviour of Various Fuels in a High-Speed Internal Combustion Engine. Proc. Inst. Automot. Engrs. 22, 358–371 (1927).Google Scholar
  34. 34.
    Erren, R. A., Campbell, W. H.: Hydrogen from Off-peak Power — ossible Commercial Fuel. Chem. Trade J.92,328–339(1933).Google Scholar
  35. 35.
    Erren, R. A., Campbell, W. H.: Hydrogen: A Commercial Fuel for I.C. Engines and other Purposes. J. Inst, of Fuel (Great Britain), 281, June 1933.Google Scholar
  36. 36.
    Erren, R. A.: Der Erren-Wasserstoffmotor. ATZ, Heft 19, 523 (1939).Google Scholar
  37. 37.
    Gerrish, H. C., Foster, H. H.: Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines. NACA Rep. No. 535,1935.Google Scholar
  38. 38.
    King, R. O., Wallace, W. A., Mahapatra, B.: The Hydrogen Engine and the Nuclear Theory of Ignition. Can. J. Res., F. 26, 264 (1948).CrossRefGoogle Scholar
  39. 39.
    Oehmichen, M.: Wasserstoff als Motortreibmittel. Deutsche Kraftfahrtforschung, Heft 68 (1942).Google Scholar
  40. 40.
    King, R. O., Rand, M.: Oxidation, Decomposition, Ignition and Detonation of Fuel Vapours and Gases. XXVII: Hydrogen Engine. Can. J. Technol. 33, 445–469 (1955).Google Scholar
  41. 41.
    Murray, R. G., Schoeppel, R. J., Gray, C. L.: The Hydrogen Engine in Perspective. Proc. 7th IECEC, Paper 729217, ACS 1982.Google Scholar
  42. 42.
    Billings, R. E., Lynch, F. E.: History of Hydrogen Fueled Internal Combustion Engines. Publ. No. 73001, Technology Appl. Center, Univ. New Mexico, Albuquerque, N.M., April 1973.Google Scholar
  43. 43.
    Homan, H. S., De Boer, P. T. C., Mean, W. J.: The Effect of Fuel Injection on NOx- Emissions and Undesirable Combustion for Hydrogen-Fueled Piston Engines. Int. J. Hydrogen Energy 8, No. 2 (1983).CrossRefGoogle Scholar
  44. 44.
    De Boer, P. C. T., Mean, W. J., Homann, H. S.: The Performance and Emissions of Hydrogen-Fueled Internal Combustion Engines. Int. J. Hydrogen Energy 1, 153 (1976).CrossRefGoogle Scholar
  45. 45.
    Blumberg, P. N.: Nitric Oxide Emissions from Stratified Charge Engines: Prediction and Control. Combust. Sci. Technol.8, No. 5 (1973).Google Scholar
  46. 46.
    Newhall, H. K.: Combustion Process Fundamentals and Combustion Chamber Design for Low Emissions. SAE Trans, paper No. 75100, 1975.CrossRefGoogle Scholar
  47. 47.
    Adt, R. R., Jr., Swain, M. R., Pappas, J. M.: Hydrogen Engine Performance Project. U.S. Dept. of Energy (DOE), Second Annual Report. Contr. No. EC-77C03–1212, 1980.Google Scholar
  48. 48.
    Swain, M. R., Pappas, J. M., Adt, R. R., Jr., Escher, W. J. D.: Hydrogen-Fueled Automotive Engine Experimental Testing to Provide an Initial Design-Data Base. In: Alternate Fuels, SP-480, ISSN 0148–7191, SAE-paper 810350,163–180 (1981).Google Scholar
  49. 49.
    Löhner, K., Müller, H.: Gemischbildung und Verbrennung im Ottomotor. Die Verbrennungskraftmaschine, Bd. 6. Wien: Springer 1967.Google Scholar
  50. 50.
    Schmidt, F. A. F.: Verbrennungskraftmaschinen. Wien: Springer 1967.Google Scholar
  51. 51.
    Marley, C. A., Van Vorst, W. D.: Electronic Fuel Injection Techniques for Hydrogen Powered I.C. Engines. Int. J. Hydrogen Energy 5, 179–204 (1980).CrossRefGoogle Scholar
  52. 52.
    Pischinger, F., Schaffrath, M.: Untersuchungen an einem Wasserstoffmotor und Maßnahmen zur Prozeßverbesserung. Auto tech. Z. 78,445 (1976).Google Scholar
  53. 53.
    Drexl, K. W., Holzt, H. P.: Untersuchungen über die Gemischbildung und Verbrennung im Wasserstoffmotor. Entwicklungslinien in der Kraftfahrzeugtechnik. Köln: Verlag TOV-Rheinland 1977.Google Scholar
  54. 54.
    Furuhama, S.: Two Stroke Hydrogen Injection Engine. Tech. Note. Int. J. Hydrogen Energy 4, 571–576 (1979).CrossRefGoogle Scholar
  55. 55.
    Finegold, J. G.: Hydrogen: Primary or Supplementary Fuel for Automotive Engines. Int. J. Hydrogen Energy 3, 83–104 (1978).CrossRefGoogle Scholar
  56. 56.
    Leiker, M.: Die Gasmaschine. Wien: Springer 1953.Google Scholar
  57. 57.
    Downs, D., Walsh, A. D., Wheeler, R. W.: A Study of the Reactions that Lead to Knock in the Spark Ignition Engine. Phil. Trans. Roy. Soe., A 243, 463–524, London 1951.Google Scholar
  58. 58.
    King, R. O., Hayes, S. V., Allan, A. B., et al.: The Hydrogen Engine: Combustion Knock and the Related Flame Velocity. Trans. E.I.C. 2,143–148 (1958).Google Scholar
  59. 59.
    Binder, K., Withalm, G.: Mixture Formation and Combustion in Interaction with the Hydrogen Storage Technology. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, 1103–1117, Tokyo 1980.Google Scholar
  60. 60.
    Gathercole, A. H., Bindon, J. P., Roberts, L. W.: Detonation Limited Air Fuel Ratios in a Conventional High Speed Spark Ignition Engine Fueled with Hydrogen. Proc. South Afr. Conf. in Transportation, Univ. of Cape Town 1979.Google Scholar
  61. 61.
    Gammie, M. A., Bindon, J. P.: The Effect of Mixture Strength and Spark Advance on Detonation Intensity in a Small Squish-Chambered Hydrogen Fueled Spark-Ignition Engine. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, Tokyo 1980.Google Scholar
  62. 62.
    Furuhama, S., Hiruma, M., Enemoto, Y.: Development of a Liquid Hydrogen Car. Int. J. Hydrogen Energy 3, 61–81 (1978).CrossRefGoogle Scholar
  63. 63.
    Peschka, W.: Liquid Hydrogen as a Vehicular Fuel — A Challenge for Cryogenic Engineering. Proc. 4th World Hydrogen Energy Conf., Vol. 3,1053–1070. Adv. in Hydrogen Energy, 4 Vols. New York: Pergamon Press 1982; Int. J. Hydrogen Energy 9, 515–525 (1984).Google Scholar
  64. 64.
    Carpetis, C.: Comparison of the Expenses Required for the Onboard Fuel Storage Systems of Hydrogen Powered Vehicles. Int. J. Hydrogen Energy 7, 61–78(1982), subm. for publ. (1980).ADSCrossRefGoogle Scholar
  65. 65.
    Peschka, W.: Wasserstoff als Alternativkraftstoff im Kraftfahrzeug. Int. Verkehrswesen 52, 447–453(1980).Google Scholar
  66. 66.
    Peschka, W.: Liquid Hydrogen for Automotive Vehicles — Experimental Results. ASME- Paper No. 81-HT-83 (1981).Google Scholar
  67. 67.
    Donnelly, J. J., Jr.., Greayer, W. C., Nichols, R. J., Escher, W. J. D., et al.: Hydrogen- Powered versus Battery-Powered Automobiles. Int. J. Hydrogen Energy 4, 411–444 (1979).ADSCrossRefGoogle Scholar
  68. 68.
    Kordesch, K. V.: City Car with H2-Air Fuel Cell/Lead Battery (One Year Operating Experience). Proc. 6th IECEC, Boston, Mass., Paper No. 719015,1971.Google Scholar
  69. 69.
    Winter, C. E., Morgan, W. L.: General Motors Electro Van. J. Soc. Autom. Engrs., Paper 670182, Detroit 1967, see also: Marks, C., Rishavy, E. A., Wyczalek, F. A., SAE-Paper 670176, Automotive Engineering Congr., Detroit, Mich., January 8–13, 1967.Google Scholar
  70. 70.
    Anon.: Proceedings of the Fuel Cell in Transportation Applications Workshop, August 15–17, 1977, Los Alamos Sci. Lab., LA-7279-C, 1978, see also: Application Scenario for Fuel Cells in Transportation, LA-7634-MS, 1979.Google Scholar
  71. 71.
    Underwood, P. L., Dieges, P. B.: Hydrogen and Oxygen Combustion for Pollution Free Operation of Existing Standard Automotive Engines. Proc. 6th IECEC, SAE-Paper 719046,1971.Google Scholar
  72. 72.
    Morgan, N. E., Morath, W. D.: Development of a Hydrogen-Oxygen I.C. Engine Space Power System. NASA Rep. by Vickers Inc., July 1965.Google Scholar
  73. 73.
    Billings, R. E.: Hydrogen Storage for Automobiles Using Cryogenics and Metal Hydrides. Proc. The Hydrogen Economy (Miami) Energy (THEME)-Conf., 1974.Google Scholar
  74. 74.
    Stewart, W. F., Edeskuty, F. J., Williamson, K. D., Lütgen, H. M.: Operating Experience with a Liquid Hydrogen Fueled Vehicle. Los Alamos Sci. Lab., LA-UR-74–1637, see also: Adv. Cryog. Eng., Vol. 20, pp. 82–89. New York: Plenum Press 1974.Google Scholar
  75. 75.
    Finegold, J. G., Van Vorst, W. D., et al.: The UCLA Hydrogen Car: Design, Construction and Performance. Trans. SAE 730507,1973.Google Scholar
  76. 76.
    Bush, A. F., Van Vorst, W. D.: The UCLA Hydrogen Car. Adv. Cryog. Eng., Vol. 19, pp. 23–27. New York: Plenum Press 1974.Google Scholar
  77. 77.
    Peschka, W., Carpetis, C.: Cryogenic Hydrogen Storage and Refueling for Automobiles. Int. J. Hydrogen Energy 5, 619–626 (1980), vgl. Proc. 2nd World Hydrogen Energy Conf.Google Scholar
  78. 78.
    Stewart, W. F.: Liquid Hydrogen as an Automotive Fuel. Adv. Cryog. Eng., Vol. 25, pp. 822–830. New York: Plenum Press 1980.Google Scholar
  79. 79.
    Stewart, W. F.: Liquid Hydrogen Fueled Buick. Los Alamos Sci. Lab. Rep. LA-8605-MS, November 1980.Google Scholar
  80. 80.
    Peschka, W., Edeskuty, F. J., Stewart, W. F.: Liquid Hydrogen Storage and Refueling for Automotive Applications. Proc. 3rd Miami Int. Conf. on Alternative Energy Sources, December 15–18, Miami Beach, Florida, 1980, vgl. Alternative Energy Sources III, Vol. 5, Veziroglu, T. N. (ed.). Berlin-Heidelberg-New York: Springer 1983.Google Scholar
  81. 81.
    Furuhama, S., Kobayashi, Y., Iida, M.: A LH2 Engine Fuel System on Board — Cold GH2 Injection into Two Troke Engine with LH2-Pump. ASME-Paper No. 81-HT-81.Google Scholar
  82. 82.
    Peschka, W.: Operating Characteristics of a LH2-Fueled Automotive Vehicle and of a Semi-Automatic Refuelling Station. Int. J. Hydrogen Energy 7, 661–670 (1982).CrossRefGoogle Scholar
  83. 83.
    Furuhama, S., Kobayashi, Y.: A Liquid Hydrogen Car with a Two f troke Direct Injection Engine and LH2-Pump. Int. J. Hydrogen Energy 7, 809–820 (1982), see also: SAE- Paper 820349, 1982.CrossRefGoogle Scholar
  84. 84.
    Furuhama, S., Kobayashi, Y.: Development of Hot-Surface-Ignition Hydrogen Injection Two-Stroke Engine. Proc. 4th World Hydrogen Energy Conf., Vol. 3, 1009–1020, Adv. in Hydrogen Energy. New York: Pergamon Press 1982.Google Scholar
  85. 85.
    Escher, W. J. D.: The Hydrogen Fueled Internal Combustion Engine, A Technical Survey of Contemporary U.S. Projects. Escher-Foster Ass. ETA-Rep. PR-51, St. Johns, Mich., 1975.Google Scholar
  86. 86.
    Escher, W. J. D.: Survey of Liquid Hydrogen Container Techniques for Highway Vehicle Fuel System Application. Escher-Foster Techn., St. Johns, Mich., DOE-Rep. No. HCP/ M2752-01, November 1978.Google Scholar
  87. 87.
    Escher, W. J. D.: Hydrogen as an Automotive Fuel: Worldwide Update. Escher-Foster Technology Inc. Rep., St. Johns, Mich., 1982.Google Scholar
  88. 88.
    May, H., Gwinner, D.: Möglichkeiten der Verbesserung von Abgasemissionen und Energieverbrauch bei Wasserstoff-Benzin-Mischbetrieb. MTZ, No. 4 (1981), siehe auch: Possibilities of Improving Exhaust Emissions and Energy Consumption in Mixed Hydrogen- Gasoline Operation. Int. J. Hydrogen Energy 8, 121–130 (1983).CrossRefGoogle Scholar
  89. 89.
    Peschka, W., Carpetis, C.: A System Consideration of the Tank for Liquid Hydrogen Fueled Vehicles and the Resulting Tank Concept for a Passenger Car. Proc. Ist World Hydrogen Energy Conf., Miami Beach, 1976.Google Scholar
  90. 90.
    Stewart, W. F.: Operating Experience with a Liquid Hydrogen Fueled Buick and Refueling System, Hydrogen Energy Process. Proc. 4th World Hydrogen Energy Conf., Vol. 3, 1071–1093. New York: Pergamon Press 1982;Int.J. Hydrogen Energy 9,525–539 (1984).Google Scholar
  91. 91.
    Stewart, W. F.: Experimental Investigation of Liquid Hydrogen Vehicle Onboard Storage and Refueling System. Los Alamos National Lab. Final Rep., US-Dept. of Energy (DOE), July 1982.Google Scholar
  92. 92.
    Stewart, W. F., Edeskuty, F. J.: Liquid Hydrogen as a Vehicular Fuel. Mech. Engineering 24, 24–29(1981).Google Scholar
  93. 93.
    Stewart, W. F., Escher, W. J. D.: Liquid-Hydrogen Automotive Onboard Storage and Servicing System Project: A Progress Report, in: Alternate Fuels, SP-480, 181–188, SAE-Paper 810351,1981.Google Scholar
  94. 94.
    Ikegami, M., Miwa, K., Shioji, M.: A Study of Hydrogen Fueled Compression Ignition Engines. Int. J. Hydrogen Energy 7, 341–354 (1982).CrossRefGoogle Scholar
  95. 95.
    Enemoto, K., Furuhama, S., Kobayashi, Y.: Ignitability of Hydrogen Air Mixture by Hot Surfaces and Hot Gases. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, 1149–1164. New York: Pergamon Press 1980.Google Scholar
  96. 96.
    Ikegami, M., Miwa, K., Shioji, M.: A Study of Hydrogen Fueled Diesel-Combustion. Prep, of Japan Soc. of Mech. Engrs., Paper No. 750–15, 1975, see also: Proc. 3rd World Hydrogen Energy Conf., Vol. 2,969–984. New York: Pergamon Press 1980.Google Scholar
  97. 97.
    Tanabe, H., Ohnishi, M., Sato, G. T., et al.: Experimental Study of the Transient Hydrogen Jet-Using a Fast Response Probe. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, 985–1000. New York: Pergamon Press 1982.Google Scholar
  98. 98.
    Tanabe, H., Sorihashi, T., Suzuki, N., et al.: Experimental Study on the Transient Hydrogen Jet. Proc. 4th World Hydrogen Energy Conf., Vol. 3,1115–1128. Adv. in Hydrogen Energy. New York: Pergamon Press 1982.Google Scholar
  99. 99.
    Williams, L. O., Spond, D. E.: A Storage Tank for Vehicular Storage of Liquid Hydrogen. Appl. Energy 6, 98–112 (1980).ADSGoogle Scholar
  100. 100.
    Marley, C. A., Van Vorst, W. D.: Electronic Fuel Injection Technique for Hydrogen Powered I.C. Engines. Int. J. Hydrogen Energy 5, 178–204 (1980).Google Scholar
  101. 101.
    Drexl, W., Holzt, H., Gutmann, M.: Characteristics of a Single Cyclinder Hydrogen Fueled I.C. Engine Using Various Mixture Formation Methods. Daimler-Benz AG, Central Research, 1976.Google Scholar
  102. 102.
    Marley, C. A.: Development of a High Speed Injection Valve for Electronic Hydrogen Fuel Injection. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, 1119–1134. Adv. in Hydrogen Energy, Vol. 2. New York: Pergamon Press 1980.Google Scholar
  103. 103.
    Suzuki, K., Uchiyama, Y., Hama, J.: Research of Hydrogen Fueled Spark Ignition Engine. Proc. 3rd World Hydrogen Energy Conf., Vol. 2, 1027–1040. Adv. in Hydrogen Energy, Vol. 2. New York: Pergamon Press 1980.Google Scholar
  104. 104.
    Minkin, H. L., Hobart, H. F., Warshwawski, I.: Performance of Turbine-Type Flowmeters in Liquid Hydrogen. Cryogenic Eng. News 3, 16–20 (1968).Google Scholar
  105. 105.
    Hobart, H. F., Minkin, H. L., Warshwawski, I.: Life Test of Small Turbine-Type Flowmeters in Liquid Hydrogen. NASA-Lewis Res. C., NASA-TN-D-7323 and E-7371, 1983.Google Scholar
  106. 106.
    Keller, W. E.: Cryogenic Instrumentation at and above Liquid Hydrogen Temperature — Present and Future. Adv. Cryog. Eng., Vol. 18, pp. 189–301. New York: Plenum Press 1973.Google Scholar
  107. 107.
    Anon.: Liquid Hydrogen Flow by NMR Technique. Instrum. Control Syst. 39, 87 (1966).Google Scholar
  108. 108.
    Ordin, P. M.: Review of Hydrogen Accidents and Incidents in NASA Operation. NASA- TM-X-71565, 1974, see also: Proc. 9th IECEC, 1974.Google Scholar
  109. 109.
    Johnson, E. F.: Fire Protection Developments in LNG-Fueled Vehicle Operation. Fire J. 66, No. 6, November 1972.Google Scholar
  110. 110.
    Shooter, D., Kalelkar, A.: The Benefits and Risks Associated with Gaseous Fueled Vehicles. Rep. to the Massachusetts Turnpike Authority, Arthur D. Little Case 74400–2, May 1972.Google Scholar
  111. 111.
    Arvidson, J. M., Hord, J., Mann, D. B.: Efflux of Gaseous Hydrogen or Methane Fuels from the Interior of an Automobile. NBS-Tech. Note 666, 1975.Google Scholar
  112. 112.
    Finegold, J. G., Van Vorst, W. D.: Crash Test of a Liquid Hydrogen Automobile. Proc. Ist World Hydrogen Energy Conference, Vol. 3, Miami Beach, Clean Energy Res. Inst., 1976.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations