Advertisement

Flüssiger Wasserstoff als Treibstoff

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Für die auf das Startsystem bezogene Endgeschwindigkeit u einer Rakete gilt mit dem Massenverhältnis m0/m und der Strahlgeschwindigkeit v relativ zum Triebwerk
$$\frac{{m_0 }} {m} = e^{u/v} $$
(118)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Schönberger, K. B.: Rocket Experiments with Hydrogen and Oxygen. Weltraumfahrt 4, 80–81 (1950).Google Scholar
  2. 2.
    Sloop, J. L.: Liquid Hydrogen as a Propulsion Fuel. The NASA History Series, BASA- SP-4404, TL 785S58, Stock Number 033-000-00707–8 (1978).Google Scholar
  3. 3.
    Dardare, J.: Propulsion by Liquid Oxygen and Liquid Hydrogen, Review. Pure Appl. Cryogenics 5, 135–157 (1966).Google Scholar
  4. 4.
    Hürden, D.: Cryogenic Liquids for Rocket Engines. Inst. Refrig., Proc. 55, 147–165 (1958).Google Scholar
  5. 5.
    Sloop, J. L.: Cold Propellants for Hot Performance. Astronautics 3, 28–30, 96–97 (1958).Google Scholar
  6. 6.
    Silliams, O. S., et al.: Liquid Rockets in Perspective, Part 1: Developments in the 1960s. Astronautics and Aeronautics, March 1976; Part 2: Propulsion for the 1970s and 1980s. Astronautics and Aeronautics, April 1976.Google Scholar
  7. 7.
    Mulready, R. C.: Liquid Hydrogen Engines. In: Technology and Uses of Liquid Hydrogen, Scott, R. B. (ed.), pp. 149–180. New York: Pergamon Press 1964.Google Scholar
  8. 8.
    Kirby, F. W.: Space Shuttle Main Engine Program Status. AIAA Preprint 73–1177, November 1973.Google Scholar
  9. 9.
    Salkeld, R.: Mixed Mode Propulsion for the Space Shuttle. Astronautics and Aeronautics, August 1971.Google Scholar
  10. 10.
    Sanchini, D. R., Kirby, F. M.: The Future Look in Rocket Engines. Amer. Astronaut. Soc. Paper, pres. 11th Goddard Memorial Symposium, March 1973.Google Scholar
  11. 11.
    Sänger, E., Bredt, I.: Über einen Raketenantrieb für Fernbomber. Deutsche Luftfahrtforschung VM 3538 (August 1944), vgl. ferner: Sänger, E., Raketen-Flugtechnik. München: Oldenbourg 1933.Google Scholar
  12. 12.
    Dornberger, W. R.: The Rocket Propelled Commercial Airliner. Univ. Minn. Inst, of Techn., Resp. Rep. No. 135, November 1956.Google Scholar
  13. 13.
    Salkeld, R.: Orbital Rocket Airplanes, a Fresh Perspective. Astronautics and Aeronautics, April 1976.Google Scholar
  14. 14.
    Bono, P.: Pegasus — A Design Concept for a V.I.P. Orbital/Global Rocket Transport. SAE National Aeronautics and Space Engineering Meeting, SAE paper No. 760687, Los Angeles, Calif., October 1964.Google Scholar
  15. 15.
    Pickney, S. Z.: Internal Performance Predictions for Langley Scramjet Engine Module. N AS A-TM-X-74038, 1977.Google Scholar
  16. 16.
    Jones, R. A., Huber, W.: Toward Scramjet Aircraft. Astronautics and Aeronautics, February 1978.Google Scholar
  17. 17.
    Peschka, W.: Über die Verwendung von atomarem Wasserstoff als Treibstoff für Flüssigkeitsraketen. Proc. 9th Int. Astronaut. Congr. 1958, pp. 137–147. Wien: Springer 1959.Google Scholar
  18. 18.
    Hess, R.: Atomic Hydrogen. ESRO-TT-42, 1974, siehe auch: Atomarer Wasserstoff, DFVLR-Forschungsberieht, DLR-73–74, 1973.Google Scholar
  19. 19.
    Hess, R.: Atomic Hydrogen Stabilization by High Magnetic Fields and Low Temperatures. Adv. Cryog. Eng., Vol. 18, pp. 427–434. New York: Plenum Press 1973.Google Scholar
  20. 20.
    Webeler, R. W. H.: Behaviour of Atomic H in Solid H2 from 0,2 to 0,8 K. NASA-TMX- 71732,1975.Google Scholar
  21. 21.
    Rosen, G.: Upper Bound on the Equilibrium Concentration of Atomic H in Solid H2. Phys. Letts., Vol. 61A, No. 1, 1977.Google Scholar
  22. 22.
    Peschka, W., Sänger, G., Hietkamp, G. A.: Results of Experiments with Spin-Stabilized Hydrogen and Hydrogen Compounds. J. de Physique 41 165–176 (1980).CrossRefGoogle Scholar
  23. 23.
    Kerrebrock, I. L., Meghreblian, R. V.: An Analysis of Vortex Tubes for Combined Gas- Phase Fission Hearing and Separation of the Fissionable Material. ORNL, CF-57–11-3, 1959.Google Scholar
  24. 24.
    Grey, N.: A Gaseous-core Nuclear Rocket Utilizing Hydrodynamic Containment of Fissionable Material. ARS-Preprint 848/59.Google Scholar
  25. 25.
    Winterberg, F.: Die Erreichung von Anströmgeschwindigkeiten bis 20 000 m/s durch isotherme Expansion in Kernraketen. Proc. 9th Int. Astronaut. Congr. 1958. Wien: Springer 1959.Google Scholar
  26. 26.
    Ragsdale, R. G.: NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor. NASA-TN-D-288, 1960.Google Scholar
  27. 27.
    Meghreblian, R. V.: Gaseous Propulsion Reactors. Nucleonics 19, 95–99 (1961).Google Scholar
  28. 28.
    Spencer, D. F.: The Plasma Core Reactor. NASA-Contract Nw-6, Tech. Rep. No. 32–1-4, JPL, 1961.Google Scholar
  29. 29.
    Peschka, W.: Kernenergie und Wärmeübergang durch Strahlung. Astronautica Acta 8, 278–202 (1962).Google Scholar
  30. 30.
    Gross, R. A., Kessey, K. O.: Magnetohydrodynamic Species Separation in a Gaseous Nuclear Rocket. AIAA Journ. 2 (February 1964).Google Scholar
  31. 31.
    Anon.: Research on Uranium Plasmas and their Technological Application. NASA-SP-236, 421 p., 1971.Google Scholar
  32. 32.
    Roman Ward, C.: High Temperature UF6 RF Plasma Experiments Applicable to Uranium Plasma Core Reactors. NASA Contr. NAS1–14329, Contr. Rep. 159159, UTC, 1979.Google Scholar
  33. 33.
    Mafferty, G. H., Bauer, H. E.: Studies of Specific Nuclear Light Bulb and Open-Cycle Vortex Stabilized Gaseous Nuclear Rocket Engines. NASA-CR-1030, 1968.Google Scholar
  34. 34.
    McLafferty, G. M.: Survey of Advanced Concepts in Nuclear Propulsion. J. Spacecraft 5, 1121–1128(1968).CrossRefGoogle Scholar
  35. 35.
    Thorpe, M. L.: Radio Frequency Plasma Simulation of Gas-Core Reactor. J. Spacecraft 6, 923–928(1969).CrossRefGoogle Scholar
  36. 36.
    Peschka, W.: Hochtemperatur-Energiesysteme unter Verwendung von Plasmareaktoren und induktiven magnetoplasmadynamischen Wandlern. DLR-FB-67–59, 1967.Google Scholar
  37. 37.
    Bussard, R. W., De Lauer, R.D.: Nuclear Rocket Propulsion. New York: Mraill 1958.Google Scholar
  38. 38.
    Edeskuty, F. J.: Liquid Hydrogen in Nuclear Rocket Testing. LA-DC-7170, Los Alamos Sei. Lab., 32 p. NTIS, 1965.CrossRefGoogle Scholar
  39. 39.
    Hammel, E. F.: Cryoengineering in the Nuclear Rocket Program. Adv. Cryog. Eng., Vol. 9, pp. 11–19. New York: Plenum Press 1964.Google Scholar
  40. 40.
    Edeskuty, F. J., Henshall, J. B., Bartlit, J. R.: Cryogenic Applications in the Nuclear Rocket Program.Google Scholar
  41. 41.
    Keller, W. E.: Worldwide Cryogenics — U.S., Cryogenics at the Los Alamos Scientific Laboratory. Crygenics 547–556 (October 1980).Google Scholar
  42. 42.
    Corrington, L. C.: The Nuclear Rocket-Program — Its Status and Plans. J. Spacecraft 465–470 (April 1960).Google Scholar
  43. 43.
    Schreiber, R. E.: Kiwi Tests Pay Way to Rover. Nucleonics 19, 77–79 (1961).Google Scholar
  44. 44.
    Gunn, S. V., Dunn, C.: Feed Systems for Phoebus Reactor Experiments. J. Spacecraft 7, 769–777(1969).Google Scholar
  45. 45.
    Durkee, W. E., Damerval, F. B.: Nuclear Rocket Experimental Engine Test Results. J. Spacecraft 7, 1397–1401 (1970).CrossRefGoogle Scholar
  46. 46.
    Peschka, W.: Neue Energiesysteme für die Raumfahrt. München: Goldmann 1972.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations