Advertisement

Thermische Isolation, Speicherung und Transport von flüssigem Wasserstoff

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Wasserstoff als tiefkalte Flüssigkeit muß zwecks Vermeidung unwirtschaftlich hoher Verdampfungsverluste in thermisch isolierten Behältern gespeichert und transportiert werden. Das gleiche gilt hinsichtlich der Isolierung von Leitungen für flüssigen Wasserstoff.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Timmerhaus, K. D.: Fluid Flow and Heat Transfer. In: Applied Cryogenic Engineering, Vance, R. W., Duke, W. H. (eds.), pp. 104–151. New York: Wüey & Sons 1962.Google Scholar
  2. Clark, J. A., Thorogood, R. M.: Heat Transfer. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 92–197. London: Academic Press 1971.Google Scholar
  3. Clark, J. A.: Heat Transfer. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 121–195. New York: Wüey & Sons 1963.Google Scholar
  4. Roder, H. M., McCarty, R. D., Hall, W. J.: Computer Programs for Thermodynamic and Transport Properties of Hydrogen. Nat. Bureau of Standards, NBS-TN-625 (1972).Google Scholar
  5. Van Gundy, D. A., Uglum, J. R.: Heat Transfer to an Uninsulated Surface at 20 K. Cryogenic Eng., Vol. 7, pp. 377–384. New York: Plenum Press 1982.Google Scholar
  6. Middleton, R. L., Stukey, J. M., Schell, J. T. et al.: Development of Lightweight External Insulation System for Liquid-Hydrogen Stages of the Saturn V Vehicle. Adv. Cryog. Eng., Vol. 10, pp. 216–223. New York: Plenum Press 1964.Google Scholar
  7. Rittenhouse, J. B.: Application of an Adhesively Bonded Cryogenic Insulation System. N AS A-TM-X-57823, NTIS (1966).Google Scholar
  8. Leonhard, K. E., Oglin, B., Zimni, W. F.: Determination of the Thermal Conductivity, the Specific Heat and the Weight by Volume of Insulations for Rocket Tanks Filled with Liquid Hydrogen. ELDO/ESRO Sci. Tech. Rev., Vol. 2, pp. 3–28 (1967). (In French.)Google Scholar
  9. Dearing, D. L.: Summary of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation Development and Techniques for Future Improvemeni. Bull. Int. Inst. Froid, Annex e 2, 233–246 (1965).Google Scholar
  10. Dearing, D. L.: Development of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation. Adv. Cryog. Eng., Vol. 11, pp. 89–97. New York: Plenum Press 1966.Google Scholar
  11. Lemons, C. R., Watts, C. R., Salmassy, O. K.: Development of Advanced Materials Composites for Use as Insulation for LH2-Tanks. McDonnel-Douglas, Astronautics Co., NASA-CR-124388, NASA-CR-123928 (1973).Google Scholar
  12. McGrew, J. J.: Cellular Insulation for Use with Low Temperature Liquids. US-Pat. No. 3.755–756(1973).Google Scholar
  13. Jonke, R. J.: Insulation Systems for Cryogenic Stages. Rev. Sci. Tech. CECLES/CERS 3,17–48 (1971).Google Scholar
  14. Tarid, H. M., Boissin, J. C., Segel, M. P.: Thermal Insulation for Liquid Hydrogen Space Tankage. Adv. Cryog. Eng., Vol. 12, pp. 274–285. New York: Plenum Press 1967.Google Scholar
  15. Yates, G. B.: PPO Foam: Liquid Hydrogen Insulation. Adv. Cryog. Eng., Vol. 19, pp. 327–337. New York: Plenum Press 1974.Google Scholar
  16. Reed, R. P., Arvidson, J. M., Durcholoz, R. L.: Tensile Properties of Polyurethane and Polystyrene Foams from 76 to 300 K. Adv. Cryog. Eng., Vol. 18, pp. 184–193. New York: Plenum Press 1973.Google Scholar
  17. Klezath, H.: Wärmeisolierung von Speicherbehältern für tiefsiedende Flüssigkeiten. Erdöl-Erdgas85,145–149 (1969).Google Scholar
  18. Johnson, C. L., Hollweger, D. J.: Some Heat Transfer Considerations in Non-Evacuated Cryogenic Powder Insulation. Adv. Cryog. Eng., Vol. 11, pp. 77–88. New York: Plenum Press 1966.Google Scholar
  19. Scott, R. B.: Insulation. In: Cryogenic Engineering, pp. 142–214. New York: von Norstrand 1959.Google Scholar
  20. Kropschot, R. H.: Low-Temperature Insulation. In: Applied Cryogenic Engineering, pp. 152–169. New York: Wiley & Sons 1963.Google Scholar
  21. Jacobs, R. B.: Thermal Insulation, Storage, Transport and Transfer of Liquid Hydrogen. In: Technology and Uses of Liquid Hydrogen, Scott, R. B. (ed.), pp. 106–148. New York: Pergamon Press 1964.Google Scholar
  22. Kropschot, R. H.: Insulation Technology. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 239–250. New York: Wiley & Sons 1963.Google Scholar
  23. Molnar, W.: Insulation. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 199–236. London: Academic Press 1971.Google Scholar
  24. Knudsen, M.: Ann. d. Physik 31, 205 (1910); 32,809 (1910); 33,1435 (1910); 593 (1911);6, 149(1930).Google Scholar
  25. Corrucini, R. J.: Gaseous Heat Conduction at Low Pressures and Temperatures. Vacuum 7,8 (1957).Google Scholar
  26. Gerthsen, C.: Physik. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  27. Weitz, M.: Theorie und Praxis der Vakuumtechnik. Braunschweig: Vieweg & Sohn 1965.Google Scholar
  28. Kropschot, R. H., Burgers, W.: Perlite for Cryogenic Insulation. Adv. Cryog. Eng., Vol. 8, pp. 221–229. New York: Plenum Press 1963.Google Scholar
  29. Hunter, B. J., Kropschot, R. H., Schrodt, J. E., Fulk, M. M.: Metal Powder Additives in Evacuated-Powder Insulation. Adv. Cryog. Eng., Vol. 5, pp. 146–156. New York: Plenum Press 1960.Google Scholar
  30. Knight, B. L., Timmerhaus, K. D., Kropschot, R. H.: Analysis of Thermal Diffusity Evaluation under Transient Conditions for Powder Insulation. Adv. Cryog. Eng., Vol. 18, pp. 112–117. New York: Plenum Press 1973.Google Scholar
  31. Cunnington, G. R.: Apparent Thermal Conductivity of Uncoated Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 21, pp. 263–271. New York: Plenum Press 1976.Google Scholar
  32. Cunnington, G. R., Tien, C. L.: Heat Transfer in Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 18, pp. 103–111. New York: Plenum Press 1973.Google Scholar
  33. Tien, C. L., Cunnington, G. R.: Recent Advances in High-performance Cryogenic Thermal Insulation. Cryogenics 12,419–421 (1972).CrossRefGoogle Scholar
  34. Nayak, A. L., Tien, C. L.: Thermal Conductivity of Microsphere Cryogenic Insulation. Adv. Cryog. Eng., Vol. 21, pp. 251–262. New York: Plenum Press 1976.Google Scholar
  35. Petersen, P.: The Heat-tight Vessel. Swedish Technical Research Council Rep., No. 706 (1951); see also: Sartryck ur TVF 29,4 (1958).Google Scholar
  36. Kropshot, R. H.: Low Temperature Insulation. In: Applied Cryogenic Engineering, 152–169. New York: Wüey & Sons 1962.Google Scholar
  37. Frost, W.: Heat Transfer at Low Temperatures. New York: Plenum Press 1975.Google Scholar
  38. Caren, R. P., Cunnington, G. R.: Heat Transfer in Multilayer Insulation Systems. Chem. Eng. Progr. Symp. SER, No. 87, Vol. 64, pp. 67–81 (1968).Google Scholar
  39. Glaser, P. E.: Multilayer Insulation for Large Vessels Used in Transporting and Storing Cryogenic Liquids. Mech. Eng. 87,23–27 (1965).Google Scholar
  40. Kutzner, K., Schmidt, F., Wietzke, I.: Radiative and Conductive Heat Transmission Through Superinsulations — Experimental Results for Aluminium Coated Plastic Foils. Cryogenics 13,396–404 (1973).CrossRefGoogle Scholar
  41. Sparrow, E. M., Cess, R. D.: Radiation Heat Transfer. Beimond, Calif.: Brooks/Cole Puhl. Comp. 1963.Google Scholar
  42. Coston, R. M.: Handbook of Thermal Design Data for Multilayer Insulation Systems, Vol. 2. Lockheed Missiles and Space Co., Sunnyvale, Calif., Rep. No. NASA-CR 87485 (1967).Google Scholar
  43. Ruccia, F., Hinckley, R.: The Surface Emittance of Vacuum-metallized Polyester Films. Adv. Cryog. Eng., Vol. 12, pp. 218–227. New York: Plenum Press 1967.Google Scholar
  44. Bell, G. et al.: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. Adv. Cryog. Eng., Vol. 22. New York: Plenum Press 1977.Google Scholar
  45. Swalley, F. E., Nevins, C. D.: Practical Problems in Design of High-performance Multilayer Insulation System for Cryogenic Stages. Adv. Cryog. Eng., Vol. 10, pp. 208–215. New York: Plenum Press 1965.Google Scholar
  46. Coston, R. M., Nast, T. C.: Experimental Evaluation of the Equations and Parameters Governing Flow Through Multilayer Insulations Düring Evacuation. Adv. Cryog. Eng., Vol. 11, pp. 56–64. New York: Plenum Press 1966.Google Scholar
  47. Vliet, G. C., Coston, R. M.: Thermal Energy Transport Parallel to the Laminations in Multilayer Insulation. Adv. Cryog. Eng., Vol. 13, pp. 671–679. New York: Plenum Press 1968.Google Scholar
  48. Murray, D. O.: Degradation of Multilayer Insulation Systems by Penetrations. Adv. Cryog. Eng., Vol. 13, pp. 680–689. New York: Plenum Press 1968.Google Scholar
  49. Nast, T. C.: Effective Purging of High Performance Multilayer Insulation Systems. Adv. Cryog. Eng., Vol. 11, pp. 49–55. New York: Plenum Press 1966.Google Scholar
  50. Priee, J. W.: Measuring the Gas Pressure within a High-performance Insulation Blanket Adv. Cryog. Eng., Vol. 13, L-l, pp. 662–670. New York: Plenum Press 1968.Google Scholar
  51. Scurlock, R. G., Saull, B.: Development of Multilayer Insulation with Thermal Conductivities below 0,1 juW cm”1K”1. Cryogenics 16,303–311 (1976).CrossRefGoogle Scholar
  52. Paivanas, J. A., Roberts, O. P., Wang, D. I. J.: Multishielding — an Advanced Superinsulation Technique. Adv. Cryog. Eng., Vol. 10, pp. 197–207. New York: Plenum Press 1965.Google Scholar
  53. Bell, G. A., Nast, T. C., Wedel, R. K.: Thermal Performance of Multilayer Insulation Applied to Small Cryogenic Tankage. Adv. Cryog. Eng., Vol. 21, pp. 272–282. New York: Plenum Press 1976.Google Scholar
  54. Urbach, A. R., Herring, R. N.: A Long-term Helium Dewar for Space Experiments. Proc. 6th Int. Cryog. Eng. Conf., 154–156, 1974.Google Scholar
  55. Stewart, W. F.: Operating Experience with a Liquid Hydrogen FueledBuick and Refueling System. Proc. 4th Int. Hydrogen Energy Conf., Pasadena (June 1982), Vol. 3, pp. 1071–1093. New York: Pergamon Press 1982.Google Scholar
  56. Niendorf, L. R., Choksi, S. C.: Ultra-efficient Insulation System for Solid Cryogen Coolers. Adv. Cryog. Eng., Vol. 12, pp. 286–299. New York: Plenum Press 1967.Google Scholar
  57. Edeskuty, F. J., Williamson, K. D. jr.: Storage and Handling of Cryogens. Adv. Cryog. Eng., Vol. 17, pp. 56–68. New York: Plenum Press 1972.Google Scholar
  58. Segel, M. P.: Experimental Study of Phenomena of Stratification and Pressurization of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 10, pp. 308–313. New York: Plenum Press 1964.Google Scholar
  59. Birmingham, B. W., Brown, E. H., Class, C. R., Schmidt, A. F.: Vessels for the Storage and Transport of Liquid Hydrogen. J. Res. Nat. Bur. Stand., A; 58, 243–253, Research paper 2757 (1957).Google Scholar
  60. Liebenberg, D. H., Stokes, R. W., Edeskuty, F. J.: Ch Oldown and Storage Losses of Large Liquid Hydrogen Storage Dewars. Adv. Cryog. Eng., Vol. 11, pp. 554–560. New York: Plenum Press 1966.Google Scholar
  61. Füller, P. D., McLagan, J. N.: Storage and Transfer of Cryogenic Fluids. In: Applied Cryogenic Engineering, Vance, R. W., Duke, W. M. (eds.). Sect. I Cryogenic Storage Vessels and Transport Trailers, pp. 215–237, Sect. II Transfer Lines, pp. 238–254. New York: Wiley & Sons 1962.Google Scholar
  62. Edeskuty, F. J.: Nuclear Propulsion. In: Cryogenic Technology, Vance, R. W. (ed.), pp. 352–374. New York: Wüey & Sons 1963.Google Scholar
  63. Sind, C. F.: Transmission of Hydrogen. In: Selected Topics on Hydrogen Fuel, Hard, J. (ed.). NBS-Spec. PubL 419, 1975.Google Scholar
  64. Jacobs, R. B.: Long Distance Transfer of Liquefied Gases. Proc. 2nd Cryog. Eng. Conf., Boulder, Colo., 1956. Nat. Bureau of Stand., 1957.Google Scholar
  65. Croft, A. J.: 14 Meter Liquid Hydrogen Line. Cryogenics 10, 167–168 (1970).CrossRefGoogle Scholar
  66. Stuchly, J.: Internally Insulated Cryogenic Pipelines. Adv. Cryog. Eng., Vol. 21, pp. 531–537. New York: Plenum Press 1976.Google Scholar
  67. Thurston, R. S., Rogers, J. D., Skoglund, V. J.: Pressure Oscillations Induced by Forced Convection Heating of Dense Hydrogen. Adv. Cryog. Eng., Vol. 12, pp. 438–451. New York: Plenum Press 1967.Google Scholar
  68. Flieder, W. G., Smith, W. J., Wetmore, K. R.: Flexibility Considerations for the Design of Cryogenic Transfer Lines. Adv. Cryog. Eng., Vol. 5, pp. 111–119. New York: Plenum Press 1960.Google Scholar
  69. Steward, W. G.: Transfer Line Surge. Adv. Cryog. Eng., Vol. 10, pp. 313–323. New York: Plenum Press 1965.Google Scholar
  70. Thurston, R. S.: Probing Experiments on Pressure Oscillations in Two Phase and Super- critical Hydrogen with Forced Convection Heat Transfer. Adv. Cryog. Eng., Vol. 10, pp. 305–312. New York: Plenum Press 1965.Google Scholar
  71. Burke, J. C., Byrnes, W. R., Post, A. H., Ruccia, F. E.: Pressurized Cooldown of Cryogenic Transfer Lines. Adv. Cryog. Eng., Vol. 4, pp. 378–394. New York: Plenum Press 1964.Google Scholar
  72. Bronson, J. C., Edeskuty, F. J., et al.: Problems in Cooldown of Cryogenic Systems. Adv. Cryog. Eng., Vol. 7, pp. 198–205. New York: Plenum Press 1960.Google Scholar
  73. Baker, O.: Design of Pipe Lines for Simultaneous Flow of Oil and Gas. The Oil and Gas Journ.53,185–195 (1954).Google Scholar
  74. Srinivasan, K., Seshagiri, R., Krishna Murthy, M. V.: Analytical and Experimental Investigations on Cooldown of Short Cryogenic Transfer Lines. Cryogenics 74,489–494 (1974).CrossRefGoogle Scholar
  75. Beard, C. S.: Cryogenic Valves, a Survey. Cryog. Eng. News 2,62–68 (1967).Google Scholar
  76. Biermann, A. E., Kohl, R. C.: Preliminary Study of aPiston Pump for Cryogenic Fluids. NASA-Memo 3/6/59E, Lewis Res. C. (1959).Google Scholar
  77. Carter, T. A. Jr.: Pumps for Liquid Hydrogen. Cryog. Tech. 3,172–175 (1967).Google Scholar
  78. Knuth, W. H., Farquhar, J., Lindley, B. K.: Design Study of Modification of Ml Liquid Hydrogen Turbopumps for Use in Nuclear Reactor Test Facility. NASA-CR-54422 1965.Google Scholar
  79. Farquhar, J., Lindley, B. K.: Hydraulic Design of Ml Liquid Hydrogen Turbopumps. NASA-CR-54822, 1966.Google Scholar
  80. Ribble, G. H., Jr., Turney, G. E.: Experimental Study of Low Speed Operating Characteristics of a Liquid Hydrogen Centrifugal Turbopump. NASA-TM-X-1861, August 1969.Google Scholar
  81. Stinson, H. P., Strickland, R. J.: Experimental Findings from Zero Tank Net Positive Suction Head Operation of the J-2 Hydrogen Pump. NASA-TN-D-6824, August 1972.Google Scholar
  82. Martin, K. P., Jacobs, R. B., Hardy, R. J.: Performance of Pumps with Liquefied Gases. Adv. Cryog. Eng., Vol. 2, pp. 295–302. New York: Plenum Press 1960.Google Scholar
  83. Pearsall, I. S.: Supercavitating Pumps for Cryogenic Liquids. Cryogenics 12,422–426 (1972).CrossRefGoogle Scholar
  84. Di Stefano, J. F., Caine, G. H.: Cavitation Characteristics of Tank-mounted Cryogenic Pumps and their Predicted Performance under Reduced Gravity. Adv. Cryog. Eng., Vol. 7, pp. 277–290. New York: Plenum Press 1962.Google Scholar
  85. Caine, G. H., Schäfer, L., Burgeson, D.: Pumping of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 4, pp, 241–254. New York: Plenum Press 1960.Google Scholar
  86. Morpurgo, M.: Design and Construction of a Pump for Liquid Helium. Cryogenics 17, 91–93 (1977).CrossRefGoogle Scholar
  87. Goltzmann, C. F.: High Pressure Liquid Hydrogen and Helium Pumps. Adv. Cryog. Eng., Vol. 5, pp. 289–298. New York: Plenum Press 1960.Google Scholar
  88. Scibbe, H. W.: Bearings and Seals for Cryogenic Fluids. NASA-TM-X-52415, 1968.CrossRefGoogle Scholar
  89. Brewe, D. E., Coe, H. H., Scibbe, H. W.: Cooling Studies with High Speed Ball Bearings Operating in Cold Hydrogen Gas. ASLE-Trans., Vol. 12, No. 1, pp. 66–76, Januar 1969.CrossRefGoogle Scholar
  90. Coe, H. H., Brewe, D. E., Scibbe, H. W.: Cooling Requirements of Ball Bearings Lubricated by Glass-Fiber-Filled PTFE Retainers in Cold Hydrogen Gas. NASA-TN-D-5607, 26 pp., February 1970.Google Scholar
  91. Wilson, W. A., Martin, K. B., Brennan, J. A., et al.: Evaluation of Ball Bearing Separator Materials Operating Submerged in Liquid Nitrogen. Trans. ASLE 4, 50–58 (1961).Google Scholar
  92. Chelton, D. B., Brennan, J. A., Scott, L. E.: Dry Gas Operation of Ball Bearings at Cryogenic Temperatures. Adv. Cryog. Eng., Vol. 7, pp. 273–276. New York: Plenum Press 1960.Google Scholar
  93. Brewe, D. E., Wisander, D. W., Scibbe, H. W.: Performance of 40-millimeter Bore Bearings with Lead and Lead-alloy Retainers in Liquid Hydrogen at 192 Million DN. NASA- Lewis-Res. C., Tech. Note, NASA-TN-D-6091, November 1982.Google Scholar
  94. Jacobs, R. B.: Prediction of Symptoms of Cavitation. J. Res. NBS, 65 C, No. 3, pp. 156, July/Sept. 1961.Google Scholar
  95. Blackford, J. E., Haiford, P., Tantam, D. H.: Expanders and Pumps. In: Cryogenic Fundamentals, Haseiden, G. G. (ed.), pp. 403–489. London: Academic Press 1971.Google Scholar
  96. Sindt, C. F.: A Summary of the Characterization Study of Slush Hydrogen. Cryogenics 10(5), 372–380 (1970).CrossRefGoogle Scholar
  97. McCarty, R. D., Hord, J., Roder, H. M.: Selected Properties of Hydrogen, NBS-Monograph 168, U.S.-Government Printing Office, 1981.Google Scholar
  98. Sindt, C. F., Ludtke, P. R., Daney, D. E.: Slush Hydrogen Fluid Characterization and Instrumentation. NBS-Tech. Note No. 377, 64 pp. (1969).Google Scholar
  99. Schraewer, R., Daus, W.: Herstellung und Förderung von Wasserstoffmatsch. Forschungsbericht NT 200 des BMFT, 1974.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations