Advertisement

Die Verflüssigung von Wasserstoff

  • Walter Peschka
Part of the Innovative Energietechnik book series (ENERGIETECHNIK)

Zusammenfassung

Zur Verflüssigung von Wasserstoff wurde eine Reihe von Verfahren entwickelt, welche den Bereich von Laborverflüssigungsanlagen bis hin zu großtechnischen Anlagen umfassen. Der großtechnische Bereich und die damit zusammenhängenden Entwicklungen wurden dabei wesentlich durch die Erfordernisse für die Raumfahrt beeinflußt und gefördert. Über die verschiedenen Verfahren der Verflüssigung von Wasserstoff gibt es eine sehr ausführliche Literatur, welche der im folgenden gebrachten Beschreibung der Verfahren zur Verflüssigung von Wasserstoff zugrunde gelegt wurde (vgl. etwa [1, 2, 3, 4, 6, 7]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barron, R.: Cryogenic Systems. New York: McGraw Hill 1966.Google Scholar
  2. Westbröck, A. J.: Liquefaction of Oxygen, Nitrogen and Hydrogen. In: Applied Cryogenic Engineering. Vance, R. D., Duke, W. M. (eds.), 170–191. New York: Wiley & Sons 1962.Google Scholar
  3. Haseiden, G. G.: Refrigeration and Liquefaction Cycles. In: Cryogenic Fundamentals. Haseiden, G. G. (ed.), 17–89. London: Academic Press 1971.Google Scholar
  4. Scott, R. B., Denton, W. H., Nicholls, C. M.: Technology and Use of Liquid Hydrogen. Oxford: Pergamon Press 1964.Google Scholar
  5. Scott, R. B.: Cryogenic Engineering. Princeton, N. J.: D. van Nostrand 1959.Google Scholar
  6. Macinko, J., Chelton, D. B., Dean, J.: Hydrogen Liquefaction Cycles. Adv. Cryog. Eng., Vol. 3. New York: Plenum Press 1960.Google Scholar
  7. Plank, R. (ed.): Handbuch der Kältetechnik. Plank, R. (Hrsg.). Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  8. Kittel, Ch.: Einführung in die Festkörperphysik. München-Wien: R. Oldenbourg 1969.Google Scholar
  9. Simon, F. E., Kurti, N., Allen, J. F., Mendelssohn, K.: Low Temperature Physics. Four Lectures. London: Pergamon Press 1952.Google Scholar
  10. Barclay, J. A., Steyert, W. A.: Magnetic Refrigeration for Space Applications, Report on a Design Study. Los Alamos Sei. Lab. Rep. LA-8134 (1980).Google Scholar
  11. Hasimoto, T., Numasawa, T., Shino, M., Okada, T.: Magnetic Refrigeration in the Temperature Range from 10 K to Room Temperature: The Ferromagnetic Refrigerants. Cryogenics, November 1981.Google Scholar
  12. Kurti, N.: The Temperature Range below 1° Absolute. In: Low Temperature Physics, Four Lectures. Simon, F. E., Kurti, N. (eds.). London: Pergamon Press 1952.Google Scholar
  13. Betts, D. S.: Refrigeration and Thermometry below 1 K. Sussex University Press, 1976.Google Scholar
  14. Barclay, J. A., Moze, O., Paterson, L.: A Reciprocating Magnetic Refrigerator for 2–4 K Operation: Initial Results. J. Appl. Phys. 50, 5870–5877 (1979).CrossRefADSGoogle Scholar
  15. Brown, G. V.: Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 47, 3673–3680 (1976).CrossRefADSGoogle Scholar
  16. Barclay, J. A., Steyert, W. A.: Materials for Magnetic Refrigeration between 2 K and 20 K. Cryogenics 22, 73–79 (1982).CrossRefGoogle Scholar
  17. Barclay, J. A.: Can Magnetic Refrigerators Liquefy Hydrogen at High Efficiency. ASME paper 81-HT-82, 20th Joint ASME/AIChE National Heat Transfer Conf., Milwaukee, Wisc., August 2–5, 1981.Google Scholar
  18. Köhler, J. W. L., Jonkers, C. O.: Grundlagen der Gaskältemaschine — Konstruktion einer Gaskältemaschine. Phüips Tech. Rdsch. 11 und 12 (1954).Google Scholar
  19. Köhler, W. L., Stevens, P. F., de Jonge, A. K., Beuzekom, D. C.: Computation of Regenerators Used in Regenerative Refrigerators. Cryogenics 75, 521–530 (1975).60 Literatur zu Kap. 3Google Scholar
  20. Barclay, J. A., Stewart, W. F.: The Effect of Parasitic Refrigeration on the Efficiency of Magnetic Liquefiers, 1166–1170. Proc. 17th IECEC, CH 1789–7/82/0000–1166, August 1982.CrossRefGoogle Scholar
  21. Steyert, W. A.: Rotating Carnot-Cycle Magnetic Refrigerators for Use Near 2 K. J. Appl. Phys. 49, 1227–1230 (1978).Google Scholar
  22. Barclay, J. A.: A 4 K to 20 K Rotational-Cooling Magnetic Refrigerator Capable of 1 mW to 1 W Operation. Los Alamos Sei. Lab. Rep., LA-81111, 1980.Google Scholar
  23. Steyert, W. A.: Stirling Cycle Rotating Magnetic Refrigerators and Heat Engines for Use Near Room Temperature. J. Appl. Phys. 49,1227 (1978).CrossRefADSGoogle Scholar
  24. van Geuns, J. R.: Philips Res. Rep., Suppl. 6 (1966).Google Scholar
  25. Chopey, N. P.: Industry Joins Liquid Hydrogen Scene. Chem. Eng.61,164–167 (1960).Google Scholar
  26. van der Arend, P. C.: Large-Scale Liquid Hydrogen Production. Chem. Eng. Progr. 57, 62–67 (1961).Google Scholar
  27. Coplen, H. L.: Large-Scale Production and Handling of Liquid Hydrogen. J. Amer. Rocket Soc. 22,309–322 (1952).Google Scholar
  28. van der Arend, P. C.: Liquid Hydrogen — Ultimate Fuel. Chem. Eng. Progr. Symp. Series 57, No. 34, 1–7 (1961).Google Scholar
  29. Flynn, T. M., Smith, C. N.: Trends in Cryogenic Fluid Production in the United States. Proc. Int. Inst, of Refrigeration, 241–247, Tokyo, Japan 1970.Google Scholar
  30. van der Arend, P. C.: Large-Scale Production, Handling and Storage of Liquid Hydrogen. Adv. Cryog. Eng., Vol. 5, pp. 49–54. New York: Plenum Press 1959.Google Scholar
  31. Baker, C. R., Matsch, L. C.: Production and Distribution of Liquid Hydrogen. Adv. Petrol. Chem. and Refining 10, 36–81 (1965).Google Scholar
  32. Fujita, H.: Liquefied Hydrogen in France. Production, Storage, Transportation and Utilization. Koatsu Gasu 12, 18–27 (1975).Google Scholar
  33. Blackford, J., Haiford, P., Tantam, D. H.: Expanders and Pumps, Chapt. 8. In: Cryogenic Fundaments. Haseiden, G. G. (ed.). London: Academic Press 1971.Google Scholar
  34. Smith, Jr., J. L.: A Metal Bellows Expansion Engine. Adv. in Cryog. Eng., Vol. 12, pp. 595–601. New York: Plenum Press 1967.Google Scholar
  35. Morain, W. A.: Design of a Cryogenic Expansion Engine for Tonnage Hydrogen Liquefaction. Adv. Cryog. Eng., Vol. 12, pp. 585–594. New York: Plenum Press 1967.Google Scholar
  36. Land, M. L.: Expansion Engines and Turbines for Low Temperature Processing. Adv. Cryogenic Eng., Vol. 2. New York: Plenum Press 1960.Google Scholar
  37. Eber, N., Quack, H., Schmidt, C.: Gas Bearing Turbines with Dynamic Gas Bearings and their Application. In: Helium Refrigerators. Cryogenics 18, 585–588 (1978).Google Scholar
  38. Baker, C. R., Shaner, R. L.: A Study of the Efficiency of Hydrogen Liquefaction. Int. J. Hydrogen Energy 3, 321–334 (1978).CrossRefGoogle Scholar
  39. Baker, C. R.: Economics of Hydrogen Production and Liquefaction updated to 1980. NASA Contractor Rep. 159163 (1979), also see NASA-CR-132631, NASA-CR-145077, NASA-CR 145282.Google Scholar
  40. Voth, R. O., Daney, D. E.: H2 liquefaction: Effects of Component Efficiencies. Proc. 14th IECEC, Newark, Delaware, 1356–1362, August 1975.Google Scholar
  41. Foerg, W.: Purification of Hydrogen by Means of Low Temperatures. Sci. Technol. 15, 18–26 (1970).Google Scholar
  42. Baker, C. R., Paul, R. S.: Purification of Liquefaction-Grade Hydrogen. Chem. Eng. Progr. 59,61–64 (1963).Google Scholar
  43. Wilson, K.: Adsorption. In: Cryogenic Fundamentals. Haseiden, G. G. (ed.), 375–403. London: Academic Press 1971.Google Scholar
  44. Weitzel, D. H., van Valin, C. C., Draper, J. W.: Design Data for Ortho-Parahydrogen Converters. Adv. Cryog. Eng., Vol. 3. New York: Plenum Press 1980.Google Scholar
  45. Singleton, A. H., Kucirka, J. F., Lapin, A.: Investigation of the Para-Ortho Shift of Hydrogen. Air Force Prop. Lab. (APFL), Tech. Rep. AFAPL-TR-66–111, 80 p., Wright Patterson Air Force Base, Ohio 1966.Google Scholar
  46. Barrick, P. L., Brown, L. F., Hutchinson, H. L., Cruse, R. L.: Improved Ferne Oxide Gel for Ortho-Parahydrogen Conversion. Adv. Cryog. Eng., Vol. 10. New York: Plenum Press 1965.Google Scholar
  47. Singleton, A. H., Lapin, A.: Design of Para-Orthohydrogen Catalytic Reactors. Adv. Cryog. Eng., Vol. 10A. New York: Plenum Press 1965.Google Scholar
  48. Singleton, A. H., Lapin, A., Wenzel, L. A.: Rate Model for Ortho-Parahydrogen Reaction on a Highly Active Catalyst. Adv. Cryog. Eng., Vol. 13. New York: Plenum Press 1968.Google Scholar
  49. Strobridge, T. R.: Cryogenic Refrigerators — an Updated Survey. NBS, Tech. Note 655 (1974).Google Scholar
  50. Dros, A. A.: Large Capacity Industrial Stirling Machine. Adv. Cryog. Eng., Vol. 10A. New York: Plenum Press 1965.Google Scholar
  51. Kanoldt, W.: Selected Examples for European Cryogenic Design Practice. Adv. Cryogenic Eng., Vol. 10A. New York: Plenum Press 1965.Google Scholar
  52. Keller, W. E.: Worldwide Cryogenics — U.S., Cryogenics at the Los Alamos Scientific Laboratory. Cryogenics 20,547–556 (1980).CrossRefGoogle Scholar
  53. McCormick, J. E., Brauer, J. B.: The Feasibility of Solid State Cryogenic Refrigeration to 70 K. Adv. Cryog. Eng., Vol. 10. New York: Plenum Press 1965.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Walter Peschka
    • 1
  1. 1.DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.Stuttgart 80Bundesrepublik Deutschland

Personalised recommendations