Advertisement

Hydrogenase and Energy Efficiency in Nitrogen Fixing Symbionts

  • N. J. Brewin
Part of the Plant Gene Research book series (GENE)

Abstract

Biological nitrogen fixation is confined to prokaryotes and catalysed by an enzyme complex, nitrogenase, that is biochemically similar throughout the diverse groups of bacteria that harbour it. In all cases, the enzyme system is very sensitive to oxygen damage, has a low turnover number, and a large requirement for chemical energy in the form of ATP and reducing potential. In addition to reducing nitrogen (N2) to ammonia (NH3), nitrogenase also evolves hydrogen (H2) as a by-product of the nitrogen fixation reaction. For this reason, nitrogen-fixing legume root nodules are often found to evolve significant quantities of H2, which must add considerably to the energy costs for nitrogen fixation without any known benefit. However, some, but not all, rhizobia possess an oxygen-dependent enzyme system, termed “uptake hydrogenase”, that is capable of recycling the H2 released during N2 fixation. The possession of such a hydrogen oxidase system is thought to confer a number of benefits to the nitrogen fixation process: chemical energy is regenerated in the form of ATP or reducing power, and in addition, H2 and oxygen (O2) are both removed from the active site of nitrogenase, where they might act respectively as reversible and irreversible inhibitors of nitrogen fixation.

Keywords

Nitrogen Fixation Hydrogen Evolution Field Isolate Hydrogen Uptake Hydrogenase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. W. W., Mortenson, L. E., Chen, J.-S., 1981: Hydrogenase. Biochim. Biophys. Acta 594, 105–176.Google Scholar
  2. Albrecht, S. L., Maier, R. J., Hanus, F. J., Russell, S. A., Emerich, D. W., Evans, H. J., 1979: Hydrogenase in R. japonicum increases nitrogen fixation by nodulated soybeans. Science 203, 1255–1257.PubMedCrossRefGoogle Scholar
  3. Arima, Y., 1981: Respiration and efficiency of nitrogen fixation by nodules formed with a hydrogen uptake positive strain of Rhizobium japonicum. Soil Sci. Plant Nutr. 27, 115–120.Google Scholar
  4. Arp, D. J., Burris, R. H., 1979: Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochim. Biophys. Acta 570, 221–230.PubMedGoogle Scholar
  5. Arp, D. J., Burris, R. H., 1981: Kinetic mechanism of the hydrogen oxidizing hydrogenase from soybean nodule bacteroids. Biochemistry 20, 2234–2240.PubMedCrossRefGoogle Scholar
  6. Arp, D. J., Burris, R. H., 1982: Isotope exchange and discrimination by the H2-oxidizing hydrogenase from soybean root nodules. Biochim. Biophys. Acta 700, 7–15.CrossRefGoogle Scholar
  7. Bedmar, E. J., Edie, S. A., Phillips, D. A., 1983: Host plant cultivar effects on hydrogen evolution by Rhizobium leguminosarum. Plant Physiol. 72, 1011–1015.PubMedCrossRefGoogle Scholar
  8. Benson, D. R., Arp, D. J., Burris, R. H., 1979: Cell-free nitrogenase and hydrogenase from actinorhizal root nodules. Science 205, 688–689.PubMedCrossRefGoogle Scholar
  9. Benson, D. R., Arp, D. J., Burris, R. H., 1980: Hydrogenase in actinorhizal root nodules and root nodule homogenates. J. Bacteriol. 142, 138–144.PubMedGoogle Scholar
  10. Bethlenfalvay, G. J., Phillips, D. A., 1977: Effect of light intensity on efficiency of carbon dioxide and nitrogen reduction in Pisum sativum L. Plant Physiol. 60, 868–871.PubMedCrossRefGoogle Scholar
  11. Bethlenfalvay, G. J., Phillips, D. A., 1979: Variation in nitrogenase and hydrogenase activity of Alaska pea root nodules. Plant Physiol. 63, 816–820.PubMedCrossRefGoogle Scholar
  12. Bowien, B., Schlegel, H. G., 1981: Physiology and biochemistry of aerobic hydrogen oxidising bacteria. Ann. Rev. Microbiol. 35, 405–452.CrossRefGoogle Scholar
  13. Brewin, N. J., DeJong, T. M., Phillips, D. A., Johnston, A. W. B., 1980: Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288, 77–79.CrossRefGoogle Scholar
  14. Brewin, N. J., Wood, E. A., Johnston, A. W. B., Dibb, N. J., Hombrecher, G., 1982: Recombinant nodulation plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 128, 1817–827.Google Scholar
  15. Brewin, N. J., Dibb, N. J., Hombrecher, G., 1983: Natural variation in Rhizobium plasmids. In: Proceedings of the 1st Symposium on Bacteria-Plant Interactions. (A. Puhler, ed.).Google Scholar
  16. Bulen, W. A., Burns, R. C., LeComte, J. R., 1965: Nitrogen fixation: hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc. Natl. Acad. Sci. U. S. A., 53, 532–539.PubMedCrossRefGoogle Scholar
  17. Bulen, W. A., LeComte, J. R., 1966: The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution and ATP hydrolysis. Proc. Natl. Acad. Sci. U.S. A. 56, 979–986.PubMedCrossRefGoogle Scholar
  18. Burns, R. C., Bulen, W. A., 1966: A procedure for the preparation of extracts from Rhodospirillum rubrum catalyzing N2 reduction and ATP-dependent H2 evolution. Arch. Biochim. Biophys. 113, 461–463.CrossRefGoogle Scholar
  19. Burns, R. C., Hardy, R. W. F. (eds.), 1975: Nitrogen Fixation in Bacteria and Higher Plants. (Molecular Biology, Biochemistry and Biophysics, Vol. 21.) Berlin - Heidelberg - New York: Springer.Google Scholar
  20. Cantrell, M. A., Haugland, R. A., Evand, H. J., 1983: Construction of a Rhizobium japonicum gene bank and use in the isolation of a hydrogen uptake gene. Proc. Natl. Acad. Sci. U. S. A. 80, 181–185.PubMedCrossRefGoogle Scholar
  21. Cantrell, M. A., Hickok, R. E., Evans, H. J., 1982: Identification and characterization of plasmids in hydrogen uptake positive and hydrogen uptake negative strains of Rhizobium japonicum. Arch. Microbiol. 131, 102–106.CrossRefGoogle Scholar
  22. Carter, K. R., Jennings, N. T., Hanus, J., Evans, H. J., 1978: Hydrogen evolution and uptake by nodules of soybeans inoculated with different strains of Rhizobium japonicum. Can. J. Microbiol. 24, 307–311.PubMedCrossRefGoogle Scholar
  23. Carter, K. R., Rawlings, J., Orme-Johnson, W. H., Becker, R. R., Evans, H. J., 1980: Purification and characterization of a ferredoxin from Rhizobium japonicum bacteroids. J. Biol. Chem. 255, 4213–4223.PubMedGoogle Scholar
  24. Chatt, J., 1981: Towards new catalysts for nitrogen fixation. In: Gibson, A. H., Newton, W. E. (eds.), Current perspectives in nitrogen fixation, pp. 15–21. New York: Elsevier/North Holland.Google Scholar
  25. Conrad, R., Seiler, W., 1980: Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. J. Geophys. Res. 85, 5493–5498.CrossRefGoogle Scholar
  26. DeJong, T. M., Phillips, D. A., 1981: Nitrogen stress and apparent photosynthesis in symbiotically grown Pisum sativum. Plant Physiol. 68, 309–313.PubMedCrossRefGoogle Scholar
  27. DeJong, T. M., Brewin, N. J., Johnston, A. W. B., Phillips, D. A., 1982: Improvement of symbiotic properties in Rhizobium leguminosarum by plasmid transfer. J. Gen. Microbiol. 128, 1829–1838.Google Scholar
  28. Dixon, R. O. D., 1967: Hydrogen uptake and exchange by pea root nodules. Ann. Bot. 31, 179–188.Google Scholar
  29. Dixon, R. O. D., 1968: Hydrogenase in pea root nodule bacteroids. Arch. Microbiol. 62, 272–283.CrossRefGoogle Scholar
  30. Dixon, R. O. D., 1972: Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch. Microbiol. 85, 193–201.CrossRefGoogle Scholar
  31. Dixon, R. O. D., 1978: Nitrogenase-hydrogenase interrelationships in rhizobia. Biochimie 60, 233–236.PubMedCrossRefGoogle Scholar
  32. Dixon, R. O. D., Blunden, E. A. G., Searl, J. W., 1981: Inter-cellular space and hydrogen diffusion in root nodules of pea Pisum sativum and lupine Lupinus alba. Plant Sci. Lett. 23, 109–116.Google Scholar
  33. Drevon, J. J., Frazier, L., Russell, S. A., Evans, H. J., 1982: Respiratory and nitrogenase activities of soybean nodules formed by hydrogen uptake negative (Hup-) mutant and revertant strains of Rhizobium japonicum characterized by protein patterns. Plant Physiol. 70, 1341–1346.PubMedCrossRefGoogle Scholar
  34. Eady, R. R., Imam, S., Lowe, D. J., Miller, R. W., Smith, B. E., Thorneley, R. N. F., 1980: The molecular enzymology of nitrogenase. In: Stewart, W. D. P., Gallon, J. R. (eds.), Nitrogen Fixation, pp. 19–35. London: Academic Press.Google Scholar
  35. Eisbrenner, G., Evans, H. J., 1982a: Carriers in the electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids. J. Bacteriol. 149, 1005–1012.PubMedGoogle Scholar
  36. Eisbrenner, G., Evans, H. J., 1982b: Spectral evidence for a component involved in hydrogen metabolism of soybean nodule bacteroids. Plant Physiol. 70, 1667–1672.PubMedCrossRefGoogle Scholar
  37. Eisbrenner, G., Hickok, R. E., Evans, H., 1982: Cytochrome patterns in Rhizobium japonicum cells grown under chemolithotrophic conditions. Arch. Microbiol. 132, 230–235.CrossRefGoogle Scholar
  38. Eisbrenner, G., Evans, H. J., 1983: Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant microbe interactions. Ann. Rev. Plant Physiol. 34, 105–136.CrossRefGoogle Scholar
  39. Emerich, D. W., Ruiz-Argüeso, T., Ching, T. M., Evans, H. J., 1979: Hydrogen-dependent nitrogenase activity and ATP formation in R. japonicum bacteroids. J. Bacteriol. 137, 153–160.PubMedGoogle Scholar
  40. Emerich, D. W., Albrecht, S. L., Russell, S. A., Ching, T. M., Evans, H. J., 1980a: Oxyleghaemoglobin-mediated hydrogen oxidation by Rhizobium japonicum USDA 122 DES bacteroids. Plant Physiol. 65, 605–609.PubMedCrossRefGoogle Scholar
  41. Emerich, D. W., Ruiz-Argüeso, T., Russell, S. A., Evans, H. J., 1980b: Investigation of the H2 oxidation system in Rhizobium japonicum 122 DES nodule bacteroids. Plant Physiol. 66, 1061–1066.CrossRefGoogle Scholar
  42. Evans, H. J., Emerich, D. W., Ruiz-Argüeso, T., Maier, R. J., Albrecht, S. L., 1980: Hydrogen metabolism in the legume-Rhizobium symbiosis. In: Newton, W. E., Orme-Johnson, W. E. (eds.), Nitrogen fixation II, pp. 69–86. Baltimore: University Park Press.Google Scholar
  43. Evans, H. J., Purohit, K., Cantrell, M. A., Eisbrenner, G., Russell, S. A., Hanus, F. J., Lepo, J. E., 1981: Hydrogen lossess and hydrogenases in nitrogen-fixing organisms. In: Gibson, A. H., Newton, W. E. (eds.), Current perspectives in nitrogen fixation, pp. 84–96. New York: Elsevier/North Holland.Google Scholar
  44. Gibson, A. H., Dreyfus, B. L., Lawn, R. J., Sprent, J. I., Turner, G. L., 1981: Host and environmental factors affecting hydrogen evolution and uptake. In: Gibson, A. H., Newton, W. E. (eds.), Current perspective in nitrogen fixation, p. 373. New York: Elsevier/North Holland.Google Scholar
  45. Hageman, R. V., Burris, R. H., 1978: Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl. Acad. Sci. U.S.A. 75, 2699–2702.PubMedCrossRefGoogle Scholar
  46. Hageman, R. V., Burris, R. H., 1980: Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase. Biochim. Biophys. Acta 591, 63–75.PubMedCrossRefGoogle Scholar
  47. Hanus, F. J., Maier, R. J., Evans, H. J., 1979: Autotrophic growth of H2-uptake positive strains of R. japonicum in an atmosphere supplied with hydrogen gas. Proc. Natl. Acad. Sci. U. S. A. 76, 1788–1792.PubMedCrossRefGoogle Scholar
  48. Hanus, F. J., Albrecht, S. L., Zablotowicz, R. M., Emerich, D. W., Russell, S. A., Evans, H. J., 1981: The effect of the hydrogenase system in Rhizobium japonicum inocula on the nitrogen content and yield of soybean seed in field experiments. Agron. J. 73, 368–372.CrossRefGoogle Scholar
  49. Haugland, R., Verma, D. P. S., 1981: Interspecific plasmid and genomic DNA sequence homologies and localization of nif genes in effective and ineffective strains of Rhizobium japonicum. J. Mol. Appl. Genet. 1, 205–217.PubMedGoogle Scholar
  50. Haugland, R. A., Hanus, F. J., Cantrell, M. A., Evans, H. J., 1983: A rapid screening method for identifying hydrogenase activity in Rhizobium japonicum. Appl. and Environ. Microbiol. 45, 892–897.Google Scholar
  51. Hardy, R. W. F., Havelka, U. D., 1975: Nitrogen fixation research: a key to world food. Science 188, 633–643.PubMedCrossRefGoogle Scholar
  52. Haystead, A., Robinson, R., Stewart, W. D. P., 1970: Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae. Arch. Microbiol. 72, 235–243.Google Scholar
  53. Hinkle, P. C., McCarty, R. E., 1978: How cells make ATP. Sci. Amer. 238, 104–123.PubMedCrossRefGoogle Scholar
  54. Hoch, G. E., Little, H. N., Burris, R. H., 1957: H2 evolution from soybean root nodules. Nature 179, 430–431.CrossRefGoogle Scholar
  55. Hombrecher, G., Brewin, N. J., Johnston, A. W. B., 1981: Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and R. phaseoli. M. G. G. 182, 133–136.Google Scholar
  56. Klucas, R. V., Hanus, F. J., Russell, S. J., Evans, H. J., 1983: Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc. Natl. Acad. Sci. U. S. A. 80, 2253–2257.PubMedCrossRefGoogle Scholar
  57. Koch, B., Evans, H. J., Russell, S. A., 1967: Properties of the nitrogenase system in cell-free extracts of bacteroids from soybean root nodules. Proc. Natl. Acad. Sci. U.S.A. 58, 1343–1350.PubMedCrossRefGoogle Scholar
  58. Lepo, J. E., Hanus, F. J., Evans, H. J., 1980: Chemoautotrophic growth of hydrogen uptake positive strains of R. japonicum. J. Bacteriol. 141, 664–670.PubMedGoogle Scholar
  59. Lepo, J. E., Hickok, R. E., Cantrell, M. A., Russell, S. A., Evans, H. J., 1981: Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum. J. Bacteriol. 146, 614–620.PubMedGoogle Scholar
  60. Lim, S. T., 1978: Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules. Plant Physiol. 62, 609–611.PubMedCrossRefGoogle Scholar
  61. Lim, S. T., Uratsu, S. L., Weber, D. F., Keyser, H. H., 1981: Hydrogen uptake (hydrogenase) activity of Rhizobium japonicum strains forming nodules in soybean production areas of the U. S. A. In: Lyons, J. M., Valentine, R. C., Philips, A. A., Rains, A. W., Huffaker, R. C. (eds.), Genetic engineering of symbiotic nitrogen fixation and conservation of fixed nitrogen, pp. 159–171. New York: Plenum Press.Google Scholar
  62. Lopez, M., Carbonero, V., Cubrera, E. Ruiz-Argüeso, T., 1983: Effects of host on the expression of the H2 uptake hydrogenase of Rhizobium in legume nodules. Plant Sci. Lett. 29, 191–199.CrossRefGoogle Scholar
  63. Maier, R. J., 1981: Rhizobium japonicum mutant strains unable to grow chemoautotrophically. J. Bacteriol. 145, 533–540.PubMedGoogle Scholar
  64. Maier, R. J., Campbell, N. E. R., Hanus, F. J., Simpson, F. B., Russel S. A., Evans, H. J., 1978a: Expression of hydrogenase activity in free-living Rhizobium japonicum. Proc. Natl. Acad. Sci. U. S. A. 75, 3258–3262.PubMedCrossRefGoogle Scholar
  65. Maier, R. J., Postgate, J. R., Evans, H. J., 1978: Mutants of R. japonicum unable to utilize hydrogen. Nature 276, 494–495.CrossRefGoogle Scholar
  66. Maier, R. J., Hanus, F. J., Evans, H. J., 1979: Regulation of hydrogenase in R. japonicum. J. Bacteriol. 137, 824–829.Google Scholar
  67. Maier, R. J., Merberg, D. M., 1982: Rhizobium japonicum mutants that are hyper- sensitive to repression of H2 uptake by oxygen. J. Bacteriol. 150, 161–167.PubMedGoogle Scholar
  68. Maier, R. J., Mutaftschiev, S., 1982: Revonstitution of H2 oxidation activity from H2 uptake negative mutants of Rhizobium japonicum bacteroids. J. Biol. Chem. 257, 2092–2096.PubMedGoogle Scholar
  69. Manian, S. S., O’Gara, F., 1982: Derepression of ribulose bisphosphate carboxylase activity in Rhizobium meliloti. FEMS Microbiology Lett. 14, 95–99.CrossRefGoogle Scholar
  70. Masterson, R. V., Russell, P. R., Atherly, A. G., 1982: Nitrogen fixation genes and large plasmids of Rhizobium japonicum. J. Bacteriol. 152, 928–931.PubMedGoogle Scholar
  71. McCrae, R. E., Hanus, J., Evans, H. J., 1978: Properties of the hydrogenase system in Rhizobium japonicum bacteroids. Biochem. Biophys. Res. Comm. 80, 384–390.PubMedCrossRefGoogle Scholar
  72. Mortenson, L. E., 1978: The role of dihydrogen and hydrogenase in nitrogen fixation. Biochimie 60, 219–223.PubMedCrossRefGoogle Scholar
  73. Nelson, L. M., Child, J. J., 1981: Nitrogen fixation and hydrogen metabolism in Rhizobium leguminosarum isolates in pea Pisum sativum root nodules. Can. J. Microbiol. 27, 1028–1034.CrossRefGoogle Scholar
  74. Nelson, L. M., Salminen, S. O., 1982: Uptake hydrogenase activity and ATP formation in Rhizobium leguminosarum bacteroids. J. Bacteriol. 151, 989–995.PubMedGoogle Scholar
  75. Pahwa, K., Dogra, R. C., 1981: Hydrogen recycling system in mung bean Vigna radiata Rhizobium in relation to nitrogen fixation. Arch. Microbiol. 129, 380–383.CrossRefGoogle Scholar
  76. Pate, J. S., Atkins, C. A., Rainbird, R. M., 1981: Theoretical and experimental costing of nitrogen fixation and related processes in nodules of legumes. In: Gibson, A. H., Newton, W. E. (eds.), Current Perspectives in Nitrogen Fixation, pp. 105–116. New York: Elsevier/North Holland.Google Scholar
  77. Phelps, A. S., Wilson, P. M., 1941: Occurrence of hydrogenase in nitrogen fixing organisms. Proc. Soc. Exp. Biol. Med. 47, 473–476.Google Scholar
  78. Phillips, D. A., 1980: Efficiency of symbiotic nitrogen fixation in legumes. Ann. Rev. Plant Physiol. 31, 29–49.CrossRefGoogle Scholar
  79. Purohit, K., Becker, R. R., Evans, H. J., 1982: D-Ribulose-1,5-bisophosphate carboxylase/oxygenase from chemolithotrophically-grown Rhizobium japonicum and inhibition by D-4-phosphoerythronate. Biochim Biophys. Acta 715, 320–329.Google Scholar
  80. Rainbird, R. M., Atkins, C. A., Pate, J. S., Sandford, P., 1983: Significance of hydrogen evolution in the carbon and nitrogen economy of nodulated cowpea. Plant Physiol. 71, 122–127.PubMedCrossRefGoogle Scholar
  81. Robson, R. L., Postgate, J. R., 1980: Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34, 183–207.CrossRefGoogle Scholar
  82. Ruiz-Argüeso, T., Hanus, J., Evans, H. J., 1978: Hydrogen production and uptake by pea nodules as affected by strains of Rhizobium japonicum. Arch. Microbiol. 116, 113–118.CrossRefGoogle Scholar
  83. Ruiz-Argüeso, T., Emerich, D. W., Evans, H. J., 1979a: Characteristics of the hydrogen oxidizing system in soybean nodule bacteroids. Arch. Microbiol. 121, 199–206.CrossRefGoogle Scholar
  84. Ruiz-Argüeso, T., Emerich, D. W., Evans, H. J., 1979b: Hydrogenase system in legume nodules: a mechanism for providing nitrogenase with energy and protection from oxygen damage. Biochim. Biophys. Res. Commun. 86, 259–264.CrossRefGoogle Scholar
  85. Ruiz-Argüeso, T., Maier, R. J., Evans, H. J., 1979c: Hydrogen evolution from alfalfa and clover nodules and hydrogen uptake by free-living R. meliloti. Appl. and Environ. Microbiol. 37, 582–587.Google Scholar
  86. Ruiz-Argüeso, T., Cabrera, E., Bertalmeo, M. B., 1981: Induction of hydrogenase in non-nitrogen fixing soybean nodules produced by a Hup+ strain of Rhizobium japonicum. In: Gibson, A. H., Newton, W. E. (eds.), Current perspectives of nitrogen fixation, p. 337. New York: Elsevier/North Holland.Google Scholar
  87. Schink, B., Schlegel, H. G., 1979: The membrane-bound hydrogenase of Alcaligenes eutrophus. Biochim. Biophys. Acta 567, 315–324.PubMedGoogle Scholar
  88. Schubert, K. R., 1982: The energetics of biological nitrogen fixation. Workshop Summary 1, American Society of Plant Physiologists, pp. 1–30.Google Scholar
  89. Schubert, K. R., Evans, H. J., 1976: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. U. S. A. 73, 1207–1211.PubMedCrossRefGoogle Scholar
  90. Schubert, K. R., Engelke, J. A., Russell, S. A., Evans, H. J., 1977: Hydrogen reactions of nodulated leguminous plants I. Effects of rhizobial strain and plant age. Plant Physiol. 60, 651–654.PubMedCrossRefGoogle Scholar
  91. Schubert, K. R., Jennings, N. T., Evans, H. J., 1978: Hydrogen reactions of nodulated leguminous plants II. Effects on dry matter accumulation and nitrogen fixation. Plant Physiol. 61, 398–401.PubMedCrossRefGoogle Scholar
  92. Simpson, F. B., Maier, R. J., Evans, H. J., 1979: Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulose-bisophosphate carboxylase in a H2-uptake positive strain of Rhizobium japonicum. Arch. Microbiol. 123, 1–8.CrossRefGoogle Scholar
  93. Thorneley, R. N. F., Eady, R. R., 1977: Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate reduction kinetics. Biochem. J. 167, 457–461.PubMedGoogle Scholar
  94. Thorneley, R. N. F., Lowe, D. J., 1981: Pre-steady state kinetic studies with nitrogenase from Klebsiella pneumoniae. In: Gibson, A. H., Newton, W. E. (eds.), Current perspectives in nitrogen fixation, p. 360. New York: Elsevier/North Holland.Google Scholar
  95. Thorneley, R. N. F., Lowe, D. J., 1982: Mechanistic studies on nitrogenase from Klebsiella pneumoniae using the rapid quench technique. Israeli Journ. Bot. 31, 1–11.Google Scholar
  96. Van der Werf, A. N., Yates, M. G., 1978: Hydrogenase from nitrogen-fixing Azotobacter chroococcum. In: Schlegel, H. G., Schneider, K. (eds.), Hydrogenases: their catalytic activity, structure and function, pp. 307–326. Göttingen: Erich Goltze KG.Google Scholar
  97. Wang, R. T., 1980: Amperometric hydrogen electrode. Methods in Enzymol. 69, 409–412.CrossRefGoogle Scholar
  98. Williams, L. E., DeJong, T. M., Phillips, D. A., 1981: Carbon and nitrogen limitations on soybean seedling development. Plant Physiol. 68, 1206–1209.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • N. J. Brewin
    • 1
  1. 1.John Innes InstituteNorwichUK

Personalised recommendations