Advertisement

Nitrogen Assimilation in the Legume-Rhizobium Symbiosis: A Joint Endeavour

  • B. J. Miflin
  • J. V. Cullimore
Part of the Plant Gene Research book series (GENE)

Abstract

The biological fixation of dinitrogen is the major source of renewable combined nitrogen available to the biosphere and is believed to be carried out solely by prokaryotic organisms (Postgate, 1982). The majority of this combined nitrogen is delivered directly to eukaryotic plants via a symbiotic relationship with nitrogen fixing bacteria. Such symbiotic relationships have been described for several genera of plants (see Broughton, 1982). By far the most important in an agricultural context is that between members of the Leguminoseae and Rhizobium sp., not surprisingly this has received the most detailed study and will be the subject of this review. As a general principle the prokaryotic partner contains the machinery for nitrogen fixation and the eukaryotic partner assimilates the ammonia produced into an organic form which is then used for the nutrition of the whole plant and also of the prokaryote. In return the eukaryote provides a suitable environment and a source of energy to enable the prokaryote to fix dinitrogen. A generalized scheme, which largely applies to the legume root nodule, is shown in Fig. 1.

Keywords

Nitrogen Fixation Glutamine Synthetase Nitrogen Assimilation Rhizobium Leguminosarum Ammonia Assimilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, H., Niel, C., Guillaume, J. B., 1981: The pathways of ammonium assimilation in Rhizobium meliloti. Arch. Microbiol. 129, 391–394.PubMedCrossRefGoogle Scholar
  2. Appleby, C. A., Turner, G. L., Mac Nichol, P. K., 1975: Involvement of oxyleghaemoglobin and cytochromome P450 in an efficient oxidative phosphorylation pathway which supports nitrogen fixation in Rhizobium. Biochim. Biophys. Acta 387, 461–474.PubMedCrossRefGoogle Scholar
  3. Atkins, C. A., 1981: Metabolism of purine-nucleotides to form ureides in nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). FEBS Letts. 125, 89–93.CrossRefGoogle Scholar
  4. Atkins, C. A., Herridge, D. F., Pate, J. S., 1978: The economy of carbon and nitrogen in nitrogen-fixing annual legumes. Experimental observations and theoretical considerations. In: Isotopes in Biological Dinitrogen Fixation. Proc. FAO/IAEA Meeting Vienna, pp. 211–242.Google Scholar
  5. Atkins, C. A., Rainbird, R. M., Pate, J. S., 1980: Evidence for a purine pathway of ureide synthesis in N2-fixing nodules of cowpea (Vigna unguiculata L. Walp.). Z. Pflanzenphysiol. 97, 249–260.Google Scholar
  6. Auger, S., Verma, D. P. S., 1981: Induction and expression of nodule specific host genes in effective and ineffective root nodules of soybean Glycine max cultivar Prize. Biochemistry 20, 1300–1306.PubMedCrossRefGoogle Scholar
  7. Awonaike, K. O., Lea, P. J., Miflin, B. J., 1981: The location of the enzymes of ammonia assimilation in root nodules of Phaseolus vulgaris L. Plant Sci. Lett. 23, 189–195.Google Scholar
  8. Bancroft, S., Rhee, S. G., Neumann, C., Kustu, S., 1978: Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium. J. Bacteriol. 134, 1046–1055.PubMedGoogle Scholar
  9. Banfalvi, Z., Randhawa, G. S., Kondorosi, E., Kiss, A., Kondorosi, A., 1983: Construction and characterization of R-prime plasmids carrying symbiotic genes of R. meliloti. Mol. Gen. Genet. 189, 129–135.CrossRefGoogle Scholar
  10. Banfalvi, Z., Sakanyan, V., Koncz, C., Kiss, A., Dusha, I., Kondorosi, A., 1981: Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol. Gen. Genet. 184, 318–325.PubMedGoogle Scholar
  11. Bergersen, F. J., 1957: The structure of ineffective root nodules of legumes; an unusual new type of ineffectiveness, and an appraisal of present knowledge. Aust. J. Biol. Sci. 10, 233–242.Google Scholar
  12. Bergersen, F. J., 1965 Ammonia — an early stable product of nitrogen fixation by soybean root nodules. Aust. J. Biol. Sci. 18, 1–9.Google Scholar
  13. Bergersen, F. J., 1971: Biochemistry of symbiotic nitrogen fixation in legumes. Annu. Rev. Plant Physiol. 22, 121–140.CrossRefGoogle Scholar
  14. Bergersen, F. J., Gibson, A. H., 1978: Nitrogen fixation by Rhizobium spp. in laboratory culture media. In: Dobreiner, J., Burris, R. H., Holander, A. (eds)• Limitations and potentials for biological nitrogen fixation in the tropics, pp. 263–274, New York: Plenum Press.Google Scholar
  15. Bergersen, F. J., Turner, G. L., 1967: Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim. Biophys. Acta 141, 507–515.PubMedCrossRefGoogle Scholar
  16. Bergersen, F. J., Turner, G. L., 1978: Activity of nitrogenase and glutamine synthetase in relation to availability of oxygen in continuous cultures of a strain of cowpea Rhizobium sp. supplied with excess ammonium. Biochim. Biophys. Acta 538, 406–416.PubMedCrossRefGoogle Scholar
  17. Bergmann, H., Preddie, E., Verma, D. P. S., 1983: Nodulin-35: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. The EMBO J. 2, 2333–2339.Google Scholar
  18. Beringer, J. E., Brewin, N. J., Johnston, A. W. B., 1980: The genetic analysis of Rhi- zobium in relation to symbiotic nitrogen fixation. Heredity 45, 161–186.CrossRefGoogle Scholar
  19. Bishop, P. E., Guevara, J. G., Engelke, J. A., Evans, H. J., 1976: On the relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glycine max. Plant Physiol. 57, 542–546.PubMedCrossRefGoogle Scholar
  20. Bishop, P. E., Mc Parland, R. H., Evans, H. J., 1975: Inhibition of the adenylylation of glutamine synthetase by methionine sulfone during nitrogenase derepression. Biochem. Biophys. Res. Commun. 67, 774–781.PubMedCrossRefGoogle Scholar
  21. Bisseling, T., van den Bos, R. C., Weststrate, M. W., Hakkaart, M. J. J., van Kam-men, A., 1978: The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pea root nodules induced by Rhizobium leguminosarum. Biochim. Biophys. Acta 539, 1–11.PubMedCrossRefGoogle Scholar
  22. Bisseling, T., Been, C., Klugkist, J., van Kammen, A., Nadler, K., 1983: Nodule specific host proteins in effective and ineffective root nodules of Pisum sativum. The EMBO J. 2, 961–966.Google Scholar
  23. Boland, M. J., 1979: Kinetic mechanism of NADH-dependent glutamate synthase from lupin nodules. Eur. J. Biochem. 99, 531–532.PubMedCrossRefGoogle Scholar
  24. Boland, M. J., 1981 a: NADH-dependent glutamate synthase from lupin nodules. Reactions with oxidised and reduced 3-acetyl-pyridine-adenine dinucleotide. Eur. J. Biochem. 115, 485–489.Google Scholar
  25. Boland, M. J., 198 lb: NAD +: xanthine dehydrogenase from nodules of navy beans: partial purification and properties. Biochem. Int. 2, 567–574.Google Scholar
  26. Boland, M. J., Benny, A. G., 1977: Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. Eur. J. Biochem. 79, 344–362.CrossRefGoogle Scholar
  27. Boland, M. J., Court, C. B., 1981: Glutamate synthase (NADH) from lupin nodules. Specificity of the 2-oxoglutarate site. Biochim. Biophys. Acta 657, 539–542.PubMedGoogle Scholar
  28. Boland, M. J., Schubert, K. R., 1982 a: Purine biosynthesis and catabolism in soybean root nodules: incorporation of 14C from 14CO2 into xanthine. Arch. Biochem. Biophys. 213, 486–491.PubMedCrossRefGoogle Scholar
  29. Boland, M. J., Schubert, K. R., 1982b: The biosynthesis of glycine and methenyl tetrahydrofolate, precursors of ureide synthesis in soybean nodules. Plant Physiol. 69, 618.Google Scholar
  30. Boland, M. J., Schubert, K. R. 1983 a: Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch. Biochem. Biophys. 220, 179–187.Google Scholar
  31. Boland, M. J., Schubert, K. R., 1983 b: Phosphoglycerate dehydrogenase from soybean nodules. Partial purification and some kinetic properties. Plant Physiol. 71, 658–661.PubMedCrossRefGoogle Scholar
  32. Boland, M. J., Fordyce, A. M., Greenwood, R. M., 1978: Enzymes of nitrogen metabolism in legume nodules: a comparative study. Aust. J. Plant Physiol. 5, 553–559.CrossRefGoogle Scholar
  33. Boland, M. J., Hanks, J. F., Reynolds, P. H. S., Blevins, D. G., Tolbert, N. E., Schubert, K. R., 1982: Subcellular organization of ureide biogenesis from glycolytic intermediates and ammonium in nitrogen-fixing soybean nodules. Planta 155, 45–51.CrossRefGoogle Scholar
  34. Boland, M. J., Blevins, D. G., Randall, D. D., 1983: Soybean xanthine dehydrogenase: a kinetic study. Arch. Biochem. Biophys. 222, 435–441.PubMedCrossRefGoogle Scholar
  35. Brewin, N. J., Beringer, J. E., Buchanan-Wollaston, A. V., Johnston, A. W. B., Hirsch, P. R., 1980: Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 116, 261–270.Google Scholar
  36. Brill, W. J., 1980: Biochemical genetics of nitrogen fixation. Microbiological Reviews 44, 449–467.PubMedGoogle Scholar
  37. Broughton, W. J. (ed.), 1982: Nitrogen fixation, Vol. 1. Oxford, U. K.: Oxford University Press.Google Scholar
  38. Brown, C. M., Mac Donald, Brown, D. S., Meers, J. L., 1974: Physiological aspects of microbial inorganic nitrogen assimilation. Adv. in Microb. Physiol. 11, 1–52.CrossRefGoogle Scholar
  39. Brown, C. M., Dilworth, M. J., 1975: Ammonium assimilation by Rhizobium cultures and bacteroids. J. Gen. Microbiol. 86, 39–48.PubMedGoogle Scholar
  40. Buchanan-Wollaston, A. V., Beringer, J. E., Brewin, N. J., Hirsch, P. R., Johnston, A. W. B., 1980: Isolation of symbiotically defective mutants in Rhizobium leguminosarum by insertion of the transposon Tn5 into a transmissible plasmid. Mol. Gen. Genet. 178, 185–190.CrossRefGoogle Scholar
  41. Ching, T. M., Bergersen, F. J., Turner, G. L., 1981: Energy status, growth and nitrogenase activity in continuous cultures of Rhizobium sp. strain CB 756 supplied with NH4+ and various rates of aeration. Biochim Biophys. Acta 636, 82–90.Google Scholar
  42. Christeller, J. T., Laing, W. A., Sutton, W. D., 1977: Carbon dioxide fixation by lupin root nodules. 1. Characterization, association with phosphoenolpyruvate carboxylase, and correlation with nitrogen fixation during nodule development. Plant Physiol. 60, 47–50.PubMedCrossRefGoogle Scholar
  43. Christensen, T. M. I. E., Jochimsen, B. U., 1983: Enzymes of ureide synthesis in pea and soybean. Plant Physiol., 72, 56–59.PubMedCrossRefGoogle Scholar
  44. Coker, III, G. T., Schubert, K. R., 1981: Carbon dioxide fixation in soybean roots and nodules. 1. Characterization and comparison with N2 fixation and composition of xylem exudate during early nodule development. Plant Physiol. 67 691— 696.Google Scholar
  45. Cookson, C., Hughes, H., Coombes, J., 1980: Effects of combined nitrogen on anapleurotic carbon assimilation and bleeding sap composition in Phaseolus vulgaris L. Planta 148, 338–345.CrossRefGoogle Scholar
  46. Cookson, C., Hughes, H., Coombes, J., 1980: Effects of combined nitrogen on anapleurotic carbon assimilation and bleeding sap composition in Phaseolus vulgaris L. Planta 148, 338–345.CrossRefGoogle Scholar
  47. Cullimore, J. V., Miflin, B. J., 1983b: Glutamine synthetase from the plant fraction of Phaseolus root nodules: purification of the mRNA and in vitro synthesis of the enzyme. FEBS Letts. 158, 107–112.CrossRefGoogle Scholar
  48. Cullimore, J. V., Lara, M., Lea, P. J., Miflin, B. J., 1983: Purification and properties of the two forms of glutamine synthetase from the plant fraction of Phaseolus root nodules. Planta 157, 245–253.CrossRefGoogle Scholar
  49. Cullimore, J. V., Lea, P. J., Miflin, B. J., 1982: Multiple forms of glutamine synthe- tase in the plant fraction of Phaseolus root nodules. Israel J. Bot. 31, 151–162.Google Scholar
  50. Darrow, R. A., Knotts, R. R., 1977: Two forms of glutamine synthetase in free-liv- ing root nodule bacteria. Biochem. Biophys. Res. Commun. 78, 554–559.PubMedCrossRefGoogle Scholar
  51. Darrow, R. A., Crist, D., Evans, W. R., Jones, D. L., Keister, D. L., Knotts, R. R., 1981: Biochemical and physiological studies on two glutamine synthetases. In: Gibson, A.H., Newton, W. E. (eds.): Current perspectives in nitrogen fixation, pp. 182–185. Aust. Acad. Science, Canberra.Google Scholar
  52. Denarie, J., Boistard, P., Casse-Delbart, F., Atherly, A. G., Berry, J. O., Russell, P., 1981: Indigenous plasmids of Rhizobium. Internat. Rev. Cytol. Supplement 13, p. 225–246.Google Scholar
  53. De Vries, G. E., In, T. P., Kijne, J. W., 1980: Production of organic acids in Pisum sativum root nodules as a result of oxygen stress. Plant Sci. Lett. 20, 115–123.Google Scholar
  54. De Vries, G. E., In, T. P., Kijne, J. W., 1980: Production of organic acids in Pisum sativum root nodules as a result of oxygen stress. Plant Sci. Lett. 20, 115–123.Google Scholar
  55. Dilworth, M. J., Glenn, A. R., 1982: Movements of ammonia in Rhizobium leguminosarum. J. Gen. Microbiol. 128, 29–37.Google Scholar
  56. Dixon, R. A., Kennedy, C., Kondorosi, A., Krishnapillai, V., Merrick, M., 1977: Complementation analysis of Klebsiella pneumoniae mutants defective in nitrogen fixation. Mol. Gen. Genet. 157, 189–198.PubMedCrossRefGoogle Scholar
  57. Dougall, D. K., 1974: Evidence for the presence of glutamate synthase in carrot cell cultures. Biochem. Biophys. Res. Commun. 58, 639–646.PubMedCrossRefGoogle Scholar
  58. Dougall, D. K., 1974: Evidence for the presence of glutamate synthase in carrot cell cultures. Biochem. Biophys. Res. Commun. 58, 639–646.PubMedCrossRefGoogle Scholar
  59. Dreyfus, B. L., Domergues, Y. R., 1981: Skin nodules on the tropical legume Sesbania rostrata. In: Gibson, A.H., Newton, W. E. (ed.): Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, p. 471.Google Scholar
  60. Drummond, M., Clements, J., Merrick, M., Dixon, R., 1983: Positive control and autogenous regulation of the nif LA promoter in Klebsiella pneumoniae. Nature 301, 302–306.PubMedCrossRefGoogle Scholar
  61. Duke, S. H., Ham, G. E., 1976: The effect of nitrogen addition on N2-fixation and on glutamate dehydrogenase and glutamate synthase activities in nodules and roots of soybeans inoculated with various strains of Rhizobium japonicum. Plant and Cell Physiol. 17, 1037–1044.Google Scholar
  62. Dunn, S. D., Klucas, R. V., 1973: Studies on possible routes of ammonia assimila- tion in soybean root nodule bacteroids. Can. J. Microbiol. 19, 1493–1499.PubMedCrossRefGoogle Scholar
  63. Elmerich, C., Sibold, L., Guerineau, M., Tanndeau de Marsac, N., Chocat, P., Ger-baud, C., Aubert, J.-P., 1981: The nif genes of Klebsiella pneumoniae: Characterization of a nif specific constitutive mutant and cloning in yeast. In: Gibson, A. H., Newton, W. E.: Current perspectives in nitrogen fixation, pp. 157–160, Australian Academy of Science, Canberra.Google Scholar
  64. Espin. G., Alvarez-Morales, A., Cannon, F., Dixon, R., Merrick, M., 1982: Cloning of the g1nA, ntrB and ntrC genes of Klebsiella pneumoniae and studies on their role in regulation of the nitrogen fixation (nif) gene cluster. Mol. Gen. Genet. 186, 518–524.Google Scholar
  65. Foor, F., Reuveny, Z., Magasanik, B., 1980: Regulation of the synthesis of glutamine synthetase by the P II protein in Klebsiella aerogenes. Proc. Natl. Acad. Sci. (U. S. A.) 77, 2636–2640.CrossRefGoogle Scholar
  66. Fuchs, R. L., Keister, D. L., 1980 a: Identification of two glutamine synthetases in Agrobacterium. J. Bacteriol. 141, 996–998.Google Scholar
  67. Fuchs, R. L., Keister, D. L., 1980b: Comparative properties of glutamine synthe-tases I and II in Rhizobium and Agrobacterium spp. J. Bacteriol. 144, 641–648PubMedGoogle Scholar
  68. Fujihara, S., Yamaguchi, M., 1978 a: Probable site of allantoin formation in nodu-lating soybean plants. Phytochemistry 17, 1239–1243.Google Scholar
  69. Fujihara, S., Yamaguchi, M., 1978 b: Effects of allopurinol on the metabolism of allantoin in soybean plants. Plant Physiol. 62, 134–138.Google Scholar
  70. Fujihara, S., Yamaguchi, M., 1980: Asparagine formation in soybean nodules. Plant Physiol. 66, 139–141.PubMedCrossRefGoogle Scholar
  71. Fujihara, S., Yamaguchi, M., 1981: Assimilation of “NH3 by root nodules detached from soybean plants. Plant and Cell Physiol. 22, 797–806.Google Scholar
  72. Gebhardt, C., Turner, G. L., Dreyfus, B. L., Gibson, A. H., Bergersen, F. J., 1983: Nitrogen-fixing growth of a strain of Rhizobium sp. in continuous culture J. Gen. Microbiol. (submitted).Google Scholar
  73. Gibson, A. H., Scowcroft, W. R., Pagan, J. D., 1977: Nitrogen fixation in plants: an expanding horizon? In: Newman, W., Postgate, J. R., Rodriguez-Barrueco, C. (eds.): Recent developments in nitrogen fixation, pp. 387–417. London: Academic Press.Google Scholar
  74. Givan, C. V., 1979: Metabolic detoxification of ammonia in tissues of higher plants. Phytochemistry 18, 375–382.CrossRefGoogle Scholar
  75. Gober, J. W., Kashket, E. R., 1983: Methylammonium uptake by Rhizobium sp. strain 32H1. J. Bacteriol. 153, 1196–1201.PubMedGoogle Scholar
  76. Gordon, J. K., Brill, W. J., 1974: Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochem. Biophys. Res. Commun. 59, 967–971.PubMedCrossRefGoogle Scholar
  77. Gresshoff, P. M., Carroll, B., Mohaptra, S. S., Reporter, M., Shine, J., Rolfe, B. G., 1981: Host factor control of nitrogenase function. In: Gibson, A. H., Newton, W. E. (eds.): Current perspectives in nitrogen fixation, pp. 209–212, Australian Academy of Science, Canberra.Google Scholar
  78. Groat, R. G., Vance, C. P., 1981: Root nodule enzymes of ammonia assimilation in alfalfa Medicago sativa L.). Developmental patterns and response to applied nitrogen. Plant Physiol. 67, 1198–1203.PubMedCrossRefGoogle Scholar
  79. Groat, R. G., Vance, C. P., 1982: Root and nodule enzymes of ammonia assimilation in two plant-conditioned symbiotically ineffective genotypes of alfalfa Medicago sativa L.). Plant Physiol. 69, 614–618.PubMedCrossRefGoogle Scholar
  80. Groat, R. G., Schrader, L. E., 1983: Isolation and immunochemical characterizationGoogle Scholar
  81. of plant glutamine synthetase in alfalfa Medicago sativa L.) nodules. Plant Physiol. 70, 1759–1761.Google Scholar
  82. Hanks, J. F., Tolbert, N. E., Schubert, K. R., 1981: Localization of enzymes of ureide biosynthesis in peroxisomes and microsomes of nodules. Plant Physiol. 68, 65–69.PubMedCrossRefGoogle Scholar
  83. Hanks, J. F., Schubert, K., Tolbert, N. E., 1983: Isolation and characterization of infected and uninfected cells from soybean nodules. Plant Physiol. 71, 869–873.PubMedCrossRefGoogle Scholar
  84. Herridge, D. F., Atkins, C. A., Pate, J. S., Rainbird, R. M., 1978: Allantoin and allantoic acid in the nitrogen economy of the cowpea Vigna unguiculata). Plant Physiol. 62, 495–498.PubMedCrossRefGoogle Scholar
  85. Horcher, R., Wilcockson, J., Werner, D., 1980: Screening for mutants of Rhizobium japonicum with defects in nitrogen fixing ability. Z. Naturforsch. 35c, 729–732.Google Scholar
  86. Kennedy, C., Cannon, F., Cannon, M., Dixon, R., Hill, S., Jensen, J., Kumar, S., Mc Lean, P., Merrick, M., Robson, R., Postgate, J., 1981: Recent advances in the genetics and regulation of nitrogen fixation. In: Gibson, A. H., Newton, W. E. (eds.): Current Perspectives in Nitrogen Fixation, pp. 46–156, Australian Academy of Science, Canberra.Google Scholar
  87. Kennedy, I. R., 1966 a: Primary products of symbiotic nitrogen fixation I. Short-term exposures of serradella nodules to 15N2. Biochim Biophys. Acta 130, 285–294.Google Scholar
  88. Kennedy, I. R., 1966b: Primary products of symbiotic nitrogen fixation II. Pulse-labelling of serradella nodules with 15N2. Biochim. Biophys. Acta 130, 295–303.PubMedCrossRefGoogle Scholar
  89. Kennedy, I. R., Parker, C. A., Kidby, D. K., 1966: The probable site of nitrogen fixation in root nodules of Ornithopus sativum. Biochim. Biophys. Acta 130, 517–519.PubMedCrossRefGoogle Scholar
  90. Keys, A. J., 1980: Synthesis and interconversion of glycine and serine. In: Miflin, B. J. (ed.): The biochemistry of plants, Vol. 5, pp. 359–374, New York: Academic Press.Google Scholar
  91. Kleiner, D., 1982: Ammonium (methylammonium) transport by Klebsiella pneumoniae. Biochim Biophys. Acta 688, 702–708.Google Scholar
  92. Kleiner, D., Phillips, S., Fitzke, E., 1981: Pathways and regulatory aspects of N2 and NH4+ assimilation in N2-fixing bacteria. In: Bothe, H., Trebst, A.: Biology of inorganic nitrogen and sulphur, pp. 131–140, Berlin–Heidelberg–New York: Springer.Google Scholar
  93. Kondorosi, A., Svab, Z., Kiss, G. B., Dixon, R. A., 1977 • Ammonium assimilation and nitrogen fixation in Rhizobium meliloti. Mol. Gen. Genet. 151, 221–226.Google Scholar
  94. Krol, A. J. M., Hontelez, J. G., van den Bos, J. G., van Kammen, A., 1980: Expression of large plasmids in the endo-symbiotic form of Rhizobium leguminosarum. Nucl. Acid Res. 8, 4337–4347.CrossRefGoogle Scholar
  95. Kurz, W. G. W., La Rue, T. A., 1975: Nitrogenase activity in rhizobia in absence of plant host. Nature 256, 407–409.CrossRefGoogle Scholar
  96. Kustu, S., Burton, D., Garcia, E., McCarter, L., McFarland, N., 1979: Nitrogen control in Salmonella: regulation by the glnR and glnF gene products. Proc. Natl. Acad. Sci (U. S. A.) 76, 4576–4580.CrossRefGoogle Scholar
  97. Laane, C., Haaker, H., Veeger, C., 1978: Involvement of the cytoplasmic membrane in nitrogen fixation by Rhizobium leguminosarum bacteroids. Eur. J. Biochem. 87, 147–153.PubMedCrossRefGoogle Scholar
  98. Laane, C., Krone, W., Konings, W., Haaker, H., Veeger, C., 1980: Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. Eur. J. Biochem. 103, 39–46.PubMedCrossRefGoogle Scholar
  99. Laing, W. T., Christeller, J. T., Sutton, W. D., 1979: Carbon dioxide fixation by lupin nodules II. Studies with 14C-labelled glucose, the pathway of glucose metabolism and the effect of some treatments that inhibit nitrogen fixation. Plant Physiol. 63, 450–454.PubMedCrossRefGoogle Scholar
  100. Lamb, J. W., Hombrecher, G., Johnston, A. W. B., 1982: Plasmid-determined nodulation and nitrogen-fixing abilities in Rhizobium phaseoli. Molec. Gen. Genet. 186, 449–452.CrossRefGoogle Scholar
  101. Lara, M., Cullimore, J. V., Lea, P. J., Miflin, B. J., Johnston, A. W. B., Lamb, J. W., 1983: Appearance of a novel form of plant glutamine synthetase during nodule development in Phaseolus vulgaris L. Planta 157, 254–258.CrossRefGoogle Scholar
  102. Lara, M., Porta, H., Padilla, J., Folch, J., Sanchez, F., 1984: Heterogeneity of glutamine Synthase polypeptides in Phaseolus vulgaris. In: Advances in Nitrogen Fixation Research eds. c. Veeger W. E. Newton p. 601. The Hague, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
  103. Lawrie, A. C., Wheeler, C. T., 1975: Nitrogen fixation in the root nodules of Vicia faba L. in relation to the assimilation of carbon II. The dark fixation of carbondioxide. New Phytol. 74, 437–445.CrossRefGoogle Scholar
  104. Layzell, D. B., Rainbird, R. M., Atkins, C. A., Pate, J. S., 1979: Economy of photosynthate use in nitrogen-fixing legume nodules. Observations on two contrasting systems. Plant Physiol. 64, 888–891.PubMedCrossRefGoogle Scholar
  105. Lea, P. J., Miflin, B. J., 1974: An alternative route for nitrogen assimilation in higher plants. Nature (Lond.) 251, 614–616.CrossRefGoogle Scholar
  106. Lea, P. J., Miflin, B. J., 1980: Transport and metabolism of asparagine and other nitrogen compounds within the plant. In: Miflin, B. J. (ed.): The biochemistry of plants, pp. 569–607, Vol. 5, New York: Academic Press.Google Scholar
  107. Lea, P. J., Awonaike, K. O., Cullimore, J. V., Miflin, B. J., 1982: The role of ammonium assimilatory enzymes during nitrogen fixation in root nodules. Israel J. Bot. 31, 140–154.Google Scholar
  108. Lee, K. W., Roush, A. H., 1964: Allantoinase assays and their application to yeast and soybean allantoinases. Arch. Biochem. Biophys. 108, 460–467.PubMedCrossRefGoogle Scholar
  109. Legocki, R. P., Verma, D. P. S., 1980: Identification of nodule specific host proteins (nodulins) involved in the development of Rhizobium-legume symbiosis. Cell 20, 153–164.PubMedCrossRefGoogle Scholar
  110. Lim, S. T., Hennecke, H., Scott, D. B., 1979: Effect of cyclic guanosine 3’, 5’-monophosphate on nitrogen fixation in Rhizobium japonicum. J. Bacteriol. 139, 256–263.PubMedGoogle Scholar
  111. Ludwig R. A., 1978: Control of ammonium assimilation in Rhizobium 32H1. J. Bacteriol. 135, 114–123.PubMedGoogle Scholar
  112. Ludwig, R. A., 1980a: Physiological roles of glutamine synthetases I and II in ammonium assimilation in Rhizobium sp. 32H1. J. Bacteriol. 141, 1209–1216.PubMedGoogle Scholar
  113. Ludwig, R. A., 1980b: Regulation of Rhizobium nitrogen fixation by the unadenylylated glutamine synthetase I system. Proc. Natl. Acad. Sci. U. S. A. 77, 5817–5821.PubMedCrossRefGoogle Scholar
  114. Ludwig, R. A., Signer, E. R., 1977: Glutamine synthetase and control of nitrogen fixation in Rhizobium. Nature 267, 245–248.PubMedCrossRefGoogle Scholar
  115. Ludwig, R. A., de Vries, G. E., 1982: Free living N2-fixation by Rhizobium sp. occurs in a cell-state divorced from that of growth. Abstracts 1st International Symposium on Molecular-Genetics of Bacteria-Plant Interaction, Bielefeld, FRG, p. 22.Google Scholar
  116. Ma, Q.-S., Johnston, A. W. B., Hombrecher, G., Downie, J. A., 1982: Molecular genetics of mutants of Rhizobium leguminosarum which fail to fix nitrogen. Mol. Gen. Genet. 187, 166–171.CrossRefGoogle Scholar
  117. McComb, J. A., Elliott, J., Dilworth, M. J., 1975: Acetylene reduction by Rhizobium in pure culture. Nature 256, 409–410.CrossRefGoogle Scholar
  118. McCormack, D. K., Farnden, K. J. F., Boland, M. J., 1982: Purification and properties of glutamine synthetase from the plant cytosol fraction of lupin nodules. Arch. Biochem. Biophys. 218, 561–571.CrossRefGoogle Scholar
  119. McFarland, N., Mc Carter, L., Artz, S., Kustu, S., 1981: Nitrogen regulatory locus glnR of entric bacteria is composed of cistrons ntrB and ntrC: Identification of their protein products. Proc. Natl. Acad. Sci. U. S. A 78, 2135–2139.PubMedCrossRefGoogle Scholar
  120. Mc Nally, S., Hirel, B., Gadal, P., Mann, A., F., Stewart, G. R., 1983: Glutamine synthetase of higher plants. Plant Physiol. 72, 22–25.Google Scholar
  121. Mac Neil, D., Brill, W. J., 1980: Mutations in nif genes that cause Klebsiella pneumoniae to be derepressed for nitrogenase synthesis in the presence of ammonium. J. Bacteriol. 144, 744–775.Google Scholar
  122. Mc Parland, R. H., Guevara, J. G., Becker, R. R., Evans, H. J., 1976: The purification of the glutamine synthetase from the cytosol of soya-bean root nodules. Biochem. J. 153, 597–606.Google Scholar
  123. Magasanik, B., 1982: Genetic control of nitrogen assimilation in bacteria. Annu. Rev. Genet. 16, 135–168.PubMedCrossRefGoogle Scholar
  124. Matsumoto, T., Yatazawa, M., Yamamoto, Y., 1977a: Effects of exogenous nitrogen-compounds on the concentrations of allantoin and various constituents in several organs of soybean plants. Plant and Cell Physiol. 18, 613–624.Google Scholar
  125. Matsumoto, T., Yatazawa, M., Yamamoto, Y., 1977b: Distribution and changes in the contents of allantoin and allantoic acid in developing nodulating and nonnodulating soybean plants. Plant and Cell Physiol. 18, 353–359.Google Scholar
  126. Matsumoto, T., Yatazawa, M., Yamamoto, Y., 1977c: Incorporation of 15N into allantoin in nodulated soybean plants supplied with 15N2. Plant and Cell Physiol. 18, 459–462.Google Scholar
  127. Matsumoto, T., Yatazawa, M., Yamamoto, Y., 1978: Allantoin metabolism in soybean plants as influenced by grafts, a delayed inoculation with Rhizobium, and a late supply of nitrogen-compounds. Plant and Cell Physiol. 19, 1161–1168.Google Scholar
  128. Meeks, J. C., Wolk, C. P., Schilling, N., Shaffer, P. W., Avisar, Y., Chien, W.-S., 1978 a: Initial organic products of fixation of [13N] dinitrogen by root nodules of soybean Glycine max.). Plant Physiol. 61, 980–983.Google Scholar
  129. Meeks, J. C., Wolk, C. P., Thomas, J., Lockau, W., Shaffer, P. W., Austin, S. M., Chien, W.-S., Galonsky, A., 1977 b: Pathways of assimilation of 13NH4+ by the cyanobacterium Anabaena cylindrica. J. Biol. Chem. 252, 7894–7900.Google Scholar
  130. Merrick, M., 1982: A new model for nitrogen control. Nature 297, 362–363.PubMedCrossRefGoogle Scholar
  131. Merrick, M. J., 1983: Nitrogen control of the of regulon in Klebsiella pneumonia: involvement of the ntrA gene and analogies between ntrCandnifA. EMBO Journal 2, 39–44.PubMedGoogle Scholar
  132. Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., Kennedy, C., 1982: Repressor properties of the na gene product in Klebsiella pneumoniae. Mol. Gen. Genet. 185, 75–81.Google Scholar
  133. Miflin, B. J., Lea, P. J., 1975: Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots. Biochem. J. 149, 403–407.PubMedGoogle Scholar
  134. Miflin, B. J., Lea, P. J., 1976: The pathway of nitrogen assimilation in plants. Phytochemistry 15, 873–885.CrossRefGoogle Scholar
  135. Miflin, B. J., Lea, P. J., 1980: Ammonia assimilation. In: Miflin, B. J. (ed.): The Biochemistry of Plants, pp. 169–202, New York: Academic Press.Google Scholar
  136. Miflin, B. J., Wallsgrove, R. M., Lea, P. J., 1981: Glutamine metabolism in higher plants. Curr. Topics in Cell Regulat. 20, 1–43.Google Scholar
  137. Miflin, B. J., Lea, P. J., 1982: Ammonia assimilation and amino acid metabolism. In: Boulter, D., Parthier, B. (eds.): Encyclopedia of Plant Physiology Vol. 14A Nucleic Acids and Proteins in Plants I. pp. 5–64, Berlin–Heidelberg–New York: Springer.CrossRefGoogle Scholar
  138. Minchin, F. R., Summerfield, R. J., Hadley, P., Roberts, G. H., Rawsthorne, S., 1981: Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant Cell and Envir. 4, 5–26.CrossRefGoogle Scholar
  139. Mortenson, L. E., 1962: Inorganic nitrogen assimilation and ammonia incorporation. In: Gunsalus, I. C., Stanier, R. Y. (eds.): The Bacteria, Vol. 3, pp. 119–166, New York: Academic Press.Google Scholar
  140. Newcomb, E. H., Tandon, S. R., 1981: Uninfected cells of soybean root nodules: ultrastructure suggest key role in ureide production. Science 21, 1394–1396.CrossRefGoogle Scholar
  141. Noel, K. D., Stacey, G., Tandon, S. R., Silver, L. E., Brill, W. J., 1982: Rhizobium japonicum mutants defective in symbiotic nitrogen fixation. J. Bacteriol. 152, 485–494.Google Scholar
  142. Nuti, M. P., Lepidi, A. A., Prakash, R. K., Schilperoort, R. A., Cannon, F. C., 1979: Evidence for nitrogen fixation genes on indigenous Rhizobium plasmids. Nature 282, 533–535.CrossRefGoogle Scholar
  143. O’Gara, F., Shanmugan, K. T., 1976: Regulation of nitrogen fixation by Rhizobia, export of fixed N2 as NH4+. Biochim. Biophys. Acta 437, 313–321.PubMedCrossRefGoogle Scholar
  144. Ohyama, T., Kumazawa, K., 1978: Incorporation of 5N into various nitrogenous compounds in intact soybean nodules after exposure to 15N2 gas. Soil Sci. Plant Nutr. (Tokyo) 24, 525–533.Google Scholar
  145. Ohyama, T., Kumazawa, K., 1979: Assimilation and transport of nitrogenous compounds originated from 15N2 fixation and 15NO3 absorption. Soil Sci. Plant Nutr. 25, 9–19.Google Scholar
  146. Ohyama, T., Kumazawa, K., 1980 a: Nitrogen assimilation in soybean nodules II. SN2 assimilation in bacteroid and cytosol fractions of soybean nodules. Soil Sci. Plant Nutr. 26, 205–213.Google Scholar
  147. Ohyama, T., Kumazawa, K., 1980b: Nitrogen assimilation in soybean nodules I. The role of GS/GOGAT system in the assimilation of ammonia produced by N2 fixation. Soil Sci. Plant Nutr. 26, 109–115.Google Scholar
  148. Osburne, M. S., 1982: Rhizobium meliloti mutants altered in ammonium utilization. J. Bacteriol. 151, 1633–1636.Google Scholar
  149. Osburne, M. S., Signer, E. R., 1980: Ammonium assimilation in Rhizobium meliloti. J. Bacteriol. 143, 1234–1240.PubMedGoogle Scholar
  150. Ow, D. W., Ausubel, F. M., 1983: Regulation of nitrogen metabolism genes by nifA gene product in Klebsiella pneumoniae. Nature 301, 397–313.CrossRefGoogle Scholar
  151. Ow, D. W., Sundaresan, V., Rothstein, D., Brown, S. E., Ausubel, F. M., 1983: Promoters regulated by the glnG(ntrC) and nifA gene products share a heptameric consensus sequence in the -15 region. Proc. Natl. Acad. Sci. U. S. A 80, 2524–2528.PubMedCrossRefGoogle Scholar
  152. Pagan, J. D., Child, J. J. Scowcroft, W. R., Gibson, A. H., 1975: Nitrogen fixationby Rhizobium cultured on a defined medium. Nature 256, 406–407.CrossRefGoogle Scholar
  153. Pahel, G., Rothstein, D. M., Magasanik, B., 1982: Complex glnA-glnL-glnG operon of Escherichia coli. J. Bacteriol. 150, 202–213.PubMedGoogle Scholar
  154. Pain, A. N., 1979: Symbiotic properties of antibiotic-resistant and auxotrophic mutants of Rhizobium leguminosarum. J. Appl. Bacteriol. 47, 53–64.CrossRefGoogle Scholar
  155. Pate, J. S., Gunning, B. E. S., Briarty, L., 1969: Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85, 11–34.CrossRefGoogle Scholar
  156. Pate, J. S., Atkins, C. A., White, S. J., Rainbird, R. M., Woo, K. C., 1980: Nitrogen nutrition and xylem transport of nitrogen in ureide producing grain legumes. Plant Physiol. 65, 961–965.PubMedCrossRefGoogle Scholar
  157. Peterson, M. A., Barnes, D. K., 1981: Inheritance of ineffective nodulation and non-nodulation traits in alfalfa. Crop Sci. 21, 611–616.CrossRefGoogle Scholar
  158. Planqué, K., Kennedy, I. R., de Vries, G. E., Quispel, A., van Brussel, A. A. N., 1977: Location of nitrogenase and ammonia-assimilatory enzymes in bacteroids of Rhizobium leguminosarum and Rhizobium lupini. J. Gen. Microbiol. 102, 95–104.Google Scholar
  159. Planqué, K., de Vries, G. E., Kijne, J. W., 1978: The relationship between nitrogenase and glutamine synthetase in bacteroids of Rhizobium leguminosarum of various ages. J. Gen. Microbiol. 106, 173–178.Google Scholar
  160. Postgate, J. R., 1982: The Fundamentals of Nitrogen Fixation. Cambridge, U. K.: Cambridge University Press.Google Scholar
  161. Prakash, R. K., Schilperoort, R. A., and Nuti, M. P., 1981: Large plasmids of fast growing Rhizobia: homology studies and location of structural nitrogen fixation (nif) genes. J. Bacteriol. 145, 1129–1136.PubMedGoogle Scholar
  162. Quinto, C., de la Vega, H., Flores, M., Fernandez, L., Ballado, T., Soberon, G., Palacios, R., 1982: Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299, 724–726.Google Scholar
  163. Rao, V. R., Darrow, R. A., Keister, D. L., 1978: Effect of oxygen tension on nitrogenase and on glutamine synthetases I and II in Rhizobium japonicum 61A76. Biophys. Res. Commun. 81, 224–231.CrossRefGoogle Scholar
  164. Ratajczak, L., Ratajczak, W., Mazurowa, H., Wozny, A., 1979: Localization of glutamate dehydrogenase and glutamate synthase in roots and nodules of Lupinus seedlings. Biochem. Physiol. Pflanzen 174, 289–295.Google Scholar
  165. Rawsthorne, S., Minchin, F. R., Summerfield, R. J., Cookson, C., Coombes, J., 1980: Carbon and nitrogen metabolism in legume root nodules. Phytochemistry 19, 341–355.CrossRefGoogle Scholar
  166. Reinbothe, H., Mothes, K., 1962: Urea, ureides and guanidines in plants. Annu. Rev. Plant Physiol. 13, 129–150.CrossRefGoogle Scholar
  167. Reporter, M., 1976: Synergetic cultures of Glycine max. root cells and rhizobia separated by membrane filters. Plant Physiol. 57, 651–655.PubMedCrossRefGoogle Scholar
  168. Reporter, M., 1981: Do small metallo-peptides affect nitrogen fixation in legumes? In: Gibson, A. H., Newton, W. E. (eds.): Current Perspectives in Nitrogen Fixation, pp. 214–215, Australian Academy of Science, Canberra.Google Scholar
  169. Reuveny, Z., Foor, F., Magasanik, B., 1981: Regulation of glutamine synthetase by regulatory protein PII in Klebsiella aerogenes mutants lacking adenylyltransferase. J. Bacteriol. 146, 740–745.PubMedGoogle Scholar
  170. Reynolds, P. H. S., Farnden, K. J. F., 1979: The involvement of aspartate aminotransferases in ammonium assimilation in lupin nodules. Phytochemistry 18, 1625–1630.CrossRefGoogle Scholar
  171. Reynolds, P. H. S., Boland, M. J., Farnden, K. J. F., 1981: Enzymes of nitrogen metabolism in legume nodules: partial purification and properties of the aspartate aminotransferases from lupin nodules. Arch. Biochem. Biophys. 209, 524–533.PubMedCrossRefGoogle Scholar
  172. Reynolds, P. H. S., Boland, M. J., Blevins, D. G., Schubert, K. R., Randall, D. D., 1982a: Enzymes of amide and ureide biogenesis in developing soybean nodules. Plant Physiol. 69, 1334–1338.PubMedCrossRefGoogle Scholar
  173. Reynolds, P. H. S., Blevins, D. G., Boland, M. J., Schubert, K. R., Randall, D. D., 1982b: Enzymes of ammonia assimilation in legume nodules: a comparison between ureide-and amide-transporting plants. Physiol. Plant. 55, 255–260.CrossRefGoogle Scholar
  174. Rhodes, D., Sims, A. P., Folkes, B. F., 1980: Pathway of ammonia assimilation in illuminated Lemna. Phytochemistry 19, 357–365.CrossRefGoogle Scholar
  175. Robertson, J. G., Farnden, K. J. F., 1980: Ultrastructure and metabolism of the developing legume root nodule. In: Miflin, B. J. (ed.): The Biochemistry of Plants, Vol. 5, pp. 65–113, New York: Academic Press.Google Scholar
  176. Robertson, J. G., Farnden, K. J. F., Warburton, M. P., Banks, J. M., 1975a: Induction of glutamine synthetase during nodule development in lupin. Aust. J. Plant Physiol. 2, 265–272.CrossRefGoogle Scholar
  177. Robertson, J. G., Warburton, M. P., Farnden, K. J. F., 1975b: Induction of gluta- mate synthase during nodule development in lupin. FEBS Letts. 55, 33–37.CrossRefGoogle Scholar
  178. Rosenberg, C., Boistard, P., Denarie, J., Casse-Delbart, F., 1981: Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184, 326–333.PubMedGoogle Scholar
  179. Ruvkun, G. B., Ausubel, F. M., 1980: Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. U. S. A. 77, 191–195.PubMedCrossRefGoogle Scholar
  180. Ryan, E., Fottrell, P. F., 1974: Subcellular localization of enzymes involved in the assimilation of ammonium by soybean root nodules. Phytochemistry 13, 2647–2652.CrossRefGoogle Scholar
  181. Ryan, E., Bodley, F., Fottrell, P. F., 1972: Purification and characterization of aspartate aminotransferases from soybean root nodules and Rhizobium japonicum. Phytochemistry 11, 957–963.CrossRefGoogle Scholar
  182. Schubert, K. R., 1981: Enzymes of purine biosynthesis and catabolism in Glycine max. I. Comparison of activities with N2 fixation and composition of xylem exudate during nodule development. Plant Physiol. 68, 1115 1122.Google Scholar
  183. Schubert, K. R., 1982: The energetics of biological nitrogen fixation. Plant Physiol. Workshop Supplement 1.Google Scholar
  184. Schubert, K. R., Ryle, G. J. A., 1980: The energy requirements for nitrogen fixation in nodulated legumes. In: Summerfield, R. H., Bunting, H. (eds.): Advances in Legume Science, pp. 85–96, Royal Botanic Gardens, Kew, England.Google Scholar
  185. Schubert, K. R., Coker III, G. T., 1981 a: Ammonium assimilation in Alnus glutinosa and Glycine max. Short term studies using [13N] ammonium. Plant Physiol. 67, 662–665.Google Scholar
  186. Schubert, K. R., Coker III, G. T., 1981 b: Nitrogen and carbon assimilation in N2-fixing plants. In: Root, J. W., Krohn, K. A. (eds.): Advances in Chemistry Series No. 197. Short-lived radionucleotides in chemistry and biology, pp. 317–339, American Chemical Society.Google Scholar
  187. Schubert, K. R., Evans, H. J., 1976: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Natl. Acad. Sci. U. S. A. 73, 1207–1211.PubMedCrossRefGoogle Scholar
  188. Scott, D. B., Hennecke, H., Lim, S. T., 1979: The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochim. Biophys. Acta 565, 365–378.PubMedGoogle Scholar
  189. Scott, D. B., Robertson, J. G., Farnden, K. J. F., 1976: Ammonia assimilation in lupin nodules. Nature 263, 703–708.CrossRefGoogle Scholar
  190. Scott, K. F., Rolfe, B. G., Shine, J., Sundaresan, V., Ausubel, F. M., 1981: Nucleotide sequence of the gene coding for Klebsiella pneumoniae nitrogenase iron protein. In: Gibson, A. H., Newton, W. E. (eds.): Current Perspectives in Nitrogen Fixation, pp. 393–395, Australian Academic of Science, Canberra.Google Scholar
  191. Sen, D., Schulman, H. M., 1980: Enzymes of ammonia assimilation in the cytosol of developing soybean root nodules. New Phytol. 85, 243–250.CrossRefGoogle Scholar
  192. Shanmugam, K. T., O’Gara, F., Andersen, K., Valentine, R. C., 1978: Biological nitrogen fixation. Ann. Rev. Plant Physiol. 29, 263–276.CrossRefGoogle Scholar
  193. Shaw, B. D., 1983: Non-coordinate regulation of Rhizobium nitrogenase synthesis by oxygen: studies with bacteroids from nodulated Lupinus angustifolius. J. Gen. Microbiol. 129, 849–857.Google Scholar
  194. Shelp, B. J., Atkins, C. A., Storer, P. J., Canvin, D. T., 1983: Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea (Vigna unguiculata L. Walp.). Arch. Biochem. Biophys. 224, 429–441.PubMedCrossRefGoogle Scholar
  195. Stadtman, E. R., Mura, U., Chock, P. B., Rhee, S. G., 1980: The interconvertible enzyme cascade that regulates glutamine synthetase activity. In: Mora, J., Palacios, R., Glutamine: Metabolism, Enzymology and Regulation, pp. 41–59, Academic Press, N. Y.Google Scholar
  196. Stewart, G. R., Mann, A. F., Fentem, P. A., 1980: Enzymes of glutamate formation: glutamate dehydrogenase, glutamine synthetase and glutamate synthase. In: Miflin, B. J. (ed.): The Biochemistry of Plants, Vol. 5, pp. 272–327, New York: Academic Press.Google Scholar
  197. Stone, S. R., Copeland, L., Kennedy, I. R., 1979: Glutamate dehydrogenase of lupin nodules: purification and properties. Phytochemistry 18, 1273–1278.CrossRefGoogle Scholar
  198. Stone, S. R., Copeland, L., Heyde, E., 1980a: Glutamate dehydrogenase of lupin nodules: kinetics of the deamination reaction. Arch. Biochem. Biophys. 199, 550–559.PubMedCrossRefGoogle Scholar
  199. Stone, S. R., Heyde, E., Copeland, L., 1980b: Glutamate dehydrogenase of lupin nodules: kinetics of the aminating reaction. Arch. Biochem. Biophys. 199, 560–571.PubMedCrossRefGoogle Scholar
  200. Streeter, J. G., 1972: Nitrogen nutrition of field-grown soybean plants 1. Seasonal variations in soil nitrogen and nitrogen composition of stem exudates. Agron. J. 64, 311–314.CrossRefGoogle Scholar
  201. Streeter, J. G., 1977: Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 60, 235–239.PubMedCrossRefGoogle Scholar
  202. Sundaresan, V., Ow, D. W., Ausubel, F. M., 1983 a: Activation of Klebsielia pneumoniae and Rhizobium meliloti nitrogenase promoters by gin regulatory proteins. Proc. Natl. Acad. Sci. U. S. A., 80, 4030–4034.Google Scholar
  203. Sundaresan, V., Jones, J. D. G., Ow, D. W., Ausubel, F. M., 1983 b: Klebsielia pneumoniae nifA product activates the Rhizobium meiiloti nitrogenase promoter. Nature 301, 728–732.Google Scholar
  204. Tajima, S., Yamamoto, Y., 1975: Enzymes of purine catabolism in soybean plants. Plant and Cell Physiol. 16, 271–282.Google Scholar
  205. Tchan, Y. T., Wyszomirska-Dreher, Z., Kennedy, I. R., 1981: Preparation of mono-specific antiserum to lupin nodule glutamate dehydrogenase. Aust. J. Biol. Sci. 34, 161–169.PubMedGoogle Scholar
  206. Tempest, D. W., Meers, J. L., Brown, C. M., 1970a: Synthesis of glutamate in Aero- bacter aerogenes by a hitherto unknown route. Biochem. J. 114, 405–407.Google Scholar
  207. Tempest, D. W., Meers, J. L., Brown, C. M., 1973: Glutamate synthetase (GOGAT): a key enzyme in the assimilation of ammonia by prokaryotic organisms. In: Prusiner, S., Stadtman, E. R. (eds.): The enzymes of Glutamine Metabolism, pp. 167–182, New York: Academic Press.Google Scholar
  208. Thomas, R. J., Schrader, L. E., 1981: Ureide metabolism in higher plants. Phytochemistry 20, 361–371.CrossRefGoogle Scholar
  209. Thomas, R. J., Meyers, S. P., Schrader, L. E., 1983: Allantoinase from shoot tissues of soybeans, Phytochemistry 22, 1117–1120.CrossRefGoogle Scholar
  210. Triplett, E. W., Blevins, D. G., Randall, D. D., 1980: Allantoic acid synthesis in soybean root nodule cytosol via xanthine dehydrogenase. Plant Physiol. 65, 1203–1206.PubMedCrossRefGoogle Scholar
  211. Triplett, E. W., Blevins, D. G., Randall, D. D., 1982: Purification and properties of soybean xanthine dehydrogenase. Arch. Biochem. Biophys. 219, 39–46.PubMedCrossRefGoogle Scholar
  212. Tyler, B. M., 1978: Regulation of the assimilation of nitrogen compounds. Annu. Rev. Biochem. 47, 1127–1162.PubMedCrossRefGoogle Scholar
  213. Ueno-Nishio, S., Backman, K. C., Magasanik, B., 1983: Regulation of the gln LOperator-Promoter of the complex gln ALG operon of Escherichia coli. J. Bacteriol. 153, 1247–1251.PubMedGoogle Scholar
  214. Upchurch, R. G., Elkan, G. H., 1978a: Ammonium assimilation in Rhizobium japonicum colonial derivatives differing in nitrogen-fixing efficiency. J. Gen. Microbiol. 204, 219–225.Google Scholar
  215. Upchurch, R: G., Elkan, G. H., 1978b: The role of ammonia, L-glutamate, and cyclic adenosine 3’-5’-monophosphate in the regulation of ammonia assimilation in Rhizobium japonicum. Biochem. Biophys. 538, 244–248.Google Scholar
  216. Upchurch, R. G., Mortenson, L. E., 1980: In vivo energetics and control of nitrogen fixation. J. Bacteriol. 143 274–284.Google Scholar
  217. Vance, C. P., Johnson, L. E. B., 1983: Plant induced ineffective nodules in alfalfa (Medicago sativa L.): structural and biochemical comparisons. Can. J. Bot. (In press.)Google Scholar
  218. Vance, C. P., Stade, S., Maxwell, C. A., 1983: Alfalfa root nodule carbon dioxide fixation: 1. Association with nitrogen fixation and incorporation into amino acids. Plant Physiol. ( In press. )Google Scholar
  219. Van den Bos, R. C., Schetgens, Th. M. B., Hontelez, J. G. J., Bakkeren, G., van Dun, C., Bisseling, T., van Kammen, A., 1983: Expression of nodule-specific genes in both partners in the Rhizobium legume symbiosis. In: Proceedings of the 2nd International Colloquium on Endocytobiology, Tübingen, F. R. G. - Berlin: de Gruyter. (In press.)Google Scholar
  220. Van den Bos, R. C., Schots, A., Hontelez, J., van Kammen, A., 1983: Nitrogenase synthesis in isolated Rhizobium leguminosarum bacteroids: constitutive synthesis from de novo transcribed mRNA. Biochim. Biophys. Acta 740, 313–322.Google Scholar
  221. Van den Bos, R. C., Schetgens, T. M. P., Bisseling, T., Hontelez, J. G. J., van Kam-men, A., 1983: Analysis of nodule-specific plant and bacteroid proteins in pea plants inoculated by transposon mutagenized Rhizobium leguminosarum. In: Molecular Genetics of Plant Bacterial Interactions ed A. Pühler, p. 121–129. Berlin–Heidelberg–New York: Springer.CrossRefGoogle Scholar
  222. Vogels, G. D., van der Drift, C., 1966: Allantoinases from bacterial, plant and animal sources. II. Effects of bivalent cations and reducing substances on the enzymic activity. Biochim. Biophys. Acta 122, 497–509.Google Scholar
  223. Vogels, G. D., Trijbels, F., Uffink, A., 1966: Allantoinases from bacterial, plant and animal sources. 1. Purification and enzymic properties. Biochim. Biophys. Acta 122, 482–496.Google Scholar
  224. Werner, D., Morschel, E., 1978: Differentiation of nodules of Glycine max. Planta 141, 169–177.CrossRefGoogle Scholar
  225. Werner, D., Morschel, E., Stripf, R., Winchenbach, B., 1980: Development of nodules of Glycine max. infected with an ineffective strain of Rhizobium japonicum. Planta 147, 320–329.CrossRefGoogle Scholar
  226. Wheeler, C. T., 1978: Carbon dioxide fixation in the legume root nodule. Ann. Appl. Biol. 88, 481–484.CrossRefGoogle Scholar
  227. Wolk, C. P., Thomas, J., Shaffer, P. W., Austin, S. M., Galonsky, A., 1976: Pathway of nitrogen metabolism after fixation of 13N-labelled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J. Biol. Chem. 251, 5027–5034.PubMedGoogle Scholar
  228. Woo, K. C., Atkins, C. A., Pate, J. S., 1980: Biosynthesis of ureides from purines in a cell-free system from the nodule extracts of cowpea (Vigna unguiculata). Plant Physiol. 66, 735–739.PubMedCrossRefGoogle Scholar
  229. Woo, K. C., Atkins, C. A., Pate, J. S., 1981: Ureide synthesis in a cell free system from cowpea (Vigna unguiculata) nodules. Plant Physiol. 67, 1156–1160.PubMedCrossRefGoogle Scholar
  230. Yates, M. G., 1980: Biochemistry of nitrogen fixation. In: Miflin, B. J. (ed.): The Biochemistry of Plants, pp. 1–64, New York: Academic Press.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • B. J. Miflin
    • 1
  • J. V. Cullimore
    • 1
  1. 1.Biochemistry DepartmentRothamsted Experimental StationHarpenden, HertsUK

Personalised recommendations