Phytohormone-Mediated Tumorigenesis by Plant Pathogenic Bacteria

  • C. I. Kado
Part of the Plant Gene Research book series (GENE)


visible morphological distortions of the plants they infect. Past studies on the effects of these particular pathogen-host interactions have been mainly descriptive and the precise mechanisms which cause these distortion were not well understood. Many of the early efforts have been to examine the diseased plant at the site of infection, and few workers have emphasized the detailed study of the pathogen itself. As stressed previously (Kado, 1976), the rewards will be great when we gain a comprehensive knowledge of the pathogen of interest. This is clearly evidenced by the studies of Agrobacterium tumefaciens, the results of which have yielded a wealth of new information not only in plant pathology, but also in molecular biology and molecular genetics. Furthermore, the discovery that genetic information is naturally transferred from a prokaryote to an eukaryote during the interaction sets a new precedence in biology.


Agrobacterium Tumefaciens Naphthalene Acetic Acid Crown Gall Crown Gall Tumor Cytokinin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi, D. E., Morris, R. O., Hinz, R., Mischke, B. S., Kosuge, T., Garfinkel, D. J., Gordon, M. P., Nester, E. W., 1983: Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Nat. Acad. Sci. U. S. A. 80, 407–411.CrossRefGoogle Scholar
  2. Amasino, R. M., Miller, C. O., 1982: Hormonal control of tobacco crown gall tumor morphology. Plant Physiol. 69, 389–392.PubMedCrossRefGoogle Scholar
  3. Atsumi, S., 1980: Relation between auxin autotrophy and tryptophan content in sunflower crown gall cells in culture. Plant Cell Physiol. 21, 1031–1039.Google Scholar
  4. Atsumi, S., Hayashi, T., 1978: The relationship between auxin concentration, auxin protection and auxin destruction in crown gall cells cultured in vitro. Plant Cell Physiol. 19, 1391–1397.Google Scholar
  5. Armstrong, D. J., Scarbrough, E., Skoog, F., Cole, D. L., Leonard, N. J., 1976: Cytokinins in Corynebacterium fascians cultures. Isolation and identification of 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine. Plant Physiol. 58, 749–752.Google Scholar
  6. Beardsley, R. E., 1972: The inception phase in the crown gall disease. In: Braun, A. C. (ed.), Progress in Experimental Tumor Research: Plant Tumor Research. Vol. 15, 1–75. Basel–München–Paris–London–New York–Sydney: S. Karger.Google Scholar
  7. Beiderbeck, R., 1973: Wurzelinduktion an Blättern von Kalanchoë daigremontiana durch Agrobacterium rhizogenes und der Einfluß von Kinetin auf diesen Prozeß. Z. Pflanzenphysiol. 68, 460–467.Google Scholar
  8. Beltra, R., 1959: Bacterial origin of ß-indoleacetic acid in vegetative tumors. Rev. latinoam. Microbiol. 2, 23–32.Google Scholar
  9. Beltra, R., Sanchez-Serrano, J. J., Serrada, J., 1978: Relationship between plasmids and plant tumorigenesis. Proc. 4th Int. Conf. Plant Path. Bact. (Angers), Station de Pathologie Végétale of Phytobactériologie (ed.), I. N. R. A., pp. 199–205.Google Scholar
  10. Berthelot, A., Amoureaux, G., 1938: Sur la formation d’acide indol-3-acétique dans l’action de Bacterium tumefaciens sur le tryptophane. Compt. Rend. 206, 537–540.Google Scholar
  11. Bevan, M. W., Chilton, M.-D., 1982: Multiple transcripts of T-DNA detected in nopaline crown gall tumors. J. Mol. Appl. Genet. 1, 539–546.Google Scholar
  12. Binns, A. N., Sciaky, D., Wood, H. N., 1982: Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of Agrobacterium tumefaciens. Cell 31, 605–612.PubMedCrossRefGoogle Scholar
  13. Bouillenne, C., Gaspar, T., 1970: Auxin catabolism and inhibitors in normal and crown gall tissues of Impatiens balsamina. Can. J. Bot. 48, 1150–1163.CrossRefGoogle Scholar
  14. Braun, A. C., 1956: The activation of two growth-substance systems accompanying the conversion of normal to tumor cells in crown gall. Cancer Res. 16, 53–56.PubMedGoogle Scholar
  15. Braun, A. C., 1958: A physiological basis for autonomous growth of the crown-gall tumor cell. Proc. Nat. Acad. Sci. U. S. A. 44, 344–349.CrossRefGoogle Scholar
  16. Braun, A. C., Laskaris, T., 1942: Tumor formation by attenuated crown gall bacteria in the presence of growth promoting substances. Proc. Nat. Acad. Sci. U. S. A. 28, 468–477.CrossRefGoogle Scholar
  17. Brown, N., Gardner, F. E., 1936: Galls produced by plant hormones, including a hormone extracted from Bacterium tumefaciens. Phytopath. 26, 708–713.Google Scholar
  18. Callahan, R., Balbinder, E., 1970: Tryptophan operon: structural gene mutation creating a “promoter” and leading to 5-methyltryptophan dependence. Science 168, 1586–1589.PubMedCrossRefGoogle Scholar
  19. Chapman, R. W., Morris, R. O., Zaerr, J. B., 1976: Occurrence of trans-ribosyl-zeatin in Agrobacterium tumefaciens tRNA. Nature 262, 153–154.PubMedCrossRefGoogle Scholar
  20. Cherayil, J. D., Lipsett, M. N., 1977: Zeatin ribonucleosides in the transfer ribonucleic acid of Rhizobium leguminosarum, Agrobacterium tumefaciens, Corynebacterium fascians and Erwinia amylovora. J. Bacteriol. 131, 741–744.PubMedGoogle Scholar
  21. Cheng, T. Y., 1972: Induction of indoleacetic acid synthetase in tobacco pith explants. Plant Physiol. 50, 723–727.PubMedCrossRefGoogle Scholar
  22. Chirek, Z., 1979: Comparison of auxin activity in tumorus and normal callus cultures from sunflower Helianthus annuus and tobacco Nicotiana tabacum plants. Acta Soc. Bot. Pol. 48, 47–54.Google Scholar
  23. Cornai, L., Surico, G., Kosuge, T., 1982: Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv. savastanoi. J. Gen. Microbiol. 128, 2157–2163.Google Scholar
  24. Comai, L., Kosuge, T., 1982: Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J. Bacteriol. 149, 40–46.PubMedGoogle Scholar
  25. Cornai, L., Kosuge, T., 1980: Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143, 950–957.Google Scholar
  26. Dame, F., 1938: Pseudomonas tumefaciens (Sm. et Towns.) Stev., Der Erreger des Wurzelkropfes in seiner Beziehung zur Wirtspflanze. Zentralblatt für Bakt. Parasit. Infektionskrankheit. II. Abt. 98, 385–429.Google Scholar
  27. De Greve, H., Decraemer, H., Seurinck, J., Van Montagu, M., Schell, J., 1981: The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6S3. Plasmid 6, 235–248.PubMedCrossRefGoogle Scholar
  28. Dye, M. H., Clarke, G., Wain, R. L., 1961: Investigations on the auxins in tomato crown-gall tissue. Proc. Royal Soc. (London) B155, 478–492.Google Scholar
  29. Einset, J. W., 1977: Two effects of cytokinin on the auxin requirement of tobacco callus cultures. Plant Physiol. 59, 45–47.PubMedCrossRefGoogle Scholar
  30. Einset, J. W., 1980: Cytokinins in tobacco crown gall tumors. Biochem. Biophys. Res. Commun. 93, 510–515.PubMedCrossRefGoogle Scholar
  31. Einset, J. W., Skoog, F., 1977: Isolation and identification of ribosyl-cis-zeatin from transfer RNA of Corynebacterium fascians. Biochem. Biophys. Res. Commun. 79, 1117–1121.PubMedCrossRefGoogle Scholar
  32. Garfinkel, D., Nester, E. W., 1980: Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144, 732–743.Google Scholar
  33. Garfinkel, D. J., Simpson, R. B., Ream, L. W., White, F. F., Gordon, M. P., Nester, E. W., 1981: Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27, 143–153.PubMedCrossRefGoogle Scholar
  34. Gelvin, S. B., Gordon, M. P., Nester, E. W., Aronson, A. I., 1981: Transcription of the Agrobacterium Ti plasmid in the bacterium and in crown gall tumors. Plasmid 6, 17–29.PubMedCrossRefGoogle Scholar
  35. Gross, D. C., Vidaver, A. K., Keralis, M. B., 1979: Indigenous plasmids from phy- topathogenic Corynebacterium species. J. Gen. Microbiol. 115, 479–489.Google Scholar
  36. Hall, R. H., Csonka, L., David, H., McLennan, B., 1967: Cytokinins in the soluble RNA of plant tissues. Science 156, 69–71.PubMedCrossRefGoogle Scholar
  37. Hahn, H., Heitmann, I., Blumbach, M., 1976: Cytokinins: production and biogenesis of N6-(A2-isopentenyl)adenine in cultures of Agrobacterium tumefaciens strain B6. Z. Pflanzenphysiol. 79, 143–153.Google Scholar
  38. Helgeson, J. P., Leonard, N. J., 1966: Cytokinins: identification of compounds isolated from Corynebacterium fascians. Proc. Natl. Acad. Sci. U. S. A. 56, 60–63.Google Scholar
  39. Henderson, J. H. M., Bonner, J., 1952: Auxin metabolism in normal and crown-gall tissue of sunflower. Amer. J. Bot. 39, 444–451.Google Scholar
  40. Joos, H., Inze, D., Caplan, A., Sormann, M., Van Montagu, M., Schell, J., 1983: Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32, 1057–1067.PubMedCrossRefGoogle Scholar
  41. Kado, C. I., 1976: The tumor-inducing substance of Agrobacterium tumefaciens. Ann. Rev. Phytopath. 14, 265–308.CrossRefGoogle Scholar
  42. Kado, C. I., Liu, S.-T., 1981: Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145, 1365–1373.PubMedGoogle Scholar
  43. Kaiss-Chapman, R. W., Morris, R. O., 1977: Trans-zeatin in culture filtrates of Agrobacterium tumefaciens. Biochim. Biophys. Res. Commun. 76, 453–459.CrossRefGoogle Scholar
  44. Kaper, J. M., Veldstra, H., 1958: On the metabolism of the tryptophan by Agrobacterium tumefaciens. Biochem. Biophys. Acta 30, 402–420.CrossRefGoogle Scholar
  45. Kao, J. C., Perry, K. L., Kado, C. I., 1982: Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 188, 425–432.PubMedCrossRefGoogle Scholar
  46. Klambt, D., Thies, G., Skoog, F., 1966: Isolation of cytokinins from Corynebacterium fascians. Proc. Natl. Acad. Sci. U. S. A. 56, 52–59.PubMedCrossRefGoogle Scholar
  47. Klein, R. M., Link, G. K. K., 1952: Studies on the metabolism of plant neoplasms, V. auxin as a promoting agent in the transformation of normal to crown-gall tumor cells. Proc. Natl. Acad. Sci. U. S. A. 38, 1066–1072.Google Scholar
  48. Kosuge, T., Heskett, M. G., Wilson, E. E., 1966: Microbial synthesis and degradation of indole-3-acetic acid I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J. Biol. Chem. 241, 3738–3744.PubMedGoogle Scholar
  49. Kulescha, Z., Gautheret, R., 1948: Sur l’élaboration des substances de croissance par 3 types de cultures de tissus de Scorsonere: cultures normales, cultures de crown-gall et cultures accoutumées à l’hétéroauxine. Comptes Rendus des Séances de l’Académie des Sciences (Paris) 227, 292–294.Google Scholar
  50. Lawson, E. N., Gantotti, B. V., Starr, M. P., 1982: A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Curr. Microbiol. 7, 327–332.Google Scholar
  51. Leemans, J., Shaw, Ch., Deblaere, R., De Greve, H., Hernalsteens, J. P., Maes, M., Van Montagu, M., Schell, J., 1981: Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plants. J. Mol. Appl. Gent. 1, 149–164.Google Scholar
  52. Leemans, J., Deblaere, R., Willmitzer, L., De Greve, H., Hernalsteens, J. P., Van Montagu, M., Schell, J., 1982: Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO. J. 1, 147–152.Google Scholar
  53. Lemmers, M., De Berickeleer, M., Hosters, M., Zambryski, P., Depicker, A., Hernalsteens, J. P., Van Montagu, M., Schell, J., 1980: Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J. Mol. Biol. 144, 353–376.PubMedCrossRefGoogle Scholar
  54. Link, G. K. K., Eggers, V., 1941: Hyperauxiny in crown gall of tomato. Bot. Gaz. 103, 87–106.CrossRefGoogle Scholar
  55. Link, G. K. K., Wilcox, H. W., 1937: Tumor production by hormones from Phytomonas tumefaciens. Science 86, 126–127.PubMedCrossRefGoogle Scholar
  56. Link, G. K. K., Wilcox, H. W., Link, A. S., 1937: Responses of bean and tomato to Phytomonas tumefaciens, P. tumefaciens extracts, 13-indoleacetic acid, and wounding. Bot. Gaz. 98, 816–867.CrossRefGoogle Scholar
  57. Liu, S.-T., Kado, C. I., 1979: Indoleacetic acid production: a plasmid function of Agrobacterium tumefaciens. Biochem. Biophys. Res. Commun. 90, 171–178.PubMedCrossRefGoogle Scholar
  58. Liu, S.-T., Perry, K. L., Schardl, C. L., Kado, C. I., 1982: Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc. Natl. Acad. Sci. U. S. A. 79, 2812–2816.Google Scholar
  59. Lobanok, E. V., Fomicheva, V. V., Kartel, N. A., 1982 a: The synthesis of indolylacetic acid by oncogenic and nononcogenic strains of Agrobacterium tumefaciens. Doklady Akad. Nauk BSSR 26, 565–566.Google Scholar
  60. Lobanok, E. V., Fomicheva, V. V., Chemin, L. S., 1982 b: Correlation between tumorigenicity and phytohormonal activity in A. tumefaciens. Conf. Metabolic Plasmids, Tallinn, Estonian SSR, USSR 19–23 October 1982 (abstr.), pp. 146–148.Google Scholar
  61. Locke, S. B., Riker, A. J., Duggar, B. M., 1938: Growth substance and the development of crown gall. J. Agr. Res. 57, 21–39.Google Scholar
  62. Magie, A. R., Wilson, E. E., Kosuge, T., 1963: Indoleacetamide as an intermediate in the synthesis of indoleacetic acid in Pseudomonas savastanoi. Science 141, 1281–1282.PubMedCrossRefGoogle Scholar
  63. Matsubara, S., Armstrong, D. J., Skoog, F., 1968: Cytokinins in tRNA of Corynebacterium fascians. Plant Physiol. 43, 451–453.PubMedCrossRefGoogle Scholar
  64. Matsumoto, T., Okunishi, K., Nishida, K., Noguchi, N., 1975: Growth profiles of crown gall cells of tobacco in suspension culture. Agr. Biol. Chem. 39, 485–490.CrossRefGoogle Scholar
  65. Meins, F., Jr., 1975: Temperature-sensitive expression of auxin-autotrophy by crown-gall teratoma cells of tobacco. Planta 122, 1–9.CrossRefGoogle Scholar
  66. Meins, F., Jr., Binns, A. N., 1978: Epigenetic clonal variation in the requirement of plant cells for cytokinins. In: Subtelny, S., Sussex, I. M. (eds.), The clonal basis of development, pp. 185–201. New York–San Francisco–London: Academic Press.Google Scholar
  67. Meins, F., Jr., Lutz, J., Binns, A. N., 1980: Variation in the competence of tobacco pith cells for cytokinin-habituation in culture. Differentiation 16, 71–75.CrossRefGoogle Scholar
  68. Messens, E., Claeys, M., 1978: Ti-plasmid encoded production of cytokinins in culture media of Agrobacterium tumefaciens. Proc. 4th Int. Conf. Plant Path. Bact. (Angers). Station de Pathologie Végétale et Phytobactériologie (ed.), I. N. R. A., Beaucouze, Angers, pp. 169–175.Google Scholar
  69. McCloskey, J. A., Hashizume, T., Basile, B., Ohno, Y., Sonoki, S., 1980: Occurrence and levels of cis-and trans-zeatin ribosides in the culture medium of a virulent strain of Agrobacterium tumefaciens. FEBS Lett. 111, 181–183.PubMedCrossRefGoogle Scholar
  70. Morris, R. O., 1977: Mass spectroscopic identification of cytokinins. Gluosyl zeatin and glucosyl ribosylzeatin from Vinca rosea crown gall. Plant Physiol. 59, 1029–1033.PubMedCrossRefGoogle Scholar
  71. Mousdale, D. M. A., 1981: Endogenous indolyl-3-acetic acid and pathogen induced plant growth disorders: distinction between hyperplasia and neoplastic development. Experientia 37, 972–973.CrossRefGoogle Scholar
  72. Mousdale, D. M., 1982: Endogenous IAA and the growth of auxin dependent and auxin autotrophic crown gall plant tissue cultures. Biochem. Physiol. Pflanz. 177, 9–17.Google Scholar
  73. Murai, N., Skoog, F., Doyle, M. E., Hanson, R. S., 1980: Relationships between cytokinin production presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc. Nat. Acad. Sci., U. S. A. 77, 619–623.CrossRefGoogle Scholar
  74. Nakajima, H., Yokota, T., Matsumoto, T., Noguchi, M., Takahashi, N., 1979: Relationship between hormone content and autonomy in various autonomous tobacco Nicotiana tabacum cells cultured in suspension. Plant Cell Physiol. 20, 1489–1500.Google Scholar
  75. Nakajima, H., Yokota, T., Takahashi, N., Matsumoto, T., Noguchi, M., 1981: Changes in endogenous ribosyl-trans zeatin and IAA levels in relation to the proliferation of tobacco Nicotiana tabacum cultivar Hicks-2 crown galls cells. Plant Cell Physiol. 22, 1405–1410.Google Scholar
  76. Ooms, G., Hooykaas, P. J. J., Moolenaar, G., Schilperoort, R. A., 1981: Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carry mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14, 33–50.PubMedCrossRefGoogle Scholar
  77. Pengelly, W. L., Meins, F., Jr., 1982: The relationship of IAA content and growth of crown gall tumor tissues of tobacco Nicotiana tabacum cultivar Turkish in culture. Differentiation 21, 27–31.PubMedCrossRefGoogle Scholar
  78. Peterson, J. B., Miller, C. O., 1976: Cytokinins in Vinca rosea L. crown gall tumor tissue as influenced by compounds containing reduced nitrogen. Plant Physiol. 57, 393–399.PubMedCrossRefGoogle Scholar
  79. Peterson, J. B., Miller, C. O., 1977: Glucosyl zeatin and glubosyl ribosylzeatin from Vinca rosea L. crown gall tissue. Plant Physiol. 59, 1026–1028.PubMedCrossRefGoogle Scholar
  80. Rathbone, M. P., Hall, R. H., 1972: Concerning the presence of the cytokinin, N6-(A-isopentenyl)adenine, in cultures of Corynebacterium fascians. Planta 103, 93 —102.Google Scholar
  81. Regier, D. A., Morris, R. O., 1982: Secretion of trans-zeatin by Agrobacterium tumefaciens: a function determined by the nopaline Ti plasmid. Biochem. Biophys. Res. Commun. 104, 1560–1566.PubMedCrossRefGoogle Scholar
  82. Romanow, I., Chalvignac, M. A., Pochon, J., 1969: Recherches sur la production d’une substance cytokinique par Agrobacterium tumefaciens. (Smith et Town) Conn. Ann. L’Institute Pasteur 117, 58–63.Google Scholar
  83. Sacristan, M. D., Melchers, G., 1969: The caryological analysis of plants regenerated from tumorous and other callus cultures of tobacco. Mol. Gen. Genet. 105, 317–333.PubMedCrossRefGoogle Scholar
  84. Samuels, R. M., 1961: Bacterial-induced fasciation in Pisum sativum var. Alaska. Ph. D. Thesis, Indiana University, Bloomington, 119 pp.Google Scholar
  85. Savastano, L., 1886: Les maladies de l’olivier: hyperplasies et tumeurs. Compt. Rend. Acad. Agr. 103, 1278.Google Scholar
  86. Scarbrough, E., Armstrong, D. J., Skoog, F., Frihart, C. R., Leonard, N. J., 1973: Isolation of cis-zeatin from Corynebacterium fascians cultures. Proc. Natl. Acad. Sci. U. S. A. 70, 3825–3829.PubMedCrossRefGoogle Scholar
  87. Schaeffer, G. W., Smith, H. H., 1963: Auxin-kinetin interaction in tissue cultures of Nicotiana species and tumor conditioned hybrids. Plant Physiol. 38, 291–297.PubMedCrossRefGoogle Scholar
  88. Schardl, C. L., Kado, C. I., 1983: A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58. Mol. Gen. Genet. 191, 10–16.PubMedCrossRefGoogle Scholar
  89. Skoog, F., Miller, C. O., 1957: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exptl. Biol. 11, 118–131.Google Scholar
  90. Smidt, M., Kosuge, T., 1978: The role of indole-3-acetic acid accumulation byPhytohormonealpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol. Pl. Path. 13, 203–214.Google Scholar
  91. Sembdner, G., Gross, D., Liebisch, H.-W., Schneider, G., 1980: Biosynthesis and metabolism of plant hormones. Encyclop. Pl. Physiol. 9, 281–444.Google Scholar
  92. Smith, H. H., 1972: Plant genetic tumors. Prog. Exp. Res. 15, 138–164.Google Scholar
  93. Sonoki, S., Ohno, Y., Sugiyama, T., Iizuka, M., Hashizume, T., 1981: Identification of a cytokinin, N6-isopentenyladenine, produced by plant pathogenic bacterium, Agrobacterium tumefaciens. J. Chem. Soc. Japan: Nippon Kagaku Kaisi 5, 899–901.CrossRefGoogle Scholar
  94. Sukanya, N. K., Vaidyanathan, C. S., 1979: Tryptophan phenyl pyruvate amino transferase of Agrobacterium tumefaciens: purification and general properties of the enzyme. J. Indian Inst. Sci. Sect. C. Biol. Sci. 61, 51–62.Google Scholar
  95. Surico, G., Sparapano, L., Lerario, P., Durbin, R. D., R. D., Iacobellis, N., 1975: Cytokinin-like activity in extracts from culture filtrates of Pseudomonas savastanoi. Experientia 31, 929–930.Google Scholar
  96. Syono, K., Furuya, T., 1974: Induction of auxin-non requiring tobacco calluses and its reversal by treatments with auxins. Plant Cell Physiol. 15, 7-17.Google Scholar
  97. Tait, R. C., Close, T. J. Hagiya, M., Lundquist, R. C., Kado, C. I., 1982: Construction of cloning vectors from the Inc W plasmid pSa and their use in analysis of crown gall tumor formation. In: Genetic Engineering in Eukaryotes ( P. F. Lurquin and A. Kleinhofs, eds.) pp. 111–123. New York: Plenum Publishing Company.Google Scholar
  98. Tegley, J. R., Witham, F. H., Krasnuk, M., 1971: Chromatographic analysis of a cytokinin from tissue cultures of crown-gall. Plant Physiol. 47, 581–585.PubMedCrossRefGoogle Scholar
  99. Thomas, J. E., Riker, A. J., 1948: The effects of representative plant growth substances upon attenuated-bacterial substances upon attenuated bacterial crown galls. Phytopath. 38: 26. (abstr.).Google Scholar
  100. Thomashow, M. F., Nutter, R. Montoya, A., Gordon, M. P., Nester, E. W., 1980a: Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19, 729–739.PubMedCrossRefGoogle Scholar
  101. Thomashow, M. F., Nutter, R., Postle, K., Chilton, M.-D., Blattner, F. R., Powell, A., Gordon, M. P., Nester, E. W., 1980 b: Recombination between higher plant DNA and the Ti plasmid of Agrobacterium tumefaciens. Proc. Nat. Acad. Sci. U. S. A. 77, 6448–6452.Google Scholar
  102. Thimann, K. V., Sachs, T., 1966: The role of cytokinins in the “fasciation” disease caused by Corynebacterium fascians. Amer. J. Bot. 53, 731–739.CrossRefGoogle Scholar
  103. Upper, C. D., Helgeson, J. P., Kemp, J. D., Schmidt, C. J., 1970: Gas-liquid chromatographic isolation of cytokinins from natural sources. 6-(3-methyl-2-butenylamino)purine from Agrobacterium tumefaciens. Plant Physiol. 45, 543–547.PubMedCrossRefGoogle Scholar
  104. Van Montagu, M., Schell, J., 1982: The Ti plasmids of Agrobacterium. Curr. Top. Microbiol. Immunol. 96, 237–254.Google Scholar
  105. Vyas, K. M., Jain, S. K., 1973: Production of auxins by microorganisms. Hindustan Antibiotics Bull. 16, 20–21.Google Scholar
  106. Wang, T. L., Wood, E. A., Brewin, N. J., 1982: Growth regulators, Rhizobium and nodulation in peas. Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta 155, 345–349.CrossRefGoogle Scholar
  107. Wang, T. L., Wood, E. A., Brewin, N. J., 1982 b: Growth regulators, Rhizobium and nodulation in peas. The cytokinin content of a wild-type and a Ti-plasmid-containing strain of R. leguminosarum. Planta 155, 350–355.Google Scholar
  108. Weiler, E. C., 1981: Radioimmunoassay for pmol-quantities of indole-3-acetic acid for use with highly stable ‘2SI and 3H derivatives as radiotracers. Planta 153, 319–325.CrossRefGoogle Scholar
  109. Weiler, E. W., Spanier, K., 1981: Phytohormones in the formation of crown gall tumors. Planta 153, 326–337.CrossRefGoogle Scholar
  110. Went, F. W., Thimann, K. V., 1937: Phytohormones. New York: Macmillan Company, 294 pp.Google Scholar
  111. Wilson, E. E., Magie, A. R., 1963: Physiological, serological, and pathological evidence that Pseudomonas tonelliana is identical with Pseudomonas savastanoi. Phytopath. 53, 653–659.Google Scholar
  112. Yadav, N. S., Postle, K., Saiki, R. K., Thomashow, M. F., Chilton, M.-D., 1980: T-DNA of a crown gall teratoma is covalently joined to host plant DNA. Nature (London) 287, 458–461.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • C. I. Kado
    • 1
  1. 1.Davis Crown Gall Group, Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations