Host Specificity in Rhizobium-Legume Interactions

  • F. B. Dazzo
  • A. E. Gardiol
Part of the Plant Gene Research book series (GENE)


The process of cellular recognition between microorganisms and higher plants is receiving considerable attention in light of its effect on plant morphogenesis, nutrition, symbiosis, and protection against infectious disease. In general, these positive cellular recognitions are believed to arise from a specific union, reversible or irreversible, between chemical receptors on the surface of interacting cells. This hypothesis implies that communication occurs when cells that recognize one another come into contact, and therefore the complementary components of the cell surfaces have naturally been the focus for most biochemical studies. Such is the case for studies on the infection of legume roots by the bacterial symbiont, Rhizobium. This article deals with the analysis of lectins and their saccharide receptors in the infection process, their involvement in specific bacterial attachment to root hairs, their regulation, and a critical evaluation of the limitations of the present work relative to understanding the biochemical basis of host specificity.


Root Hair White Clover Capsular Polysaccharide Bacterial Symbiont Bacterial Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Higashi, S., 1982: Studies on cyclic β-1,2-glucan obtained from periplasmic space of Rhizobium trifolii. Plant Soil 64, 315–324.CrossRefGoogle Scholar
  2. Albersheim, P., Wolpert, J., 1977: Molecular determinants of symbiont-host selectivity between nitrogen fixing bacteria and plants. In Solheim, B., Raa, J. (eds.) Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interactions, pp. 373–376, Oslo: Universitetsforlaget.Google Scholar
  3. Arias, A., Cervenansky, C., Gardiol, A., Martinez-Drets, G., 1979: Phosphoglucose isomerase mutant of Rhizobium meliloti. J. Bacteriol. 137, 409–414.PubMedGoogle Scholar
  4. Bafalvi, Z., Sakanyan, V., Koncz, C., Kiss, A., Dusha, I., Kondorosi, A., 1981: Location of nodulation and nitrogen fixing genes on a high molecular weight plasmid of R. meliloti. Mol. Gen. Genet. 184, 318–325.Google Scholar
  5. Bal, A. K., Shantharam, S., Ratnam, S., 1978: Ultrastructure of Rhizobium japonicum in relation to its attachment to root hairs. J. Bacteriol. 133, 1393–1400.PubMedGoogle Scholar
  6. Barnet, Y., 1979: Properties of Rhizobium trifolii isolates surviving exposure to specific bacteriophage. Can. J. Microbiol. 25, 979–986.PubMedCrossRefGoogle Scholar
  7. Bauer, W. D., 1981: Infection of legumes by rhizobia. Ann. Rev. Plant Physiol. 32, 407–449.CrossRefGoogle Scholar
  8. Bhagwat, A., Thomas, J., 1980: Dual binding sites for peanut lectin on rhizobia. J. Gen. Microbiol. 117, 119–125.Google Scholar
  9. Bhagwat, A., Thomas, J., 1982: Legume-Rhizobium interactions: cowpea root exudate elicits faster nodulation response by Rhizobium species. Appl. Environ. Microbiol. 43, 800–805.Google Scholar
  10. Bhuvaneswari, T. V., Bauer, W. D., 1978: The role of lectins in plant-microorganism interactions. III. Influence of rhizosphere/rhizoplane culture conditions on the soybean lectin-binding properties of rhizobia. Plant Physiol. 62, 71–74.PubMedCrossRefGoogle Scholar
  11. Bhuvaneswari, T. V., Bauer, W. D., 1983: Effect of culture age on root nodulation by Rhizobium japonicum. J. Bacteriol. 153, 443–451.PubMedGoogle Scholar
  12. Bhuvaneswari, T. V., Bhagwat, A. A., Bauer, W. D., 1981: Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol. 68, 1144–1149.PubMedCrossRefGoogle Scholar
  13. Bhuvaneswari, T. V., Pueppke, S. G., Bauer, W. D., 1977: Role of lectins in plant-microorganism interactions. I. Binding of soybean lectin to rhizobia. Plant Physiol. 60, 486–491.PubMedCrossRefGoogle Scholar
  14. Bhuvaneswari, T. V., Turgeon, B. G., Bauer, W. D., 1980: Early events in the infection of soybean (Glycine max L. Merr.) by Rhizobium japonicum. I. L.cation of infectible root cells. Plant Physiol. 66, 1027–1031.Google Scholar
  15. Bishop, P. E., Dazzo, F. B., Applebaum, E. R., Maier, R. J., Brill, W. J., 1977: Intergeneric transformation of genes involved in the Rhizobium-legume symbiosis. Science 198, 938–939.PubMedCrossRefGoogle Scholar
  16. Bohlool, B. B., Schmidt, E. L., 1974: Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185, 269–271.PubMedCrossRefGoogle Scholar
  17. Bohlool, B. B., Schmidt, E. L., 1976: Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin binding. J. Bacteriol. 125, 1188–1194.PubMedGoogle Scholar
  18. Broughton, W. J., 1978: A review: control of specificity in legume-Rhizobium associations. J. Appl. Bacteriol. 45, 165–194.CrossRefGoogle Scholar
  19. Callaham, D. A., Torrey, J. G., 1981: The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can. J. Bot. 59, 1647–1664.CrossRefGoogle Scholar
  20. Calvert, H. E., Lalonde, M., Bhuvaneswari, T. V., Bauer W. D., 1978; Role of lectins in plant-microorganism interactions. IV. Ultrastructure localisation of soybean lectin binding sites of Rhizobium japonicum. Can. J. Microbiol. 24, 785–793.PubMedCrossRefGoogle Scholar
  21. Campello, E. D., Shannon, L. M., 1982: An a-galactosidase with hemagglutinin properties from soybean seeds. Plant Physiol. 69, 628–632.CrossRefGoogle Scholar
  22. Carlson, R. W., Saunders, R. E., Napoli, C. A., Albersheim, P., 1978: Host-symbiont interactions III. Isolation and partial characterization of lipopolysaccha-rides from Rhizobium. Plant Physiol. 62, 912–917.PubMedCrossRefGoogle Scholar
  23. Carlson, R. W., Lee R. P., 1983: A comparison of the surface polysaccharides from Rhizobium leguminosarum 128C53 smr rift with the surface polysaccharides from its Exo-1 mutant. Plant Physiol. 71, 223–228.PubMedCrossRefGoogle Scholar
  24. Chen, A. P., Phillips, D. A., 1976: Attachment of Rhizobium to legume roots as the basis for specific associations. Physiol. Plant. 38, 83–88.CrossRefGoogle Scholar
  25. Dazzo, F. B., 1980: Adsorption of microorganisms to roots and other plant surfaces. In: Bitton, G., Marshall, K. (eds.) Adsorption of Microorganisms to Surfaces, pp. 253–316. New York: Wiley.Google Scholar
  26. Dazzo, F. B., 1981: Bacterial attachment as related to cellular recognition in the Rhizobium-legume symbiosis. J. Supramol. Struct. Cell. Biochem. 16, 29–41.Google Scholar
  27. Dazzo, F. B., Brill, W. J., 1977: Receptor site on clover and alfalfa roots for Rhizobium. Appl. Environ. Microbiol. 33, 132–136.PubMedGoogle Scholar
  28. Dazzo, F. B., Brill, W. J., 1978: Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol. 62, 18–21.PubMedCrossRefGoogle Scholar
  29. Dazzo, F. B., Brill, W. J., 1979: Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J. Bacteriol. 137, 1362–1373.PubMedGoogle Scholar
  30. Dazzo, F. B., Hrabak, E. M., 1981: Presence of trifoliin A, a Rhizobium-binding lec- tin, in clover root exudate. J. Supramol. Struct. Cell. Biochem. 16, 133–138.PubMedCrossRefGoogle Scholar
  31. Dazzo, F. B., Hrabak, E. M., 1982: Lack of a direct interaction between trifoliin A and nitrate as related to the Rhizobium trifolii-clover symbiosis. Plant Soil 69, 259–264.CrossRefGoogle Scholar
  32. Dazzo, F. B., Hrabak, E. M., Urbano, M. R., Sherwood, J. E., Truchet, G. L., 1981: Regulation of recognition in the Rhizobium-clover symbiosis. In: Gibson, A. H., Newton, W. E. (eds.), Current Perspectives in Nitrogen Fixation pp. 292–295. Australian Academy of Science, Canberra.Google Scholar
  33. Dazzo, F. B., Hubbell, D. H., 1975 a: Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol. 30, 1017–1033.Google Scholar
  34. Dazzo, F. B., Hubbell, D. H., 1975 b: Concanavalin A: lack of correlation between binding to Rhizobium and host specificity in the Rhizobium-legume symbiosis. Plant Soil 43, 713–717.Google Scholar
  35. Dazzo, F. B., Napoli, C. A., Hubbell, D. H., 1976; Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover association. Appl. Environ. Microbiol. 32, 168–171.Google Scholar
  36. Dazzo, F. B., Truchet, G. L., 1983: Interactions of lectins and their saccharide receptors in the Rhizobium-legume symbiosis. J. Membrane Biol. 73, 1–16.CrossRefGoogle Scholar
  37. Dazzo, F. B., Truchet, G. L., Kijne, J. W., 1982: Lectin involvement in root hair tip adhesions as related to the Rhizobium-clover symbiosis. Physiol. Plant. 56, 143–147.CrossRefGoogle Scholar
  38. Dazzo, F. B., Truchet, G. L., Sherwood, J. E., Hrabak, E. M., Gardiol, A. E., 1982: Alteration of the trifoliin A-binding capsule of Rhizobium trifolii 0403 by enzymes released from clover roots. Appl. Environ. Microbiol. 44, 478–490.PubMedGoogle Scholar
  39. Dazzo, F. B., Urbano, M. R., Brill, W. J., 1979: Transient appearance of lectin receptors on Rhizobium trifolii. Curr. Microbiol. 2, 15–20.CrossRefGoogle Scholar
  40. Dazzo, F. B., Yanke, W. E., Brill, W. J., 1978: Trifoliin: a Rhizobium recognition protein from white clover. Biochim. Biophys. Acta 536, 276–286.CrossRefGoogle Scholar
  41. Deinema, M., Zevenhuizen, L. P. T., 1971: Formation of cellulose fibrils by gram negative bacteria and their role in bacterial flocculation. Arch. Mikrobiol. 78, 42–57.PubMedCrossRefGoogle Scholar
  42. Diaz, C., Kijne, J. W., Quispel, A., 1981: Influence of nitrate on pea root cell wall composition. In: Gibson, A. H., Newton, W. E. (eds.) current Perspectives in Nitrogen Fixation, p. 426. Australian Academy of Science, Canberra.Google Scholar
  43. Dombrink-Kurtzman, M. A., Dick, W. E., Burton, K. A., Cadmus, M. C., Slodki, M. E., 1983: A soybean lectin having 4–0-methylglucuronic acid specificity. Biochem. Biophys. Res. Commun. 111, 798–803.PubMedCrossRefGoogle Scholar
  44. Downie, J. A., Hombrecher, G., Ma, Q. S., Knight, C. D., Wells, B., Johnston, A. W. B., 1983: Cloned nodulation genes of Rhizobium leguminosarum determine host-range specificity. Mol. Gen. Genet. 190, 359–365.CrossRefGoogle Scholar
  45. Fahraeus, G., 1957: The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16, 374–381.PubMedGoogle Scholar
  46. Gade, W., Jack, M. A., Dahl, J. B., Schmidt, E. L., Wolf, F., 1981: The isolation and characterization of a root lectin from soybean (Glycine max L.) cultivar Chippewa. J. Biol. Chem. 256, 12905–12910.PubMedGoogle Scholar
  47. Gatehouse, J. A., Boulter, D., 1980: Isolation and properties of a lectin from the roots of Pisum sativum. Physiol. Plant. 49, 437–442.CrossRefGoogle Scholar
  48. Gmeiner, J., Schlecht, S., 1979: Molecular organization of the outer membrane of Salmonella typhimurium. Eur. J. Biochem. 93, 609–620.PubMedCrossRefGoogle Scholar
  49. Hamblin, J., Kent, S. P., 1973: Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature New Biol. 245, 28–29.PubMedCrossRefGoogle Scholar
  50. Higashi, A., 1967: Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor. J. Gen. Appl. Microbiol. 13, 391–403.CrossRefGoogle Scholar
  51. Higashi, S., Abe, M., 1980 a: Promotion of infection thread formation by substances from Rhizobium. Appl. Environ. Microbiol. 39, 297–301.Google Scholar
  52. Higashi, S., Abe, M., 1980b: Scanning electron microscopy of Rhizobium trifolii infection sites on root hairs of white clover. Appl. Environ. Microbiol. 40, 1094–1099.PubMedGoogle Scholar
  53. Hooykaas, P. J., van Brussell, A. A. N., den Hulk-Ras, H., van Slogteren, G. M., Schilperoort, R. A., 1981: Sym plasmid of Rhizobium trifolii expressed in different rhizobia species and Agrobacterium tumefaciens. Nature 291, 351–353.CrossRefGoogle Scholar
  54. Hrabak, E. M., Urbano, M. R., Dazzo, F. B., 1981: Growth-phase dependent immunodeterminants of Rhizobium trifolii lipopolysaccharide which bind trifoliin A, a white clover lectin, J. Bacteriol. 148, 697–711.PubMedGoogle Scholar
  55. Hubbell, D. H., Morales, V. M., and Umali-Garcia, M., 1978: Pectolytic enzymes in Rhizobium. Appl. Environ. Microbiol. 35, 210–213.PubMedGoogle Scholar
  56. Hughes, T. A., Elkan, G. H., 1981: Study of the Rhizobium japonicum-soybean symbiosis. Plant Soil 61, 87–91.CrossRefGoogle Scholar
  57. Johnston, A. W. B., Beyon, I. L., Buchanan-Wollaston, A. V., Setchell, S. M., Hirsch, P. R., Beringer, J. E., 1978: High frequency transfer of nodulating ability between species and strains of Rhizobium. Nature 276, 635–638.CrossRefGoogle Scholar
  58. Kamberger, W., 1979 a: An Ouchterlony double diffusion study on the interaction between legume lectins and rhizobial cell surface antigens. Arch. Microbiol. 121, 83–90.Google Scholar
  59. Kamberger, W., 1979 b: Role of cell surface polysaccharides in the Rhizobium-pea symbiosis. FEMS Microbiol. Lett. 6, 361–365.Google Scholar
  60. Kato, G., Maruyama, Y., Nakamura, M., 1979: Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agric. Biol. Chem. 43, 1085–1092.CrossRefGoogle Scholar
  61. Kato, G., Maruyama, Y., Nakamura, M., 1980: Role of bacterial polysaccharides in the adsorption process of the Rhizobium-pea symbiosis. Agric. Biol. Chem. 44, 2843–2855.CrossRefGoogle Scholar
  62. Kato, G., Maruyama, Y., Nakamura, M., 1981: Involvement of lectins in Rhizobium-pea recognition. Plant Cell. Physiol. 22, 759–771.Google Scholar
  63. Kijne, J. W., van der Schaal, I. A. M., de Vries, G. E., 1980: Pea lectins and the recognition of Rhizobium leguminosarum. Plant Sci. Lett. 18, 65–74.CrossRefGoogle Scholar
  64. Kijne, J. W., van der Schaal, I. A. M., Diaz, C. L. van Iren, F., 1982: Mannose-specific lectins and the recognition of pea roots by Rhizobium leguminosarum. In: Bog-Hansen, T. C., Spengler, G. A. (eds.) Lectins: Biology, Biochemistry, Clinical Biochemistry. Vol. III. pp. 521–529. Berlin: W. de Gruyter.Google Scholar
  65. Kumarasinghe, M. K., Nutman, P. S., 1977: Rhizobium-stimulated callose formation in clover root hairs and its relation to infection. J. Exp. Bot. 28, 961–976.CrossRefGoogle Scholar
  66. Law, I. J., Strijdom, B. W., 1977: Some observations on plant lectins and Rhizobium specificity. Soil Biol. Biochem. 9, 79–84.Google Scholar
  67. Law, I. J., Yamamoto, Y., Mort, A. J., Bauer, W. D., 1982: Nodulation of soybean by Rhizobium japonicum mutants with altered capsule synthesis. Planta 154, 100–109.CrossRefGoogle Scholar
  68. Li, D., Hubbell, D. H., 1969: Infection thread formation as a basis for host specificity in Rhizobium trifolii–Trifolium fragiferum associations. Can. J. Microbiol. 15, 1133–1138.PubMedCrossRefGoogle Scholar
  69. Ljunggren, H., Fahraeus, G., 1961: Role of polygalacturonase in root hair invasion by nodule bacteria. J. Gen. Microbiol. 26, 521–528.PubMedGoogle Scholar
  70. Long S. R., Buikema, W. J., Ausubel, F. M., 1982: Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod-mutants. Nature 298, 485–488.CrossRefGoogle Scholar
  71. Maier, R. J., Brill, W. J., 1978: Involvement of Rhizobium japonicum 0-antigen in soybean nodulation. J. Bacteriol. 133, 1295–1299.PubMedGoogle Scholar
  72. Martinez-Molina, E., Morales, V. M., Hubbell, D. H., 1979: Hydrolytic enzyme production by Rhizobium. Appl. Environ. Microbiol. 38, 1186–1188.PubMedGoogle Scholar
  73. Mellor, R. B., Gadd, G. M., Rowell, P., Stewart, W. D., 1981: A phytohemagglutinin from the Azolla-Anabaena symbiosis. Biochem. Biophys. Res. Commun. 99, 1348–1353.PubMedCrossRefGoogle Scholar
  74. Mort, A. J., Bauer, W. D., 1980: Composition of the capsular and extracellular polysaccharides of Rhizobium japonicum: changes with culture age and correlations with binding of soybean seed lectin to the bactria. Plant Physiol. 66, 158–163.PubMedCrossRefGoogle Scholar
  75. Mort, A. J., Bauer, W. D., 1982: Structure of the capsular and extracellular polysaccharides of Rhizobium japonicum that bind soybean lectin. Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. J. Biol. Chem. 257, 1870–1875.PubMedGoogle Scholar
  76. Mutaftschiev, S., Vasse, J., Truchet, G., 1982: Exostructures of Rhizobium meliloti. FEMS Microbiol. Lett. 13, 171–175.Google Scholar
  77. Napoli, C. A., 1976: Ultrastructural and physiological aspects of the infection of clover (Trifolium fragiferum) by Rhizobium trifolii NA-30. Ph. D. Dissertation, University of Florida, Gainesville.Google Scholar
  78. Napoli, C. A., Albersheim. P., 1980: Rhizobium leguminosarum mutants incapable of normal extracellular polysaccharide production. J. Bacteriol. 141, 1454–1456.Google Scholar
  79. Napoli, C. A., Dazzo, F. B., Hubbell, D. H., 1975: Production of cellulose micro-fibrils by Rhizobium. Appl. Microbiol. 30, 123–131.PubMedGoogle Scholar
  80. Napoli, C. A., Hubbell, D. H., 1975: Ultrastructure of Rhizobium-induced infection threads in clover root hairs. Appl. Microbiol. 30, 1003–1009.PubMedGoogle Scholar
  81. Nuti, M. P., Lepidi, A. A., Prakash, R. K., Hooykaas, P. J., and Schilperoort, R. A., 1982: The plasmids of Rhizobium and symbiotic nitrogen fixation. In: Schell, J. (ed.), Molecular Biology of Plant Tumors, pp. 561–588. New York: Academic Press, Inc.Google Scholar
  82. Nutman, P. S., 1957: Studies on the physiology of nodule formation. V. Further experiments on the stimulation and inhibitory effects of root exudate. Ann. Bot. (London) 21, 321–327.Google Scholar
  83. Osborne, M. J., Cynkin, M. A., Gilbert, J. M., Mueller, L., Singh, M., 1972: Biosynthesis of lipopolysaccharide. Meth. Enzymol. 28, 583–601.CrossRefGoogle Scholar
  84. Paau, A. S., Leps, W. T., Brill, W. J., 1981: Agglutinin from alfalfa necessary for binding and nodulation by Rhizobium meliloti. Science 213, 1513–1515.PubMedCrossRefGoogle Scholar
  85. Palomares, A., Montega, E., Olivares, J., 1978: Induction of polygalacturonase production in legume roots as a consequence of extrachromosomal DNA carried by Rhizobium meliloti. Microbios 21, 33–39.PubMedGoogle Scholar
  86. Pueppke, S. G., Freund, T. G., Schulz, B. C., Friedman, H. P., 1980: Interaction of lectins from soybean and peanut with rhizobia that nodulate soybean, peanut, or both plants. Can. J. Microbiol. 26, 1489–1497.Google Scholar
  87. Pull, S. P., Pueppke, S. G., Hymowitz, T., Orf, J. H., 1978: Soybean lines lacking the 120,000 dalton seed lectin. Science 200, 1277–1279.PubMedCrossRefGoogle Scholar
  88. Raleigh, E. A., Signer, E. R., 1982: Positive selection of nodulation-deficient Rhizobium phaseoli. J. Bacteriol. 151, 83–88.PubMedGoogle Scholar
  89. Reeke, J. N., Becker, J. W., Cunningham, B. A., Wang, J. C., Yahara, I., Edelman, G. M., 1975: Structure and function of concanavalin A. A.v. Expt. Med. Biol. 55, 13–33.Google Scholar
  90. Rosenberg, G., Boistard, P., Denarie, J., Casse-Delbart, F., 1981: Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184, 326–333.PubMedGoogle Scholar
  91. Russa, R., Urbanik, T., Kowalczuk, E., Lorkiewicz, Z., 1982: Correlation between occurrence of plasmid pUCS202 and lipopolysaccharide alterations in Rhizobium. FEMS Microbiol. Lett. 13, 161–165.Google Scholar
  92. Saunders, R. E., Carlson, R. W., Albersheim, P., 1978: A Rhizobium mutant incapable of nodulation and normal polysaccharide secretion. Nature (London) 271, 240–242.CrossRefGoogle Scholar
  93. Schmidt, E. L., 1979: Initiation of plant root-microbe interactions. Ann. Rev. Microbiol. 33, 335–376.CrossRefGoogle Scholar
  94. Shantharam, S., Bal, A. K., 1981: The effect of growth medium on lectin binding by Rhizobium japonicum. Plant Soil 62, 327–330.CrossRefGoogle Scholar
  95. Solheim B. 1975: Possible role of lectin in the infection of legumes by Rhizobium trifolii and a model of the recognition reaction between Rhizobium trifolii and Trifolium repens. NATO Advanced Study Institute Symposium on Specificity in Plant Diseases, Sardinia.Google Scholar
  96. Stacey, G., Paau, A. S., Brill, W. J., 1980: Host recognition in the Rhizobium-soybean symbiosis. Plant Physiol. 66, 609–614.PubMedCrossRefGoogle Scholar
  97. Stacey, G., Paau, A. S., Noel, D., Maier, R. J., Silver, L. E., Brill, W. J., 1982: Mutants of Rhizobium japonicum defective in nodulation. Arch. Microbiol. 132, 219–224.Google Scholar
  98. Stemmer, P., Sequeira, L., 1981: Pili of plant pathogenic bacteria. Amer. Phytopathol. Soc. Abstr. 328.Google Scholar
  99. Stemmer, P., Sequeira, L., 1981: Pili of plant pathogenic bacteria. Amer. Phytopathol. Soc. Abstr. 328.Google Scholar
  100. Truchet, G. L., Dazzo, F. B., 1982: Morphogenesis of lucerne root nodules incited by Rhizobium meliloti in the presence of combined nitrogen. Planta 154, 352–360.CrossRefGoogle Scholar
  101. Truchet, G. L., Dazzo, F. B., Vasse, J., 1983: Agglutination of Rhizobium japonicum 3Ilb110 by soybean lectin. Plant Soil 75, 265–268.CrossRefGoogle Scholar
  102. Tsien, H. C., Schmidt, E. L., 1977: Polarity in the exponential phase Rhizobium japonicum cells. Can. J. Microbiol. 23, 1274–1284.PubMedCrossRefGoogle Scholar
  103. Tsien, H. C., Schmidt, E. L., 1980: Accumulation of soybean lectin-binding polysaccharide during growth of Rhizobium japonicum as determined by hemagglutination inhibition assay. Appl. Environ. Microbiol. 39, 1100–1104.PubMedGoogle Scholar
  104. Tsien, H. C., Schmidt, E. L., 1981: Localization and partial characterization of soybean lectin binding polysaccharide of Rhizobium japonicum. J. Bacteriol. 145, 1063–1074.PubMedGoogle Scholar
  105. Tsien, H. C., et al., : Lectin in five lines of soybean previously considered to be lectin-negative. Planta 158, 128–133.CrossRefGoogle Scholar
  106. Turgeon, B. G., Bauer, W. D., 1982: Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process. Can. J. Bot. 60, 152–161.CrossRefGoogle Scholar
  107. Van Rensberg, H. J., Strijdom, B., 1982: Root surface association in relation to nodulation of Medicago sativa. Appl. Environ. Microbiol. 44, 93–97.Google Scholar
  108. Vincent, J. M., 1980: Factors controlling the legume-Rhizobium symbiosis. In: Newton, W. E., Orme-Johnson, W. H. (eds.) Nitrogen Fixation, Vol. II, pp. 103–129, Baltimore: University Park Press.Google Scholar
  109. Wolpert, J. S., and Albersheim, P., 1976: Host-symbiont interactions. I. The lectins of legumes interact with the 0-antigen containing lipopolysaccharides of their symbiont rhizobia. Biochem. Biophys. Res. Commun. 170, 729–737.CrossRefGoogle Scholar
  110. Yao, P. Y., Vincent, J. M., 1976: Factors responsible for the curling and branching of clover root hairs by Rhizobium. Plant Soil 45, 1–16.CrossRefGoogle Scholar
  111. Zurkowski, W., 1980: Specific adsorption of bacteria to clover root hairs, related to the presence of the plasmid pWZ2 in cells of Rhizobium trifolii. Microbios 27, 27–32.PubMedGoogle Scholar
  112. Zurkowski, W., Lorkiewicz, Z., 1979: Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch. Microbiol. 123, 195–201.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • F. B. Dazzo
    • 1
  • A. E. Gardiol
    • 1
  1. 1.Department of Microbiology and Public HealthMichigan State UniversityEast LansingUSA

Personalised recommendations