Advertisement

Abstract

Nucleosides, in which a carbohydrate unit is linked to a heterocyclic base, are fundamental components of nucleic acids and nucleotide coenzymes, where they occur in phosphorylated form. In most nucleosides the sugar, either D-ribose or 2-deoxy-D-erythro pentose (“2-deoxyribose”), is linked to a nitrogen atom of a pyrimidine or purine, as in the ribonucleosides uridine (1) and adenosine (2).

Keywords

Adenosine Deaminase Tetrahedron Letter Optical Rotatory Dispersion Keto Ester Antifungal Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn, W. E., and E. Volkin: Nucleoside-S’-Phosphates from Ribonucleic Acid. Nature 167, 483 (1951).Google Scholar
  2. 2.
    Davis, F. F., and F. W. Allen: Ribonucleic Acids from Yeast which Contain a Fifth Nucleotide. J. Biol. Chem. 227, 907 (1957).Google Scholar
  3. 3.
    Cohn, W. E.: Pseudouridine, a Carbon-Carbon Linked Ribonucleoside in Ribonucleic Acids: Isolation, Structure, and Chemical Characteristics. J. Biol. Chem. 235, 1488 (1960).Google Scholar
  4. 4.
    Michelson, A. M., and W. E. Cohn: Cyclo-pseudouridine and the Configuration of Pseudouridine. Biochemistry 1, 490 (1962).Google Scholar
  5. 5.
    Yu, C.-T., and F. W. Allen: Studies on an Isomer of Uridine Isolated from Ribonucleic Acids. Biochim. Biophys. Acta 32, 393 (1959).Google Scholar
  6. 6.
    Chambers, R. W.: The Chemistry of Pseudouridine. Progr. Nucleic Acid Res. Mol. Biol. 5, 349 (1966).Google Scholar
  7. 7.
    Adler, M., and A. B. Gutman: Uridine Isomer (5-Ribosyluracil) in Human Urine. Science 130, 862 (1959).Google Scholar
  8. 8.
    Uematsu, T., and R. J. Suhadolnik: Pseudouridine, Isolation and Biosynthesis of the Nucleoside isolated from the Culture Filtrates of Streptoverticillicum Ladakanus. Biochemistry 11, 4669 (1972).Google Scholar
  9. 9.
    Argoudelis, A. D., and S. A. Mizsak: 1-Methylpseudouridine, a Metabolite of Streptomyces Platensis. J. Antibiotics 29, 818 (1976).Google Scholar
  10. 10.
    fox, J. J., K. A. Watanabe, and A. Bloch: Nucleoside Antibiotics. Progr. Nucleic Acid Res. Mol. Biol. 5, 251 (1966).Google Scholar
  11. 11.
    Suhadolnik, R. J.: Nucleoside Antibiotics. New York: J. Wiley. 1970.Google Scholar
  12. 12.
    Suhadolnik, R. J.: Nucleosides as Biological Probes. New York: J. Wiley. 1979.Google Scholar
  13. 13.
    Suhadolnik, R. J.: Naturally Occurring Nucleoside and Nucleotide Antibiotics. Progr. Nucleic Acid Res. Mol. Biol. 22, 193 (1979).Google Scholar
  14. 14.
    Buchanan, J. G., and R. H. Wightman: Chemistry of Nucleoside Antibiotics. IN: Topics in Antibiotic Chemistry, 6 (P. G. Sammes, ed.), p. 229. Chichester: E. Horwood. 1982.Google Scholar
  15. 15.
    Goodchild, J.: The Biochemistry of Nucleoside Antibiotics. In: Topics in Antibiotic Chemistry, 6 (P. G. Sammes, ed.), p. 99. Chichester: E. Horwood. 1982.Google Scholar
  16. 16.
    Tronchet, J. M. J.: Synthèse de Nouveaux Types de C-Nucléosides. Biol. Med. 4, 83 (1975).Google Scholar
  17. 17.
    Hanessian, S., and A. G. Pernet: Synthesis of Naturally Occurring C-Nucleosides, their Analogs, and Functionalised C-Glycosyl Precursors. Adv. Carbohydrate Chem. Biochem. 33, 111 (1976).Google Scholar
  18. 18.
    Daves, G. D., JR., and C. C. Cheng: The Chemistry and Biochemistry of C-Nucleosides. Progr. Medicin. Chem. 13, 303 (1976).Google Scholar
  19. 19.
    Michelson, A. M.: The Chemistry of Nucleosides and Nucleotides. New York: Academic Press. 1963.Google Scholar
  20. 20.
    Lemieux, R. U.: Rearrangements and Isomerizations in Carbohydrate Chemistry. In: Molecular Rearrangements, Part 2 (P. de Mayo, ed.), pp. 710–719. New York: J. Wiley. 1964.Google Scholar
  21. 21.
    Brown, D. M., M. G. Burdon, and R. P. Slatcher: A Synthesis of Pseudouridine and 5-P-D-Ribofuranosyluridine. J. Chem. Soc. (C) 1968, 1051.Google Scholar
  22. 22.
    Lerch, U., M. G. Burdon, and J. G. Moffatt: C-Glycosyl Nucleosides. I. Studies on the Synthesis of Pseudouridine and Related Compounds. J. Organ. Chem. (USA) 36, 1507 (1971).Google Scholar
  23. 23.
    Brown, D. M., and R. C. Ogden: A Synthesis of Pseudouridine. J. Chem. Soc. Perkin I 1981, 723.Google Scholar
  24. 24.
    Baron, F., and D. M. Brown: Nucleotides. Part XXXIII. The Structure of Cytidylic Acids a and b. J. Chem. Soc. ( London ) 1955, 2855.Google Scholar
  25. 25.
    Darnall, K. R., L. B. Townsend, and R. K. Robins: The Structure of Showdomycin, a Novel Carbon-Linked Nucleoside Antibiotic Related to Uridine. Proc. Nat. Acad. Sci. (USA) 57, 548 (1967).Google Scholar
  26. 26.
    Sasaki, K., Y. Kusakabe, and S. Esumi: The Structure of Minimycin, a Novel Carbon- linked Nucleoside Antibiotic Related to p-Pseudouridine. J. Antibiotics 25, 151 (1972).Google Scholar
  27. 27.
    Townsend, L. B.: Nuclear Magnetic Resonance Spectroscopy in the Study of Nucleic Acid Components and Certain Related Derivatives. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson, eds.), p. 267. New York: J. Wiley. 1973.Google Scholar
  28. 28.
    Rice, J. M., and G. O. Dudek: Mass Spectra of Uridine and Pseudouridine: Fragmentation Patterns Characteristic of a Carbon-Carbon Nucleoside Bond. Biochem. Biophys. Res. Comm. 35, 383 (1969).Google Scholar
  29. 29.
    Deslauriers, R., and I. C. P. Smith: A Comparison of the Conformations of Uridine, (3- Pseudouridine, and Dihydrouridine in Dimethyl Sulfoxide and Water. A 1H Nuclear Magnetic Resonance Study. Canad. J. Chem. 51, 833 (1973).Google Scholar
  30. 30.
    Robins, R. K., L. B. Townsend, F. Cassidy, J. F. gerster, A. F. Lewis, and R. L. Miller: Structure of the Nucleoside Antibiotics Formycin, Formycin B and Laurusin. J. Hetero. Chem. 3, 110 (1966).Google Scholar
  31. 31.
    Nakagawa, Y., H. Kano, Y. Tsukuda, and H. Koyama: Structure of a New Class of C- Nucleoside Antibiotic, Showdomycin. Tetrahedron Letters 1967, 4105.Google Scholar
  32. 32.
    Koyama, G., K. Maeda, H. Umezawa, and Y. Iitaka: The Structural Studies of Formycin and Formycin B. Tetrahedron Letters 1966, 597.Google Scholar
  33. 33.
    Gutowski, G. E., M. O. Chaney, N. D. Jones, R. L. Hamill, F. A. Davies, and R. D. Miller: Pyrazomycin B: Isolation and Characterization of an A-C-Nucleoside Antibiotic Related to Pyrazomycin. Biochem. Biophys. Res. Comm. 51, 312 (1973).Google Scholar
  34. 34.
    Haneishi, T., T. Okazaki, T. Hata, C. Tamura, M. Nomura, A. Naito, I. Seki, and M. Arai: Oxazinomycin, a New Carbon-linked Nucleoside Antibiotic. J. Antibiotics 24, 797 (1971).Google Scholar
  35. 35.
    Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics, Part X. Structures of Ezomycins B1, B2, C1, C2, and D2. Agr. Biol. Chem. 41, 2033 (1977).Google Scholar
  36. 36.
    Wenkert, E.S E. W. Hagaman, and G. E. Gutowski: Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of C-Nucleosides. The Structure of Pyrazomycin B. Biochem. Biophys. Res. Comm. 51, 318 (1973).Google Scholar
  37. 37.
    Chenon, M.-T., R. J. Pugmire, D. M. Grant, R. P. Panzicka, and L. B. Townsend: Carbon-13 NMR Spectra of C-Nucleosides. Showdomycin and p-Pseudouridine. J. Hetero. Chem. 10, 427 (1973).Google Scholar
  38. 39.
    Isono, K., and J. Uzawa: 13C-Nmr Evidence for the Biosynthetic Incorporation of Acetate into Minimycin and Compounds Related to Krebs Cycle. FEBS Letters 80, 53 (1977).Google Scholar
  39. 40.
    Hruska, F. E., A. A. Grey, and I. C. P. Smith: A Nuclear Magnetic Resonance Study of the Molecular Conformation of (3-Pseudouridine in Aqueous Solution. J. Amer. Chem. Soc. 92, 4088 (1970).Google Scholar
  40. 41.
    Jones, A. J., D. M. Grant, M, W. Winkley, and R. K. Robins: Pyrimidine and Purine Nucleosides. J. Amer. Chem. Soc. 92, 4079 (1970).Google Scholar
  41. 42.
    Dejongh, D. C.: Mass Spectrometry of Nucleic Acid Components. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson), p. 145. New York: J. Wiley. 1973.Google Scholar
  42. 43.
    Townsend, L. B., and R. K. ROBINS: The Mass Spectra of Formycin, Formycin B and Showdomycin, Carbon Linked Nucleoside Antibiotics. J. Hetero. Chem. 6, 459 (1969). Crain, P. F., J. A. Mccloskey, A. F. Lewis, K. H. Schram, and L. B. Townsend: Mass Spectra of C-Nucleosides II. An Unusual Fragmentation Reaction of the Heterocyclic Moiety of Pyrazomycin and Some Closely Related Compounds. J. Hetero. Chem. 10, 843 (1973).Google Scholar
  43. 44.
    Farkas, J., Z. Flegelova, and F. Sorm: Synthesis of Pyrazomycin. Tetrahedron Letters 1972, 2279.Google Scholar
  44. 45.
    Ulbricht, T. L. V.: Optical Rotatory Dispersion of Nucleosides and Nucleotides. In: Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2 (W. W. Zorbach and R. S. Tipson), p. 177. New York: J. Wiley. 1973.Google Scholar
  45. 46.
    Davies, D. B.: Conformations of Nucleosides and Nucleotides. Progr. NMR Spectroscopy 12, 135 (1978).Google Scholar
  46. 47.
    Nishimura, H., M. mayama, Y. Komatsu, H. kato, N. Shimaoka, and Y. Tanaka: Showdomycin, a New Antibiotic from a Streptomyces Sp. J. Antibiotics Ser. A 17, 148 (1964).Google Scholar
  47. 48.
    Tsukuda, Y., Y. Nakagawa, H. Kano, T. Sato, M. Shiro, and H. koyama: The Crystal Structure of Showdomycin and their Derivatives. Chem. Commun. 1967, 975.Google Scholar
  48. 49.
    Kalvoda, L., J. Farkas, and F. Sorm: Synthesis of Showdomycin. Tetrahedron Letters 1970, 2297.Google Scholar
  49. 50.
    Kalvoda, L.: Simple Preparative Synthesis of Showdomycin. J. Carbohydrates, Nucleosides, Nucleotides 3, 47 (1976).Google Scholar
  50. 51.
    Bobek, M., and J. Farkas: Nucleic Acid Components and their Analogues. CXVIII. Synthesis of 8-P-D-Ribofuranosyladenine Starting from 2,5-Anhydro-D-allonic Acid. Collect. Czech. Chem. Comm. 34, 247 (1969).Google Scholar
  51. 52.
    Kalvoda, L.: The Synthesis of Pyrazoles. A Simple Preparative Synthesis of C-Nucleosidic Antibiotics Formycin and Formycin B. Collect. Czech. Chem. Comm. 43, 1431 (1978).Google Scholar
  52. 53.
    Trummlitz, G., and J. G. Moffatt: C-Glycosyl Nucleosides. III. A Facile Synthesis of the Nucleoside Antibiotic Showdomycin. J. Organ. Chem. (USA) 38, 1841 (1973).Google Scholar
  53. 54.
    Albrecht, H. P., D. B. Repke, and J. G. Moffatt: C-Glycosyl Nucleosides. II. A Facile Synthesis of Derivatives of 2,5-Anhydro-D-allose. J. Organ. Chem. (USA) 38, 1836 (1973).Google Scholar
  54. 55.
    Buchanan, J. G., A. R. Edgar, and M. J. Power: C-Nucleoside Studies. Part 1. Synthesis of [2,3,5-Tri-0-benzyl-a(and P)-D-ribofuranosyl]ethyne. J. Chem. Soc. Perkin I 1974, 1943.Google Scholar
  55. 56.
    Buchanan, J. G., A. R. Edgar, M. J. Power, and C. T. Shanks: C-Nucleoside Studies. Part 7. A New Synthesis of Showdomycin, 2-P-D-Ribofuranosylmaleimide. J. Chem. Soc. Perkin I 1979, 225.Google Scholar
  56. 57.
    Barker, R., and H. G. Fletcher, JR.: 2,3,5-Tri-O-benzyl-D-ribosyl and -L-arabinosyl bromides. J. Organ. Chem. (USA) 26, 4605 (1961).Google Scholar
  57. 58.
    Heck, R. F.: Dicarboalkoxylation of Olefins and Acetylenes. J. Amer. Chem. Soc. 94, 2712 (1972).Google Scholar
  58. 59.
    Inoue,T., and I. Kuwajima: Highly Efficient Method for the Synthesis of Showdomycin. Chem. Commun. 1980, 251.Google Scholar
  59. 60.
    Just, G., A. Martel, K. Grozinger, and M. Ramjeesingh: C-Nucleosides and Related Compounds. IV. The Synthesis and Chemistry of D,L-2,5-Anhydroallose Derivatives. Canad. J. Chem. 53, 131 (1975).Google Scholar
  60. 61.
    Just, G., T. J. Liak, M.-I. Lim, P. Potvin, and Y. S. Tsantrizos: C-Nucleosides and Related Compounds. XV. The Synthesis of D,L-e/-Showdomycin and D,L- Showdomycin. Canad. J. Chem. 58, 2024 (1980).Google Scholar
  61. 62.
    Ito, Y., T. Shibata, M. Arita, H. Sawai, and M. Ohno: Chirally Selective Synthesis of Sugar Moiety of Nucleosides by Chemicoenzymatic Approach: L- and D-Riboses, Showdomycin, and Cordycepin. J. Amer. Chem. Soc. 103, 6739 (1981).Google Scholar
  62. 63.
    Just, G., and A. Martel: C-Nucleosides and Related Compounds. Synthesis of D,L-3,4- 0-Isopropylidene-2,5-anhydroallose: A Novel Periodate Cleavage. Tetrahedron Letters 1973, 1517.Google Scholar
  63. 64.
    Just, G., and K. Grozinger: A Correction to “A Novel Periodate Cleavage”. Tetrahedron Letters 1974, 4165.Google Scholar
  64. 65.
    Aldersley, M. F., A. J. Kirby, and P. W. Lancaster: Intramolecular Displacement of Alkoxide Ions by the Ionised Carboxy-group: Hydrolysis of Alkyl Hydrogen Dialkylmaleates. J. Chem. Soc. Perkin II 1974, 1504.Google Scholar
  65. 66.
    Gensler, W. J., S. Chan, and D. B. Ball: Synthesis of a Triazole Homo-C-nucleoside. J. Amer. Chem. Soc. 97, 436 (1975).Google Scholar
  66. 67.
    Ohrui, H., G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, and S. K. Byram: C-Glycosyl Nucleosides. V. Some Unexpected Observations on the Relative Stabilities of Compounds Containing Fused Five-Membered Rings with Epimerizable Substituents. J. Amer. Chem. Soc. 97, 4602 (1975).Google Scholar
  67. 68.
    Ohrui, H., and S. Emoto: A Rationalization of the Relative Thermodynamic Stabilities of Fused Five-Membered Tetrahydrofurans with Epimerizable Substituents. An Anomeric Effect in Furanoses. J. Organ. Chem. (USA) 42, 1951 (1977).Google Scholar
  68. 69.
    Noyori, R., T. Sato, and Y. Hayakawa: A Stereocontrolled Synthesis of C- Nucleosides. J. Amer. Chem. Soc. 100, 2561 (1978).Google Scholar
  69. 70.
    Sato, T., R. Ito, Y. Hayakawa, and R. NOYORI: Stereocontrolled Synthesis of Showdomycin and 6-Azapseudouridines. Tetrahedron Letters 1978, 1829.Google Scholar
  70. 71.
    Chu, C. K., I. Wempen, K. A. Watanabe, and J. J. Fox: Nucleosides, 100. General Synthesis of Pyrimidine C-5 Nucleosides Related to Pseudouridine. Synthesis of 5-((3-D- Ribofuranosyl)isocytosine (Pseudoisocytidine), 5-(p-D-Ribofuranosyl)-2-thiouracil (2Thiopseudouridine) and 5-(p-D-Ribofuranosyl)uracil (Pseudouridine). J. Organ. Chem. (USA) 41, 2793 (1976).Google Scholar
  71. 72.
    Kozikowski, A. P., and A. Ames: Total Synthesis of the C-Nucleoside //-Showdomycin by a Diels-Alder, Retrograde Dieckmann Strategy. J. Amer. Chem. Soc. 103, 3923 (1981).Google Scholar
  72. 73.
    Matsuura, S., O. Shiratori, and K. Katagiri: Antitumour Activity of Showdomycin. J. Antibiotics Ser. A 17, 234 (1964).Google Scholar
  73. 74.
    Komatsu, Y.: Mechanism of Action of Showdomycin. V. Reduced Ability of Showdomycin-resistant Mutants of Eschericia Coli K-12 to take up Showdomycin and Nucleosides. J. Antibiotics 24, 876 (1971).Google Scholar
  74. 75.
    Visser, D. W., and S. Roy-Burman: Showdomycin. In: Antibiotics, Vol.5, Part2. Mechanism of Action of Antieukaryotic and Antiviral Compounds (F. E. Hahn, ed.), p. 363. New York: Springer. 1979.Google Scholar
  75. 76.
    Ozaki, M., T. Kariya, H. Kato, and T. Kimura: Microbial Transformation of Antibiotics. Part II. omerisation of Showdomycin by Streptomyces Species. Agr. Biol. Chem. 36, 451 (1972).Google Scholar
  76. 77.
    Nakagawa, Y.: Personal Communication.Google Scholar
  77. 78.
    Hori, M., E. Ito, T. Takita, G. Koyama, T. Takeuchi, and H. Umezawa: A New Antibiotic, Formycin. J. Antibiotics Ser. A 17, 96 (1964).Google Scholar
  78. 79.
    Koyama, G., and H. Umezawa: Formycin B and Its Relation to Formycin. J. Antibiotics Ser. A 18, 175 (1965).Google Scholar
  79. 80.
    Aizawa, A., T. Hidaka, N. Otake, H. Yonehara, K. Isono, N. Igarishi, and S. Suzuki: Studies on a New Antibiotic, Laurusin. Agr. Biol. Chem. 29, 375 (1965).Google Scholar
  80. 81.
    Umezawa, H., T. Sawa, Y. Fukagawa, G. Koyama, M. Murase, M. Hamada, and T. Takeuchi: Transformation of Formycin to Formycin B and their Biological Activities. J. Antibiotics Ser. A 18, 178 (1965).Google Scholar
  81. 82.
    Otake, N., S. Aizawa, T. Hidaka, H. Seto, and H. Yonehara: Biological and Chemical Transformations of Formycin to Laurusin. Agr. Biol. Chem. 29, 377 (1965).Google Scholar
  82. 83.
    Fukagawa, Y., T. Sawa, T. Takeuchi, and H. Umezawa: Deamination of Purine Antibiotics by Adenosine Deaminase. J. Antibiotics Ser. A 18, 191 (1965).Google Scholar
  83. 84.
    Sawa, T., Y. Fukagawa, I. Homma, T. Takeuchi, and H. Umezawa: Formycin- deaminating Activity of Microorganisms. J. Antibiotics Ser. A 20, 317 (1967).Google Scholar
  84. 85.
    Ishizuka, M., T. Sawa, G. Koyama, T. Takeuchi, and H. Umezawa: Metabolism of Formycin and Formycin B In Vivo. J. Antibiotics 21, 1 (1968).Google Scholar
  85. 86.
    sawa, T., Y. Kukagawa, I. Homma, T. Wakashiro, T. Takeuchi, M. Hori, and T. Komai: Metabolic Conversion of Formycin B to Formycin A and to Oxformycin B in Nocardia Interforma. J. Antibiotics 21, 334 (1968).Google Scholar
  86. 87.
    Kawamura, K., S. Fukatsu, M. Murase, G. Koyama, K. Maeda, and H. Umezawa: The Studies on the Degradation Products of Formycin and Formycin B. J. Antibiotics Ser. A 19, 91 (1966).Google Scholar
  87. 88.
    Robins, R. K., F. W. Furcht, A. D. Grauer, and J. W. Jones: Potential Purine Antagonists. II. Synthesis of some 7- and 5,7-substituted Pyrazolo[4,3-d]pyrimidines. J. Amer. Chem. Soc. 78, 2418 (1956).Google Scholar
  88. 89.
    Robins, R. K., L. B. Holum, and F. W. Furcht: Potential Purine Antagonists. V. Synthesis of Some 3-Methyl-5,7-substituted Pyrazolo[4,3-d]pyrimidines. J. Organ. Chem. (USA) 21, 833 (1956).Google Scholar
  89. 90.
    Koyama, G., H. Umezawa, and Y. Iitaka: Crystal Structure of Formycin Hydrobromide Monohydrate. Acta Crystallogr. Sect. B 30, 1511 (1974).Google Scholar
  90. 91.
    Prusiner, P., T. Brennan, and M. Sundaralingam: Crystal Structure and Molecular Conformation of Formycin Monohydrates. Possible Origin of the Anomalous Circular Dichroic Spectra in Formycin Mono and Polynucleotides. Biochemistry 12, 1196 (1973).-92. Koyama, G., H. Nakamura, H. Umezawa, and Y. Iitaka: The Crystal and Molecular Structures of Oxoformycin B and Formycin B. Acta Crystallogr. Sect. B 32, 813 (1976).Google Scholar
  91. 93.
    Buchanan, J. G., M. R. Hamblin, G. R. Sood, and R. H. Wightman: The Biosynthesis of Pyrazofurin and Formycin. Chem. Commun. 1980, 917.Google Scholar
  92. 94.
    Farkas, J., and F. Sorm: Synthesis of 3-(p-D-Ribofuranosyl)-5,7-dihydroxy-l/1- pyrazolo-[4,3-d]-pyrimidine (Oxoformycin). Collect. Czech. Chem. Comm. 37, 2798 (1972). Preliminary communication: BOBEK, M., J. FARKAS, and F. SORM, Tetrahedron Letters 1970, 4611.Google Scholar
  93. 95.
    Acton, E. M., K. J. Ryan, D. W. Henry, and L. Goodman: Synthesis of the Nucleoside Antibiotic Formycin B. Chem. Commun. 1971, 986.Google Scholar
  94. 96.
    Ogawa, T., Y. Kikuchi, M. Matsui, H. Ohrui, H. Kuzuhara, and S. Emoto: Synthetic Studies on C-Nucleosides. Part I. A Synthesis of Oxoformycin. Agr. Biol. Chem. 35, 1825 (1971).Google Scholar
  95. 97.
    Lang, R. A., A. F. Lewis, R. K. Robins, and L. B. Townsend: Pyrazolopyrimidine Nucleosides. Part II. 7-Substituted 3-P-D-Ribofuranosylpyrazolo[4,3-d]pyrimidines Related to and Derived from the Nucleoside Antibiotics Formycin and Formycin B.J. Chem. Soc. (C) 1971, 2443.Google Scholar
  96. 98.
    Kalvoda, L.: The Synthesis of Pyrazoles. A Simple Preparative Synthesis of C-Nucleosidic Antibiotics Formycin and Formycin B. Collect. Czech. Chem. Comm. 43, 1431 (1978).Google Scholar
  97. 99.
    Buchanan, J. G., A. R. Edgar, R. J. Hutchison, A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part 10. A New Synthesis of 3-(2,3,5-Tri-0-benzyl-P-D-ribo- furanosyl)pyrazole and its Conversion into 4-Nitro-3(5)-P-D-ribofuranosylpyrazole. J. Chem. Soc. Perkin I 1980, 2567.Google Scholar
  98. 100.
    Buchanan, J. G., A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part XI. Cme-substitution in 1,4-Dinitropyrazoles; Application to the Synthesis of Formycin via Nitropyrazole Derivatives. Canad. J. Chem. 58, 2624 (1980).Google Scholar
  99. 101.
    Habraken, C. L., and E. K. Poels: Nucleophilic Substitution Reactions on N- Nitropyrazoles. J. Organ. Chem. (USA) 42, 2893 (1977).Google Scholar
  100. 102.
    Buchanan, J. G., A. Stobie, and R. H. Wightman: C-Nucleoside Studies. Part 14. A New Synthesis of Pyrazofurin. J. Chem. Soc. Perkin I 1981, 2374.Google Scholar
  101. 103.
    Ishizuka, M., T. Takeuchi, K. Nitta, G. Koyama, M. Hori, and H. Umezawa: Antitumour Activities of Formycin and Labilomycin. J. Antibiotics Ser. A 17, 124 1964 ).Google Scholar
  102. 104.
    Ishizuka, M., T. Sawa, S. Hori, H. Takayama, T. Takeuchi, and H. Umezawa: Biological Studies on Formycin and Formycin B. J. Antibiotics 21, 5 (1968).Google Scholar
  103. 105.
    Muller, W. E. G., H. J. Rohde, R. Steffen, A. Maidhof, M. Lachmann, R. K. Zahn, and H. Umezawa: Influence of Formycin B on Polyadenosine Diphosphoribose Synthesis In vitro and In vivo. Cancer Res. 35, 3673 (1975).Google Scholar
  104. 106.
    Hori, M. T. Wakashiro, E. Ito, T. Sawa, T. Takeuchi, and H. Umezawa: Biochemical Effects of Formycin B on Xanthomonas Oryzae. J. Antibiotics 21, 264 (1968).Google Scholar
  105. 107.
    Takeuchi, T., J. Iwanaga, T. Aoyagi, and H. Umezawa: Antiviral Effect of Formycin and Formycin B. J. Antibiotics Ser. A 19, 286 (1966).Google Scholar
  106. 108.
    Ishida, N., M. Homma, K. Kumagai, Y. Schimizu, S. Matsumoto, and A. Izawa: Studies on the Antiviral Activity of Formycin. J. Antibiotics Ser. A 20, 49 (1967).Google Scholar
  107. 109.
    Umezawa, H. T. Sawa, Y. Fukagawa, I. Homma, M. Ishizuka, and T. Takeuchi: Studies on Formycin and Formycin B in Cells of Ehrlich Carcinoma and E. Coli. J. Antibiotics Ser. A 20, 308 (1967).Google Scholar
  108. 110.
    Ward, D. C., A. Cerami, E. Reich, G. Acs, and L. Altwerger: Biochemical Studies of the Nucleoside Analogue, Formycin. J. Biol. Chem. 244, 3243 (1969).Google Scholar
  109. 111.
    Ikehara, M., K. Murao, F. Harada, and S. Nishimura: Synthesis of Formycin Triphosphate and its Incorporation into Ribopolynucleotide by DNA-Dependent RNA Polymerase. Biochim. Biophys. Acta 155, 82 (1968).Google Scholar
  110. 112.
    Maelicke, A., M. Sprinzl, F. Vonderhaar, T. A. Khwaja, and F. Cramer: Structural Studies on Phenylalanine Transfer Ribonucleic Acid from Yeast with the Spectroscopic Label Formycin. Eur. J. Biochem. 43, 617 (1974).Google Scholar
  111. 113.
    Ward, D. C., and E. Reich: Conformational Properties of Polyformycin: A Polyribonucleotide with Individual Residues in the Conformation. Proc. Nat. Acad. Sci (USA) 61, 1494 (1968).Google Scholar
  112. 114.
    Ward, D. C., W. Fuller, and E. Reich: Stereochemical Analysis of the Specificity of Pancreatic RNase with Polyformycin as Substrate: Differentiation of the Trans- phosphorylation and Hydrolysis Reactions. Proc. Nat. Acad. Sci (USA) 62, 581 (1969).Google Scholar
  113. 115.
    Ward, D. C., T. Horn, and E. Reich: Fluorescence Studies of Nucleotides and Polynucleotides. III. Diphosphopyridine Nucleotide Analogues which Contain Fluorescent Purines. J. Biol. Chem. 247, 4014 (1972).Google Scholar
  114. 116.
    von der Haar, F., and E. Gaertner: Phenylalanyl-tRNA Synthetase from Baker’s Yeast: Role of S’-Terminal Adenosine of tRNAphe in Enzyme-Substrate Interaction Studied with 3’-Modified tRNAPhe Species. Proc. Nat. Acad. Sci (USA) 72, 1378 (1975).Google Scholar
  115. 117.
    Kumar, S. A., J. S. Krakow, and D. C. Ward: ATP Analogues as Initiation and Elongation Nucleotides for Bacterial DNA-Dependent RNA Polymerase. Biochim. Biophys. Acta 477, 112 (1977).Google Scholar
  116. 118.
    Sawa, T., Y. Fukagawa, I. Homma, T. Takeuchi, and H. Umezawa: Mode of Inhibition of Coformycin on Adenosine Deaminase. J. Antibiotics Ser. A 20, 227 (1967).Google Scholar
  117. 119.
    Nakamura, H., G. Koyama, Y. Iitaka, M. Ohno, N. Yagisawa, S. Kondo, K. Maeda, and H. Umezawa: Structure of Coformycin, an Unusual Nucleoside of Microbial Origin. J. Amer. Chem. Soc. 96, 4327 (1974).Google Scholar
  118. 120.
    Ohno, M., N. Yagisawa, S. Shibahara, S. Kondo, K. Maeda, and H. Umezawa: Synthesis of Coformycin. J. Amer. Chem. Soc. 96, 4326 (1974).Google Scholar
  119. 121.
    Henderson, J. F., A. R. P. Paterson, I. C. Caldwell, and M. HORI: Biochemical Effects of Formycin, an Adenosine Analog. Cancer Res. 27, 715 (1967).Google Scholar
  120. 122.
    Gerzon, K., D. C. Delong, and J. C. Cline: C-Nucleosides: Aspects of Chemistry and Mode of Action. Pure Appl. Chem. 28, 489 (1971).Google Scholar
  121. 123.
    Gerzon, K., R. H. Williams, M. Hoehn, M. Gorman, and D. C. Delong: Pyrazomycin, A C-Nucleoside with Antiviral Activity. 2nd Int. Cong. Hetero. Chem., Montpellier, France, July 1969, Abstr. 30C, p. 131.Google Scholar
  122. 124.
    Williams, R. H., K. Gerzon, M. Hoehn, M. Gorman, and D. C. Delong: Pyrazomycin — a Novel Carbon-Linked Nucleoside. 158th National Meeting, Amer. Chem. Soc., New York (1969), Abstr. MICR. 38.Google Scholar
  123. 125.
    Gutowski, G. E., M. J. Sweeney, D. C. Delong, R. L. Hamill, K. Gerzon, and R. W. Dyke: Biochemistry and Biological Effects of the Pyrazofurins (Pyrazomycins): Initial Clinical Trial. Ann. New York Acad. Sci. 255, 544 (1975).Google Scholar
  124. 126.
    Williams, R. H., and M. M. Hoehn: Pyrazomycin and Process for Production thereof. U.S. Pat. 3,802,999, April 9, 1974 to Eli Lilly and Company.Google Scholar
  125. 127.
    Jones, N. D., and M. O. Chaney: The Crystal Structure of Pyrazomycin, A C- Nucleoside Antiviral Agent. 9th Int. Congr. Crystallogr., Kyoto, Japan, Abstr. S. 48.Google Scholar
  126. 128.
    de Bernardo, S., and M. Weigele: A Synthesis of the Pyrazomycins. J. Organ. Chem. (USA) 41, 287 (1976).Google Scholar
  127. 129.
    Ohrui, H., and J. J. Fox: Nucleosides LXXXI. An Approach to the Synthesis of C-C Linked P-D-Ribofuranosyl Nucleosides from 2,3-0-Isopropylidene-5-0-trityl-f3-D- ribofuranosyl Chloride. Tetrahedron Letters 1973, 1951.Google Scholar
  128. 130.
    katagiri, N., K. Takashima, and T. Kato: A Simple Synthesis of the Pyrazofurins. Chem. Commun. 1982, 664.Google Scholar
  129. 131.
    de Clercq, E., and P. F. Torrence: Nucleoside Analogs with Selective Antiviral Activity. J. Carbohydr. Nucleosides Nucleotides 5, 187 (1978).Google Scholar
  130. 132.
    Sweeney, M. J., F. A. Davis, G. E. Gutowski, R. L. Hamill, D. H. Hoffmann, and G. A. poore: Experimental Antitumour Activity of Pyrazomycin. Cancer Res. 33, 2619 (1973).Google Scholar
  131. 133.
    Cadman, E. C., D. E. Dix, and R. E. Handschumacher: Clinical, Biological, and Biochemical Effects of Pyrazofurin. Cancer Res. 38, 682 (1978).Google Scholar
  132. 134.
    Rossi, A.: The Clinical Uses of Nucleoside Analogues in Malignant Disease. In: Nucleoside Analogues. Chemistry, Biology, and Medical Applications (R. T. Walker, E. de Clercq, and F. Eckstein), p. 409. NATO Advanced Study Institutes Series. New York and London: Plenum Press. 1979.Google Scholar
  133. 135.
    Levine, H. L., R. S. Brody, and F. H. Westheimer: Inhibition of Orotidine-5’- phosphate Decarboxylase by l-Phospho-p-D-ribofuranosyl)barbituric Acid, 6- Azauridine S’-Phosphate and Uridine 5’-Phosphate. Biochemistry 19, 4993 (1980).Google Scholar
  134. 136.
    Shirato, S., J. Nagatsu, M. Shibuya, and Y. Kasukabe: Antibiotic Minimycin. Ger. Pat. 2,043,946, March 25, 1971 to Kaken Chemical Co. Ltd. Chem. Abs. 74, 139557h (1971).Google Scholar
  135. 137.
    Kusakabe, Y., J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose, and S. Shirato: Minimycin, a New Antibiotic. J. Antibiotics 25, 44 (1972).Google Scholar
  136. 138.
    De Bernardo, S., and M. Weigele: Synthesis of Oxazinomycin (Minimycin). J. Organ. Chem. (USA) 42, 109 (1977).Google Scholar
  137. 139.
    Takaoka, K., T. Kuwayama, and A. Aoki: Jap.Pat. 615,332 (1971): cited in ref. 140.Google Scholar
  138. 140.
    Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics. Part I. L-Cystathionine as a Component of Ezomycins A1 and from a Streptomyces. Agr. Biol. Chem. 37, 697 (1973).Google Scholar
  139. 141.
    Studies on Ezomycins, Antifungal Antibiotics. Part II. Ezoaminuroic Acid, 3-Amino-3,4-dideoxy-D-/o-hexopyranuroic Acid, as a Constituent of Ezomycins A1 and A2. Tetrahedron Letters 1974, 1533.Google Scholar
  140. 142.
    Studies on Ezomycins, Antifungal Antibiotics. Part III. Isolation of Novel Antifungal Antibiotics, Ezomycins Al5 A2, Bx and B2. Agr. Biol. Chem. 38, 1883 (1974).Google Scholar
  141. 143.
    Studies on Ezomycins, Antifungal Antibiotics. Part IV. Structures of Ezomycins Ax and A2. Tetrahedron Letters 1974, 4327.Google Scholar
  142. 144.
    Studies on Ezomycins, Antifungal Antibiotics. Part V. Degradative Studies on Ezomycins Ax and A2.Agr. Biol. Chem. 39, 885 (1975).Google Scholar
  143. 145.
    Studies on Ezomycins, Antifungal Antibiotics. Part VI. Structures of Ezomycins B1, B2, C1, C2, D1? and D2. Tetrahedron Letters 1975, 3191.Google Scholar
  144. 146.
    Studies on Ezomycins, Antifungal Antibiotics. Part VII. Structures of Ezomycins A± and A2. Agr. Biol. Chem. 40, 1993 (1976).Google Scholar
  145. 147.
    Sakata, K., and J. Uzawa: Studies on Ezomycins, Antifungal Antibiotics. Part VIII. Application of C-13 NMR Spectrometry to the Structural Investigation of the Novel Bicyclic Anhydrooctose Uronic Acid Nucleosides, Constituents of Ezomycins. Agr. Biol. Chem. 41, 413 (1977).Google Scholar
  146. 148.
    Sakata, K., A. Sakurai, and S. Tamura: Studies on Ezomycins, Antifungal Antibiotics. Part IX. Isolation and Antimicrobial Activities of Ezomycins Bl5 B2, Q, C2, and D2. Agr. Biol. Chem. 41, 2027 (1977).Google Scholar
  147. 149.
    Sakata, K., J. Uzawa, and A. Sakurai: Studies on Ezomycins, Antifungal Antibiotics. Part XI. Application of Carbon-13 N. m. r. Spectroscopy to the Structural Investigation of Ezomycins. Organic Magnetic Resonance 10, 230 (1977).Google Scholar
  148. 150.
    Ogawa, T., M. Akatsu, and M. Matsui: Synthesis of a Sugar Occurring in an Antibiotic: Ezoaminuroic Acid, the First Example of a Naturally Occurring 3-Amino-3- deoxyhexuronic Acid. Carbohydrate Research 44, C22 (1975).Google Scholar
  149. 151.
    Cerny, M., and J. Pacak: Desoxyzucker III. Uber Rtaktionen der 2-0-Tosyl-l,6: 3,4- dianhydro-P-D-galactopyranose Darstellung von 4-Desoxy-D-XF/ohexose (4-Desoxy-D- glucose) und 4-Desoxy-D-tfratoohexose (4-Desoxy-D-altrose). Collect. Czech. Chem. Comm. 27, 94 (1962).Google Scholar
  150. 152.
    Mieczowski, J., and A. Zamojski: Total Syntheses of Methyl(methyl 3-amino-3,4- dideoxy-oc- and p-DL-/hexopyranoside)uronates. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 23, 581 (1975). [Chem. Abs. 84, 31341a (1976)].Google Scholar
  151. 153.
    Isono, K., P. F. Crain, and J. A. Mccloskey: Isolation and Structure of Octosyl Acids. Anhydrooctose Uronic Acid Nucleosides. J. Amer. Chem. Soc. 97, 943 (1975).Google Scholar
  152. 154.
    Anzai, K., and T. Saita: Synthesis of 3,7-Anhydrooctose Derivatives Related to Octosyl Acids. Chem. Commun. 1976, 681.Google Scholar
  153. 155.
    Anzai, K., and T. Saita: The Synthesis of Several Octose Derivatives Related to Octosyl Acids A and B. B. ll . Chem. Soc. Japan 50, 169 (1977).Google Scholar
  154. 156.
    Kim, K. S., and W. A. Szarek: Synthesis of S’J’-Anhydrooctose Nucleosides Related to the Ezomycins and the Octosyl Acids. Canad. J. Chem. 59, 878 (1981).Google Scholar
  155. 157.
    Syntheses Related to the 3,7-Anhydrooctose in the Ezomycins and the Octosyl Acids. Carbohydrate Research 100, 169 (1982).Google Scholar
  156. 158.
    Buchanan, J. M., and S. C. Hartman: Enzymic Reactions in the Synthesis of the Purines. Adv. Enzymology 21, 199 (1959).Google Scholar
  157. 159.
    Hartman, S. C.: Purines and Pyrimidines. In: Metabolic Pathways, 3rd Edn., Vol. 4 (D. M. Greenberg, Ed.), p. 1. New York: Academic Press. 1970.Google Scholar
  158. 160.
    Elstner, E. F., and R. J. Suhadolnik: Nucleoside Antibiotics. Biosynthesis of the Maleimide Nucleoside Antibiotic, Showdomycin, by Streptomyces showdoensis. Biochemistry 10, 3608 (1971).Google Scholar
  159. 161.
    Nucleoside Antibiotics. Asymmetric Incorporation of Glutamic Acid and Acetate into the Maleimide Ring of Showdomycin by Streptomyces showdoensis. Biochemistry 11, 2578 (1972).Google Scholar
  160. 162.
    Elstner, E. F., R. J. Suhadolnik, and A. Allerhand: Effect of Changes in the Pool of Acetate on the Incorporation and Distribution of 13 C- and 14C-Labeled Acetate into Showdomycin by Streptomyces showdoensis. J. Biol. Chem. 248, 5385 (1973).Google Scholar
  161. 163.
    buchaanan, J. G., M. R. Hamblin, and R. H. Wightman: Heriot-Watt University, unpublished results.Google Scholar
  162. 164.
    Sawa, T., Y. Fukagawa, Y. Shimauchi, K. Ito, M. hamada, T. Takeuchi, and H. Umezawa: Studies on Formycin and Formycin B Phosphates. J. Antibiotics Ser. A 18, 259 (1965).Google Scholar
  163. 165.
    Ochi, K., S. Yashima, and Y. Eguchi: Biosynthesis of Formycin. Formation of Formycin from Formycin B. J. Antibiotics 28, 965 (1975).Google Scholar
  164. 166.
    Kunimoto, T., T. Sawa, T. Wakashiro, M. HORI, and H. Umezawa: Biosynthesis of the Formycin Family. J. Antibiotics 24, 253 (1971).Google Scholar
  165. 167.
    Ochi, K., S. Kikuchi, S. Yashima, and Y. Eguchi: Biosynthesis of Formycin. Incorporation and Distribution of Labeled Compounds into Formycin. J. Antibiotics 29, 638 (1976).Google Scholar
  166. 168.
    Ochi, K., S. Yashima, Y. Eguchi, and K. Matsushita: Biosynthesis of Formycin. Incorporation and Distribution of 13C-, 14C-, and 15N-Labeled Compounds into Formycin. J. Biol. Chem. 254, 8819 (1979).Google Scholar
  167. 169.
    Ochi, K., S. Iwamoto, E. Hayase, S. Yashima, and Y. Okami: Biosynthesis of Formycin. Role of Certain Amino Acids in Formycin Biosynthesis. J. Antibiotics 27, 909 (1974).Google Scholar
  168. 170.
    Krugh, T. R.: Tautomerism of the Nucleoside Antibiotic Formycin, as studied by Carbon-13 Nuclear Magnetic Resonance. J. Amer. Chem. Soc. 95, 4761 (1973).Google Scholar
  169. 171.
    Suhadolnik, R. J., and N. L. Reichenbach: Glutamate as the Common Precursor for the Aglycon of the Naturally Occurring C-Nucleoside Antibiotics. Biochemistry 20, 7042 (1981).Google Scholar
  170. 172.
    Isono, K., and R. J. Suhadolnik: The Biosynthesis of the Nucleoside Antibiotics: Minimycin Formation by Streptomyces hygroscopicus. Ann. New York Acad. Sci. 255, 390 (1975).Google Scholar
  171. 173.
    Biosynthesis of the C-Nucleoside, Minimycin: Asymmetric Incorporation of Glutamate and Acetate into the Oxazine Ring. J. Antibiotics 30, 272 (1977).Google Scholar
  172. 174.
    Isono, K., T. Sato, K. Hirasawa, S. Funayama, and S. Suzuki: Biosynthesis of the Nucleoside Skeleton of Polyoxins. J. Amer. Chem. Soc. 100, 3937 (1978).Google Scholar
  173. 175.
    Sato,T., K. Hirasawa, J. Uzawa, T. Inaba, and K. Isono: Biosynthesis of Octosyl Acid A: Incorporation of C-13 Labeled Glucose.Tetrahedron Letters 1979, 3441.Google Scholar
  174. 176.
    Uematsu, T., and R. J. Suhadolnik: Pseudouridine: Biosynthesis by Strepto-verticillicum Ladakanus. Biochim. Biophys. Acta 319, 348 (1973).Google Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • J. G. Buchanan
    • 1
  1. 1.Department of ChemistryHeriot-Watt UniversityRiccarton, Currie, EdinburghUK

Personalised recommendations