The Cneoraceae, a plant family of considerable interest to the natural products chemist, comprises two genera with a total of only three species, two of which we have studied in considerable detail. These two species are Neochamaelea pulverulenta (Vent.) Erdtman (= Cneorum pulverulentum Vent.), a xerophytic shrub native to the Canary Islands, with silver-haired leaves, yellow blossoms and hard stone fruits (Fig. 1), and Cneorum tricoccon L., a shrub native to coastal areas of the western Mediterranean, with hairless leaves, yellow blossoms and red fruits (Fig. 2). We had no means of access to the third species, Cneorum trimerum (Urban) Chodat, which belongs to the flora of Cuba. Taxonomically, the family of Cneoraceae is assigned by A. Takhtajan (1) to the Rutales, and by A. Cronquist (2) to the Sapindales; the botanically interested reader is referred to recent articles by H. Straka et al. (3), and by D. Lobreau-Callen et al. (4).


Base Peak Partial Structure Furan Ring Proton Spectrum Olefinic Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takthajan, A: Evolution und Ausbreitung der Blütenpflanzen, Jena 1973.Google Scholar
  2. 2.
    Cronquist, A.: An Integrated System of Classification of Flowering Plants. New York: Columbia University Press. 1981.Google Scholar
  3. 3.
    Straka, H., F. Albers, and A. Mondon: Die Stellung und Gliederung der Familie Cneoraceae (Rutales). Beitr. Biol. Pflanzen 52, 267 (1976).Google Scholar
  4. 4.
    Lobreau-callen, D., S. Nilsson, F. Albers, and H. Straka: Les Cneoraceae (Rutales): étude taxonomique, palynologique et systématique. Grana 17, 125 (1978).CrossRefGoogle Scholar
  5. 5.
    Mondon, A., H. Callsen, and P. Hartmann: Inhaltsstoffe der Cneoraceen, III: Trennverfahren für Cneorum pulverulentum und Untersuchung der Wachsfraktion und Phytosterole. Chem. Ber. 108, 1989 (1975).Google Scholar
  6. 6.
    Monadon, A., and U. Schwarzmaier: Inhaltsstoffe der Cneoraceen, I. Untersuchung von Cneorum tricoccon. Chem Ber. 108, 925 (1975).CrossRefGoogle Scholar
  7. 7.
    Plouvier, C.: Sur la recherche de hétérosides flavoniques dans quelque groupes botaniques. Compt. rend. Acad. Sci., Paris 256, 4061 (1965).Google Scholar
  8. 8.
    Mondon, A., and B. Epe: Unpublished Results.Google Scholar
  9. 9.
    Hegnauer, R.: Chemotaxonomie der Pflanzen, Bd. 3, S. 433, Basel und Stuttgart 1964.Google Scholar
  10. 10.
    Gibbs, R. D.: Chemotaxonomy of Flowering Plants, Vol. 3, p. 1671. Montreal and London 1974.Google Scholar
  11. 11.
    Trautmann, D., B. Epe, U. Oelbermann, and A. Mondon: Konstitution und Konfiguration der Cneorubine. Chem. Ber. 113, 3848 (1980).CrossRefGoogle Scholar
  12. 12.
    Mondon, A., H. Callsen, P. Hartmann, G. Cuno, and C. H. Anderson: Inhaltsstoffe der Cneoraceen, II: Studien zur Hydrierung, zum Alkaliabbau und zur Synthese von Chromonen. Chem. Ber. 108, 934 (1975).CrossRefGoogle Scholar
  13. 13.
    Mondon, A., and H. Callsen: Inhaltsstoffe der Cneoraceen, IV: Chromone und Cumarine aus Cneorum pulverulentum. Chem Ber. 108, 2005 (1975).Google Scholar
  14. 14.
    Trautmann, D., B. Epe, U. Oelbermann, and A. Mondon: Notiz über alte und neue Chromone aus Cneoraceen. Chem. Ber. 109, 2963 (1976).CrossRefGoogle Scholar
  15. 15.
    Epe, B., U. Oelbermann, and A. Mondon: Neue Chromone aus Cneoraceen. Chem. Ber. 114, 757 (1981).CrossRefGoogle Scholar
  16. 16.
    Gonzalez, A. G., J. P. Castaneda, and B. M. Fraga: Nueva Chromonas de la Neochamaelea pulverulenta Erdtm. Anal Quirn. 68, 447 (1972).Google Scholar
  17. 17.
    Gonzalez, A. G., B. M. Fraga, and R. Torres: Chromonas del “Cneorum tricoccum”. Anal. Quirn. 70, 91 (1974).Google Scholar
  18. 18.
    Gonzalez, A. G., B. M. Fraga, and O. Pino: Chromenes and Chromones, IV: New Chromone from the Stems of Cneorum tricoccum. Phytochemistry 13, 2305 (1974).CrossRefGoogle Scholar
  19. 19.
    Chromenes and Chromones, VI.: Pulverin, a new Chromone from the Fruits of Neochamaelea pulverulenta. Phytochemistry 14, 1656 (1975).Google Scholar
  20. 20.
    Minor Chromones of Neochamaelea pulverulenta. Anal. Quirn. 73, 557 (1977).Google Scholar
  21. 21.
    Gonzalez, A. G., B. M. Fraga, M. G. Hernandez, O. Pino, and A. G. Ravelo: New Sources of Natural Coumarins, Part 35. New Coumarins from Cneorum tricoccum. Rev. Latino Am. Quirn. 205 (1978).Google Scholar
  22. 22.
    Gonzalez, A. G., B. M. Fraga, O. Pino, J. P. Declereq, G. Germain, and J. Fayos: X-Ray Structure of Bethancorol, a new Courmarin from Cneorum tricoccum. Tetrahedron Letters 1729 (1976).Google Scholar
  23. 23.
    Callsen, H.: Über die Inhaltsstoffe der Cneoraceen. Dissertation Universität Kiel 1972.Google Scholar
  24. 24.
    Epe, B.: Konstitution und Konfiguration der Pentanortriterpene aus Neochamaelea pulverulenta. Dissertation Universität Kiel 1976.Google Scholar
  25. 25.
    Trautmann, D.: Über Sesterterpene aus Cneorum tricoccon. Diplomarbeit Universität Kiel 1974.Google Scholar
  26. 26.
    Die charakteristischen Inhaltsstoffe von Cneorum tricoccon L. Dissertation Universität Kiel 1977.Google Scholar
  27. 27.
    Mondon, A., and H. Callsen: Zur Kenntnis der Bitterstoffe aus Cneoraceen, II. Tetrahedron Letters 699 (1975).Google Scholar
  28. 28.
    Mondon, A., D. Trautmann, B. Epe, and U. Oelbermann: Zur Kenntnis der Bitterstoffe aus Cneoraceen, VI. Tetrahedron Letters 3291 (1976).Google Scholar
  29. 29.
    Zur Kenntnis der Bitterstoffe aus Cneoraceen, VII. Tetrahedron Letters 3295 (1976).Google Scholar
  30. 30.
    Polonsky, J.: The Structure of Simarolide, the Bitter Principle of Simarouba amara. Proc. Chem. Soc., London 292 (1964); Brown, W. A. C., and G. A. Simm: The Constitution and Absolute Stereochemistry of Simarolide, the Bitter Principle of Simarouba amara. Proc. Chem. Soc., London, 293 (1964).Google Scholar
  31. 31.
    Hikino, H., T. Ohta, and T. Takemoto: Stereostructure of Picrasin A, Simaroubolide of Picrasma quassinoides. Chem. Pharm. Bull. 18, 1082 (1970).CrossRefGoogle Scholar
  32. 32.
    Polonsky, J., M. Van TRI, TH. Prange, CL. Pascard, and TH. Sevenet: Isolation and Structure (X-Ray Analysis) of a new C25 Quassinoid Soulameolide from Soulamea tomentosa. J.C.S. Chem. Comm. 641 (1979).Google Scholar
  33. 33.
    Polonsky, J., Z. Varon, TH. Prange, CL. Pascard, and CH. Moretti: Structures of Simarinolide and Guanepolide (X-Ray Analysis), New Quassinoids from Simaba cf. orinocensis. Tetrahedron Letters 22, 3605 (1981).CrossRefGoogle Scholar
  34. 34.
    Chakraborty, D. P., P. Bhattacharyya, S. P. Bhattacharyya, J. Bordener, G. L. A. Hennessee, and B. Weinstein: Clausenolide: a Novel Pentanortriterpenoid Furanolacton; X-Ray Crystal Structure. J.C.S. Chem. Comm. 246 (1979).Google Scholar
  35. 35.
    Kraus, W., and R. Cramer: Pentanortriterpenoide aus Azadirachta indica A. Juss (Meliaceae). Chem. Ber. 114, 2375 (1981).CrossRefGoogle Scholar
  36. 36.
    Dreyer, D. L.: Limonoid Bitter Principles. Fortschr. Chem. org. Naturst. 26, 190 (1968).Google Scholar
  37. 37.
    Connolly, J. D., K. H. Overton, and J. Polonsky: The Chemistry and Biochemistry of the Limonoids and Quassinoids. Progress in Phytochemistry (L. Reinhold and Y. Lievschitz, eds.), Vol.11, 385. London: Interscience Publishers 1970.Google Scholar
  38. 38.
    Connolly, J. D., and K. H. Overton: Chemistry of Terpenes and Terpenoids (ed. A. A. Newman), p. 207. London-New York: Academic Press. 1972.Google Scholar
  39. 39.
    Polonsky, J.: Quassinoid Bitter Principles. Fortschr. Chem. org. Naturst. 30, 101 (1973).Google Scholar
  40. 40.
    Nakanishi, K., T. Goto, S. Itö, S. Natori, and S. Nozoe: Natural Products Chemistry, Vol. 1, p. 313. Tokyo: Kodensha, and New York-San Francisco-London: Academic Press. 1974.Google Scholar
  41. 41.
    Lavie, D., M. K. Jain, and I. Kirson: Terpenoids-V. Melianone from Melia azedarach L. Tetrahedron Letters 2049 (1966). — Terpenoids. Part VI. The Complete Structure of Melianone. J. Chem. Soc. (C), 1347 (1967).Google Scholar
  42. 42.
    Mondon, A., and H. Callsen: Zur Kenntnis der Bitterstoffe aus Cneoraceen, I and II. Tetrahedron Letters 551, 699 (1975).CrossRefGoogle Scholar
  43. 43.
    Mondon, A., H. Callsen, and B. Epe: Zur Kenntnis der Bitterstoffe aus Cneoraceen, III. Tetrahedron Letters 703 (1975).Google Scholar
  44. 44.
    Henkel, G., H. Dierks, B. Epe, and A. Mondon: Zur Kenntnis der Bitterstoffe aus Cneoraceen, IV. Tetrahedron Letters 3315 (1975).Google Scholar
  45. 45.
    Mondon, A., and B. Epe: Zur Kenntnis der Bitterstoffe aus Cneoraceen, V. Tetrahedron Letters 1273 (1976).Google Scholar
  46. 46.
    Barton, D. H. R., and D. Elad: Colombo Root Bitter Principles. Part I. The Functional Groups of Columbin. J. Chem. Soc. 2085 (1956).Google Scholar
  47. 47.
    Barton, D. H. R., and D. Elad:90 MHz, 5-values for TMS O as internal standard. CDC13 was used as solvent unless stated otherwise.Google Scholar
  48. 48.
    In the quoted reference, (44) shows the projection and formulation of the antipodes.Google Scholar
  49. 49.
    Bijvoet, J. M., A. F. Peerdeman, and A. J. van Bommel: Determination of the absolute configuration of optically active compounds by means of X-Rays. Nature (London) 168, 271 (1951).CrossRefGoogle Scholar
  50. 50.
    A“ and ”denote the projection of a substituent below or above the plane of the paper respectively.Google Scholar
  51. 51.
    Okorie, D. A., and D. A. H. Taylor: Limonoids from the Timber of Trichilia heudelottii Planch, ex Oliv. J. Chem. Soc. (C) 1828 (1968).Google Scholar
  52. 52.
    Ferguson, G., P. A. Gunn, W. C. Marsh, R. Mccrindle, R. Restivo, J. D. Connolly, J. W. B. Fulke, and M. S. Henderson: Triterpenoids from Guareaglabra (Meliaceae): A New Skeletal Class identified by Chemical Spectroscopic, and X-Ray Evidence. J. C. S. Chem. Comm. 159 (1973); Tetranortriterpenoids and Related Substances. Part XVII. A New Skeletal Class of Triterpenoids from Guarea glabra (Meliaceae). J. C. S. Perkin I, 491 (1975).Google Scholar
  53. 53.
    The 13C-NMR spectrum of cneorin-B can not be measured in acetone-d6 owing to insufficient solubility in this solvent.Google Scholar
  54. 54.
    Heidenreich, H.: Synthesen in der Reihe der Cneorine und Tricoccine. Dissertation, Universität Kiel 1979.Google Scholar
  55. 55.
    Fujita, E., I. U Chid A, and T. Fujita: Teucvin, a Novel Furanoid Norditerpene from Teucrium viscidum var. Miquelianum. J.C. S. Chem. Comm. 793 (1973).Google Scholar
  56. 56.
    Kraus, W., and R. Cramer: 17-Epiazadiradion and 17ß-Hydroxyazadiradion, zwei neue Inhaltsstoffe aus Azadirachta indica A. Juss. Tetrahedron Letters 2395 (1978).Google Scholar
  57. 57.
    Specialist Periodical Reports, Terpenoids and Steroids’. The Chemical Society London Vol. 1–9 (1971–1979); The Royal Society of Chemistry London Vol. 10 (1980).Google Scholar
  58. 58.
    cf. Parker, K. A., and M. R. Ademchuk: Intramolecular Diels-Alder Reactions of the Furan Diene. Tetrahedron Letters 1689 (1978); DE Clercq, P. J., and L. A. Van Royen: The Intramolecular Diels-Alder Furan Approach in Synthesis: 11-Oxatricyclo- [,6]undec-9-en-5-one. Synth. Comm. 9,771 (1979); Sternbach, D. D., andD. M. Rossana: Intramolecular Diels-Alder Reactions of the Furan Diene: Substituent and Solvent Effects. Tetrahedron Letters 23, 303 (1982).CrossRefGoogle Scholar
  59. 59.
    Scott, A. I.: Interpretation of the Ultraviolet Spectra of Natural Products. Oxford: Pergamon Press. 1964.Google Scholar
  60. 60.
    Narayanan, C. R., R. V. Pachapurkar, S. K. Pradhan, V.R. Shah, and N.S. Narasimhan: Structure of Nimbin. Chem. Ind. (London) 322 (1964).Google Scholar
  61. 61.
    Melera, A., K. Schaffner, D. Arigoni, and O. Jeger: Zur Konstitution des Limonins I. Über den Verlauf der alkalischen Hydrolyse von Limonin und Limonol. Helv. Chim. Acta 40,1420 (1957); Dreyer, D. L.: Citrus Bitter Principles-II. Application of NMR to Structural and Stereochemical Problems. Tetrahedron 21, 75 (1965); RAO, M.M., M. Meshulam, R. Zelnik, and D. Lavie: Cabralea eichleriana-ll, Structure and Stereochemistry of Limonoids of Cabralea eichleriana. Phytochemistry 14,1071 (1975); Connolly, J.D., C. Labbe, and D.S. Rycroft: Tetranortriterpenoids and Related Substances. Part 20. New Tetranortriterpenoids from the seeds of Chukrasia tabularis (Meliaceae); Simple Esters of Phragmalin and 12oc-Acetoxyphragmalin. J. C. S. Perkin I, 285 (1978).Google Scholar
  62. 62.
    Mondon, A., D. Trautmann, B. EPE, U. Oelbermann, and CH. Wolff: Zur Kenntnis der Bitterstoffe aus Cneoraceen, VIII. Tetrahedron Letters 3699 (1978).Google Scholar
  63. 63.
    Burke, B. A., W. R. Chan, K. E. Magnus, and D. R. Taylor: Extractives of Cedrela odorata L. — III. The Structure of Photogedunin. Tetrahedron 25, 5007 (1969).CrossRefGoogle Scholar
  64. 64.
    Mondon, A., B. Epe, and D. Trautmann: Zur Kenntnis der Bitterstoffe aus Cneoraceen, X. Tetrahedron Letters 4881 (1978).Google Scholar
  65. 65.
    Epe, B., D. Trautmann, and A. Mondon: Zur Kenntnis der Bitterstoffe aus Cneoraceen, XI. Tetrahedron Letters 1365 (1979).Google Scholar
  66. 66.
    The designation “iso-tricoccin-R9” used in reference (65) should be replaced by “tricoccin-R12”.Google Scholar
  67. 67.
    Epe, B., U. Oelbermann, and A. Mondon: Zur Kenntnis der Bitterstoffe aus Cneoraceen, XIII. Tetrahedron Letters 3839 (1979).Google Scholar
  68. 68.
    Johnson, R. A., and E. G. Nidy: Superoxide Chemistry. A Convenient Synthesis of Dialkyl Peroxides. J. Org. Chem. 40, 1680 (1975).CrossRefGoogle Scholar
  69. 69.
    Turner, J. A., and W. Herz: Fe(II)-Induced Decomposition of Unsaturated Cyclic Peroxides Derived from Butadienes. A Simple Procedure for Synthesis of 3-Alkyl-furans. J. Org. Chem. 42, 1900 (1977).CrossRefGoogle Scholar
  70. 70.
    Horner, L., and W. Jurgeleit: Die Reduktion organischer Peroxide mit tertiären Phosphinen. Tertiäre Phosphine VI. Liebigs Ann. Chem. 591, 138 (1955).CrossRefGoogle Scholar
  71. 71.
    Matsumoto, M., and K. Kondo: Sensitized Photooxygenation of Linear Monoterpenes Bearing Conjugated Double Bonds. J. Org. Chem. 40, 2259 (1975).CrossRefGoogle Scholar
  72. 72.
    Corey, E. J., and J. W. Suggs: Pyridinium Chlorochromate. An Efficient Reagent for Oxidation of Primary and Secondary Alcohols to Carbonyl Compounds. Tetrahedron Letters 2647 (1975).Google Scholar
  73. 73.
    EPE, B., and A. MONDON: Zur Kenntnis der Bitterstoffe aus Cneoraceen, XIV. Tetrahedron Letters 4045 (1979).Google Scholar
  74. 74.
    The configuration given in reference (65) should be corrected.Google Scholar
  75. 75.
    Zur Kenntnis der Bitterstoffe aus Cneoraceen, IX. Tetrahedron Letters 3901 (1978).Google Scholar
  76. 76.
    Zur Kenntnis der Bitterstoffe aus Cneoraceen, XII. Tetrahedron Letters 2015Google Scholar
  77. (1979).
    Mondon, A., D. Trautmann, B. Epe, and U. Oelbermann: Zur Kenntnis der Bitterstoffe aus Cneoraceen, VI. Tetrahedron Letters 3291 (1976).Google Scholar
  78. 77.
    Sondengam, B. L., C. S. Kamga, S. F. Kimbu, and J. D. Connolly: Proceranon, a new Tetranortriterpenoid from Carapa procera. Phytochemistry 20, 173 (1981).CrossRefGoogle Scholar
  79. 78.
    Ayafor, J. F., B. L. Sondengam, J. D. Connolly, D. S. Rycroft, and J. I. Okogun: Tetranortriterpenoids and Related Compounds. Part 26. Tecleanin, a Possible Precursor of Limonin, and other New Tetranortriterpenoids from Teclea grandifolia Engl. (Rutaceae). J. C. S. Perkin I, 1750 (1981).Google Scholar
  80. 79.
    Sondengam, B. L., C. S. Kamga, and J. D. Connolly: Evodulone, A New Tetranortriterpenoid from Carapa procera. Tetrahedron Letters 1357 (1979).Google Scholar
  81. 80.
    Kraus, W., and K. Kypke: Surenon and Surenin, two novel Tetranortriterpenoids from Toona sureni [Blume] Merrill. Tetrahedron Letters 2715 (1979).Google Scholar
  82. 81.
    Lavie, D., and M. K. Jain: Tetranortriterpenoids from Melia. azadirachta L. Chem. Commun. 278 (1967).Google Scholar
  83. 82.
    Connolly, J. D., I. M. S. Thornton, and D. A. H. TAYLOR: Partial Synthesis of Mexicanolide from 7-Oxo-deacetoxy-khivorin. Chem. Commun. 17 (1971).Google Scholar
  84. 83.
    Bevan, C. W. L., J. W. Powell, and D. A. H. Taylor: West African Timbers. Part VI. Petroleum Extracts from Species of the Genera Khaya, Guarea, Carapa and Cedrela. J. Chem. Soc. 980 (1963); Connolly, J.D., R.Mccrindle, and K.H. Overton: The Constitution of Mexicanolide. A Novel Cleavage Reaction in a Naturally Occuring Bicyclo[3,3,l]nonane Derivative. Chem. Commun. 162 (1965); Tetranortriterpenoids- IV [Bicyclononanolides II]. The Constitution and Stereochemistry of Mexicanolide. Tetrahedron 24,1489 (1968); Adeoye, S. A., and D. A. Bekoe: The Molecular Structure of Cedrela odorata Substance B. Chem. Commun. 301 (1965).Google Scholar
  85. 84.
    cf. Cimino, G., S. de Stefano, A. G. Erriero, and L. Minale: Furanosesquiterpenoids in Sponges-I; Pallescensin-1, -2 and -3 from Disideapallescens. Tetrahedron Letters 1417 (1975).Google Scholar
  86. 85.
    The R-NMR data given in reference (62) for S19 are to be corrected by an upfield shift of 8 Hz.Google Scholar
  87. 86.
    Kraus, W, W. Grimminger, and G. Sawitzki: Toonacilin und 6-Acetoxy-toonacilin, zwei neue B-seco-Tetranortriterpenoide mit fraßhemmender Wirkung: Angew. Chem. 90, 476 (1968); Angew. Chem. Internat. Edn. 17, 476 (1978).CrossRefGoogle Scholar
  88. 87.
    Kraus, W., and W. Grimminger: Toonafolin, ein neues Tetranortriterpenoid-B-Lacton aus Toona ciliata. M. J. Roem. var. australis (Meliaceae). Liebigs Ann. Chem. 1981, 1838.Google Scholar
  89. 88.
    Arigoni, D., D. H. R. Barton, E. J. Corey, O. Jeger, L. Caglioti, S. Dev, P. G. Ferrini, E. R. Glazier, A. Melera, S. K. Pradhan, K. Schaffner, S. Sternhell, J. F. Templeton, and S. Tobinga: Constitution of Limonin. Experientia 16, 41 (1960); Arnott, S., A.W. Davie, J.M. Robertson, G.A. Sim, and D.G. Watson: The Structure of Limonin: X-Ray Analysis of Epilimonol Iodoacetate. J. Chem. Soc. 4183 (1961).Google Scholar
  90. 89.
    Emerson,O. H.: The Bitter Principles of Citrus Fruit. I. Isolation of Nomilin, a New Bitter Principle from the Seeds of Oranges and Lemons. J. Am. Chem. Soc. 70, 545 (1948).Google Scholar
  91. 90.
    Barton, D. H. R., S. K. Pradhan, S. Sternhell, and J. F. Temapleton: Triterpenoids. Part XXV. The Constitution of Limonin and Related Bitter Principles. J. Chem. Soc. 255 (1961).Google Scholar
  92. 91.
    Kubo, J., S. P. Tanis, Y. W. Lee, I. Miura, K. Nakanishi, and A. Chapya: The Structure of Harrisonin. Heterocycles 5, 485 (1976).CrossRefGoogle Scholar
  93. 92.
    Kubota, T., T. Matsuura, T. Tokoroyama, T. Kamikawa, and T. Matsumoto: Establishment of the Correlation of Obacunone and Limonin. Tetrahedron Letters 325 (1961).Google Scholar
  94. 93.
    Kamikawa, T.: Constitution of Obacunone. Nippon Kakaku Zasshi 83, 625 (1962).CrossRefGoogle Scholar
  95. 94.
    Dean, F. M., and T. A. Geissman: The Functional groups of Nomilin and Obacunone. J. Org. Chem. 23, 596 (1958).CrossRefGoogle Scholar
  96. 95.
    Adesida, G. A., and D. A. H. Taylor: Isolation of Obacunol from Lovoa trichiloides. Phytochemistry 11, 2641 (1972).CrossRefGoogle Scholar
  97. 96.
    Ahmed, F. R., A. S. Ng, and A. G. Fallis: 7a-Acetoxydihydronomilin: isolation, spectra and crystal structure. Can. J. Chem. 56,1020 (1978); Ng, A. S., and A. G. Fallis: Comment: 7a-Acetoxydihydronomilin and mexicanolide: Limonoids from Xylocarpus granatum (Koeng). Can. J. Chem. 57, 3088 (1979).Google Scholar
  98. 97.
    Marcelle, G. B., and B. S. Mootoo: 7a, 11 ß-Diacetoxydihydronomilin, A new Tetranortriterpenoid from Cedrela mexicana. Tetrahedron Letters 22, 505 (1981).CrossRefGoogle Scholar
  99. 98.
    IR(KBr) 1670 and 1625cm-1 (conj. s-lactone); UV(CH3OH) Xmax 208 nm (8 = 13000); XH-NMR 5 = 6.98 and 6.00 with /=13Hz; 13C-NMR (DMSO-d6) 6 = 152.2d for C-l and 119.0 d for C-2.Google Scholar
  100. 99.
    For nomenclature cp. Ohochuku, N. S., and D. A. H. Taylor: Chemical Shift of the Tertiary Methyl Goups in the Nuclear Magnetic Resonance Spectra of some Limonoids. J. Chem. Soc. (C), 864 (1969).Google Scholar
  101. 100.
    Adesogan, E. K., and D. A. H. Taylor: Limonoid Extractives from Khaya ivorensis. J. Chem. Soc. (C), 1710 (1970).Google Scholar
  102. 101.
    Mondon, A., B. Epe, and U. Oelbermann: Zur Kenntnis der Bitterstoffe aus Cneoraceen, XV. Tetrahedron Letters 4467 (1981).Google Scholar
  103. 102.
    Bevan, C. W., D. E. U. Ekong, T. G. Halsall, andP. Toft: West African Timbers. Part XX. The Structure of Turraeanthin, an oxygenated Tetracyclic Triterpene Monoacetate. J. Chem. Soc. (C), 820 (1967).Google Scholar
  104. 103.
    Polonsky, J., Z. Varón, R. M. Rabanal, and H. Jacquemin: 21,20-Anhydromelianon and Melianon from Simarouba amara (Simaroubaceae); Carbon-13 NMR Spectral Analysis of A7-Tirucallol-Type Triterpenes. Israel J. Chem. 16, 16 (1977).Google Scholar
  105. 104.
    Lyons, C, W., and D. R. Taylor: The Stereochemistry of Melianone and Sapelin F: Correlation with Bourjotinolon A. J. C. S. Chem. Comm. 517 (1975).Google Scholar
  106. 105.
    Cotterrell, G. P., T. G. Halsall, and M. J. Wriglesworth: A Chemical Model for a Possible Oxidative Rearrangement in the Biosynthesis of Tetranortriterpenes: the Preparation of Methyl 3a-Acetoxy-7-oxoapotirucalla-14,24-dien-21-oate. Chem. Commun. 1121 (1967); The Rearrangement of 7a,8a- and 8,9-Epoxytirucallans. J. Chem. Soc. (C), 1503 (1970); D. Lavie and E.C. Levy: Studies on Epoxides IV. Rearrangements in Triterpenoids. Tetrahedron Letters 2097 (1968).Google Scholar
  107. 106.
    Buchanan, J. G. ST. C., and T. G. Halsall: The Conversion of Turraeanthin and Turraeanthin A into Simple Meliacins by a Route Involving an Oxidative Rearrangement of Probable Biogenetic Importance. J. Chem. Soc. (C), 2280 (1970).Google Scholar
  108. 107.
    Merrien, A., and J. Polonsky: The Natural Occurence of Melianodiol and its Diacetate in Samadera madagascariensis, (Simaroubaceae): Model Experiments on Melianodiol directed towards Simarolide. Chem. Commun 261 (1971); Merrien, A., B. Meunier, CL. Pascard, and J. Polonsky: Epoxide Configuration in 3p-Acetoxy-7a-hydroxy- 14,15-epoxy-apotirucallane prepared from Tirucalla-7,24-dien-3-one. X-Ray Analysis. Tetrahedron 37, 2303 (1981).Google Scholar
  109. 108.
    Halsall, T. G., and T. A. Stroke: Abstract Book of 10th JUPAC Symposium of Natural Products, New Zealand, 1976 (cf. ref. (103)).Google Scholar
  110. 109.
    Sinnwell, V.: XH- and 13C-NMR spectra measured at 400 and 100 MHz respectively in CDC13.Google Scholar
  111. 110.
    The following signals show the doubling particularly clearly: 8 = 5.36/5.34 (t,t, /=2.5 Hz, 1H, 21-H) (Difference A = 8 Hz), 2.55/2.53 (d,d, /= 2.5 Hz, 1H, exchangeable with D20, 21-OH) (A = 8 Hz), 2.85/2.73 (d,d, J= 8 Hz, 1H, 24-H), (A = 44Hz), 1.05/1.00 (s,s, 3H, 13-CH3) (A = 20 Hz); in contrast, 23-H appears as a very broad multiplet centred at S = 3.93ppm. The chemical shift of the protons 24-H and 13-CH3 of the epimers is influenced most strongly by the a- or (3-orientation of the OH group at C-21.Google Scholar
  112. 111.
    Remberg, G.: Mass spectra measured with high resolution.Google Scholar
  113. 112.
    Jolad, S. D., J. J. Hoffmann, K. H. Schramm, J. R. Cole, M. S. Tempesta, and R. B. Bates: Constituents of Trichilia hispida (Meliaceae), 4. Hispidols A and B, Two New Tirucallane Triterpenoids. J. Org. Chem. 46, 4085 (1981).CrossRefGoogle Scholar
  114. 113.
    Le C, C., and J.-Y. Lallemand: Precise Carbon-13 N.M.R. Multiplicity Determination. J.C.S. C. Em. Commun. 150 (1981).Google Scholar
  115. 114.
    H-NMR (400 MHz, CDC13): 8 = 2.54 (d,.7=6.2Hz; 1H, 24-H), 2.82 (dd, J, =6, /2 = 2.3Hz; 1H, 23-H), 2.64 (dd, J, =2.3, /2 = 8.1 Hz; 1H, 22-H).Google Scholar
  116. 115.
    H-NMR (400 MHz, CDC13): Indor-Spectroscopy: 8 = 1.06 (d, /=7Hz; 3H, 21-CH3), 1.30 (quintuplet, Jx= 7, J2 = 8.1, J3 = 11 Hz; 1H, 20-H).Google Scholar
  117. 116.
    Ceroni, M., and U, Séquin: The Structure of the Antibiotic Hedamycin. IV. Relative Configurations in the Diepoxide Side Chain. Tetrahedron Letters 3707 (1979); Zehnder, M., U.Séquin, and H. Nadig: The Structure of the Antibiotic Hedamycin. V. Crystal Structure and Absolute Configuration. Helv. Chim. Acta 62, 2525 (1979).CrossRefGoogle Scholar
  118. 117.
    Breen, G. J. W., E. Ritchie, W. T. L. Sidwell, and W. C. Taylor: The Chemical Constituents of Australian Flindersia Species. XIX. Tri terpenoids from the leaves of F. Bourjotiana. Austr. J. Chem. 19, 455 (1966).CrossRefGoogle Scholar
  119. 118.
    Chan, W. R., D. R. Taylor, and T. Yee: Triterpenoids from Etandrophragma cylindricum Sprague. Parti. Structures of Sapelins A, and B. J. Chem. Soc. (C), 311 (1970).Google Scholar
  120. 119.
    Jolad, S. D., J. J. Hoffmann, J. R. Cole, M. S. Tempesta, and R. B. Bates: Constituents of Trichilia hispida (Meliaceae). 2. A.New Triterpenoid, Hispidone, and Bourjotinolon A. J. Org. Chem. 45, 3132 (1980).Google Scholar
  121. 120.
    Okogun, J. I., CH. O. Fakunle, D. E. U. Ekong, and J. D. Connolly: Chemistry of the Meliacins (Limonoids): Structure of Melianin A, a new Protomeliacin from Melia azedarach. J.C.S. Perkin I, 1352 (1975).Google Scholar
  122. 121.
    Lavte, D., M. K. Jain, and (Mrs.) S. R. Shpan-Gabrielith: A Locust Phagorepellent from Two Melia Species. Chem. Commun. 910 (1967).Google Scholar
  123. 122.
    Connolly, J. D., C. Labbe, D. S. Rycroft, and D. A. H. Taylor: Tetranortri- terpenoids and Related Compounds. Part 22. New Apotirucallol Derivatives and Tetranortriterpenoids from the Wood and Seeds of Chisochetonpaniculatus (Meliaceae). J.C.S. Perkin I, 2959 (1979).Google Scholar
  124. 123.
    Akisaanya, A., C. W. L. Bevan, T. G. Halsall, J. W. Powell, and D. A. H. Taylor: West African Timbers. Part IV. Some Reactions of Gedunin. J. Chem. Soc. 3705 (1961).Google Scholar
  125. 124.
    Kraus, W., K. Kypke, M. Bockel, W. Grimminger, G. Sawitzki, and G. Schwinger: Surenolacton, ein neues Tetranortriterpenoid-A/B-Dilacton aus Toona sureni [Blume] Merrill (Meliaceae). Liebigs Ann. Chem. 1982, 87.Google Scholar
  126. 125.
    Thoms, H.: Die chemischen Inhaltsstoffe der Rutaceen, VII. Über den weißen Diptam, Dictamus albus L. Ber. Dtsch. Pharm. Ges. 33, 68 (1923).Google Scholar
  127. 126.
    Pailer, M., G. Schaden, G. Spiteller, and W. Fenzl: Die Konstitution des Fraxi- nellons (aus Dictamus albus L.). Monatsh. Chem. 96, 1324 (1965).CrossRefGoogle Scholar
  128. 128.
    Coggon, P., A. T. Mcphail, R. Storer, and D. W. Young: The Structure and Absolute Configuration of Fraxinellone, a Biogenetically Intriguing Terpenoid from Dictamus albus L. Chem. Commun. 828 (1969).Google Scholar
  129. 128.
    Ekong, D. E. U., C. O. Fakunle, A. K. Fasina, and J. I. Okogun: The Meliacins (Limonoids). Nimbolin A and B, Two New Meliacin Cinnamates from Azadirachta indica L. and Melia azedarach L. Chem. Commun. 1166 (1969).Google Scholar
  130. 129.
    Cassady, J. M., and CH.-SH. Liu: The Structure of Calodendrolide, a Novel Terpenoid from Calodendrum capense Thunb. J.C.S. Chem. Comm. 86 (1972).Google Scholar
  131. 130.
    Fukuyama, Y., T. T. Koroyama,and T. Kubota: Total synthesis of Fraxinellon. Tetrahedron Letters 3401 (1972); Tokoroyama, T., Y. Fukuyama, T. Kubota, and K. Yokotani: Synthetic studies on Terpene Compounds. Part 13. Total Synthesis of Fraxinellone. J. C. S. Perkin I, 1557 (1981).Google Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • A. Mondon
    • 1
  • B. Epe
    • 1
  1. 1.Institute of Organic ChemistryUniversity of KielFederal Republic of Germany

Personalised recommendations