The Structure of Influenza Virus Defective Interfering (DI) RNAs and Their Progenitor Genes

  • D. P. Nayak
  • N. Sivasubramanian


The term defective interfering (DI) virus particles was used by Huang and Baltimore [31] to define a class of virus particles which possess the following properties: (a) They are defective, unable to replicate independently; (b) They require the helper function of standard virus for replication; (c) They interfere with the replication of standard virus; (d) They are usually deletion mutants, i.e., the genome of DI particles does not represent the entire genome of standard virions. Although all of the DI genomes studied to date are shorter than the standard viral genome and are deletion mutants, it is possible some DI genome may contain an altered nucleic acid sequence(s) rather than a deletion(s) and become defective as well as interfering. DI particles were first observed by von Magnus [64,65] when he passaged influenza virus serially undiluted in embryonated chicken eggs. He called these particles “incomplete” particles which were both defective and interfering. Subsequently, DI particles have been reported for nearly all animal viruses during high multiphcity passages (for a detailed review see reference no. [32]).


Influenza Virus Polymerase Gene Semliki Forest Virus Internal Deletion Human Influenza Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ada, G. L., Perry, B. T.: Infectivity and nucleic acid content of influenza virus. Nature (Lond.) 175, 209–210 (1955).CrossRefGoogle Scholar
  2. [2]
    Ada, G. L., Perry, B. T.: Influenza virus nucleic acid relationship between biological characteristics of the vims particle and properties of the nucleic acid. J. Gen. Microbiol. 14, 623 (1956).Google Scholar
  3. [3]
    Adman, R., Grossman, L.: Template properties of polyribonucleotides containing uracil or modified uracil in the RNA polymerase reaction. J. Mol. Biol. 23, 417–439 (1967).PubMedCrossRefGoogle Scholar
  4. [4]
    Amesse, L. S., Pridgen, C.L., Kingsbury, D. W.: Sendai virus DI RNA species with conserved virus genome termini and extensive internal deletions. Virology 118, 17–27 (1982).PubMedCrossRefGoogle Scholar
  5. [5]
    Bean, W.J., Simpson, R.W.: Transcription activity and genome conposition of defective influenza vims. J. Virol. 18, 365–369 (1976).PubMedGoogle Scholar
  6. [6]
    Bennink, J. R., Yewdell, J. W., Gerhard, W.: A viral polymerase involved in recognition of influenza vims-infected cells by a cytotoxic T-cell clone. Nature 296, 75–76 (1982).PubMedCrossRefGoogle Scholar
  7. [7]
    Bishop, D. H. L., Huddleston, J. A., Brownlee, G. G.: The complete sequence of RNA segments of influenza A/NT/60/68 and its encoded PI protein. Nucleic Acids Res. 10,1335–1343 (1982).PubMedCrossRefGoogle Scholar
  8. [8]
    Bishop, D. H. L., Jones, K. L., Huddleston, J. A., Brownlee, G. G.: Influenza A vims evolution: Complete sequences of influenza A/NT/60/68 RNA segment 3 and its predicted acidic P polypeptide compared with those of influenza A/PR/8/34. Virology 120, 481–489 (1982).PubMedCrossRefGoogle Scholar
  9. [9]
    Brown, W. E., Stump, K. H., Kelley, W. S.: Escherichia coh DNA polymerase 1 sequence characterization and secondary stmcture prediction. J. Biol. Chem. 257, 1965–1972 (1982).PubMedGoogle Scholar
  10. [10]
    Camerini-Otero, R.D., Sollner-Webb, B., Felsenfeld, G.: The stmcture of the nucleosome: Evidence for an arginine rich histone kernel. In: Nucleic Acid-Protein Recognition (Vogel, H.J., ed.), 151–158. New York: Academic Press 1977.Google Scholar
  11. [11]
    Carter, C. W., Kraut, J.: A proposed model for interaction of polypeptides with RNA. Proc. Natl. Acad. Sci. U.S.A. 71, 283–287 (1974).PubMedCrossRefGoogle Scholar
  12. [12]
    Carter, M.J., Mahy, B. W.J.: Incomplete avian influenza vims contains a defective noninterfer- ing component. Arch. Virol. 71, 12–25 (1982).Google Scholar
  13. [13]
    Carter, M.J., Mahy, B. W.J.: Synthesis of RNA segments 1–3 during generation of incomplete influenza A (Fowl plague) vims. Arch. Virol. 73, 109–119 (1982).PubMedCrossRefGoogle Scholar
  14. [14]
    Carter, M.J., Mahy, B.W.J.: Incomplete avian influenza A vims displays anomalous interference. Arch. Virol. 74, 71–76 (1982).PubMedCrossRefGoogle Scholar
  15. [15]
    Chamberlin, M., Berg, P.: Mechanism of RNA polymerase action. Characterization of DNA- dependent synthesis of polyadenylic acid. J. Mol. Biol. 8, 708–726 (1964).PubMedCrossRefGoogle Scholar
  16. [16]
    Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P.J. G., Klug, A.: The stmcture of the protein disk of tobacco mosaic vims to 5 Â resolution. Nature 259, 20–24 (1976).PubMedCrossRefGoogle Scholar
  17. [17]
    Chanda, P. K., Chambers, T. M., Nayak, D. P.: In vitro transcription of defective interfering particles of influenza virus produces poly(A)-containing complementary RNAs. J. Virol. 45, 55–61 (1983).PubMedGoogle Scholar
  18. [18]
    Choppin, P. W., Pons, M. W.: The RNAs of infective and incomplete influenza virions grown in MDBK and HeLa cells. Virology 42, 603 (1970).PubMedCrossRefGoogle Scholar
  19. [19]
    Chou, P. Y., Adler, A. J., Pasman, G. D.: Conformational prediction and circular dichroism studies on the lac repressor. J. Mol. Biol. 96, 29–45 (1975).PubMedCrossRefGoogle Scholar
  20. [19a]
    Chou, P. Y., Pasman, G. D.: Empirical predictions of protein conformation. Annu. Rev. Biochem. 47, 251–276 (1978).PubMedCrossRefGoogle Scholar
  21. [20]
    Cmmpton, W. M., Dimmock, N. J., Minor, P. D., Avery, R. J.: The RNAs of defective-interfering influenza virus. Virology 90, 370–373 (1978).CrossRefGoogle Scholar
  22. [21]
    Cmmpton, W. M., Clewley, J. P., Dimmock, N. J., Avery, R. J.: Origin of subgenomic RNAs in defective-interfering influenza virus. PEMS Microbiol. Lett. 6, 431–434 (1979).Google Scholar
  23. [22]
    Cmmpton, W. M., Avery, R. J., Dimmock, N. J.: Influence of the host cell on the genomic and subgenomic RNA content of defective-interfering influenza vims. J. Gen. Virol. 53,173–177 (1981).CrossRefGoogle Scholar
  24. [23]
    Davis, A. R., Nayak, D. P.: Sequence relationships among defective interfering influenza viral RNAs. Proc. Nati. Acad. Sci. U.S.A. 76, 3092–3096 (1979).CrossRefGoogle Scholar
  25. [24]
    Davis, A. R., Hiti, A. L., Nayak, D. P.: Influenza defective interfering viral RNA is formed by internal deletion of genomic RNA. Proc. Nafl. Acad. Sci. U.S.A. 77, 215–219 (1980).CrossRefGoogle Scholar
  26. [24a]
    Dayhoff, M. O.: Atlas of Protein Sequence and Stmcture, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Georgetown University Medical Center, Washington, DC 20007, U.S.A., 363–373 (1978).Google Scholar
  27. [25]
    De, B. K., Nayak, D. P.: Defective interfering influenza vimses and host cells: Establishment and maintenance of persistent influenza virus infection in MDBK and HeLa cells. J. Virol. 36, 847–859 (1980).PubMedGoogle Scholar
  28. [26]
    Fields, S., Winter, G.: Nucleotide sequence heterogeneity and sequence rearrangements in influenza virus cDNA. Gene 15, 207–214 (1981).PubMedCrossRefGoogle Scholar
  29. [27]
    Fields, S., Winter, G.: Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic stmctures of a small viral RNA segment. Cell 28, 303–313 (1982).PubMedCrossRefGoogle Scholar
  30. [28]
    Fiers, W., Contreras, R., Duerinck, P., Haigeman, G., Iserentant, D., Merregaert, J., Minjou, W, Molemans, P., Raeymaekers, A., van den Berghe, A., Volckaert, G., Ysebaert, M.: Complete nucleotide sequence of bacterophage MS2 RNA: primary and secondary stmcture of the replicase gene. Nature 260, 500–507 (1976).PubMedCrossRefGoogle Scholar
  31. [29]
    Garoff, H., Frischauf, A.M., Simons, K., Lehrach, H., Delius, H.: The capsid protein of Semliki forest vims has clusters of basic amino acids and prolines in its amino terminal region. Proc. Nafl. Acad. Sci. U.S.A. 77, 6376–6380 (1980).CrossRefGoogle Scholar
  32. [29a]
    Hiti, A. L., Davis, A. R., Nayak, D. P.: Complete sequence analysis shows that the hemagglutinins of the HO and H2 subtypes of human influenza vims are closely related. Virology iii, 113–124 (1981).Google Scholar
  33. [29b]
    Hiti, A. L., Nayak, D. P.: Complete nucleotide sequence of the neuraminidase gene of human influenza vims A/WSN/33. J. Virol. 41, 730–734 (1982).PubMedGoogle Scholar
  34. [30]
    Holland, J. J., Kennedy, S. I. T, Semler, B. L, Jones, C. L., Roux, L., Grabau, E. A.: Defective interfering RNA vimses and the host cell response. In: Comprehensive Virology, Vol. 16 (Fraenkel-Conrat, H., Wagner, R. R., eds.), 137–192. New York: Plenum Press 1980.CrossRefGoogle Scholar
  35. [31]
    Huang, A. S., Baltimore, D.: Defective viral particles and viral disease processes. Nature (Lond.) 226, 325 (1970).CrossRefGoogle Scholar
  36. [32]
    Huang, A. S., Baltimore, D.: Defective interfering animal vimses. In: Comprehensive Virology, Vol. 10 (Frankel-Conrat, H., Wagner, R. R., eds.), 73–116. New York: Plenum 1977.Google Scholar
  37. [33]
    Irwin, M. J., Nyborg, J., Reid, B. R., Blow, D. M.: The crystal stmcture of tyrosyl-transfer RNA synthetase at 2.7 A resolution. J. Mol. Biol. 105, 577–586 (1976).PubMedCrossRefGoogle Scholar
  38. [34]
    Janda, J. M., Nayak, D. P.: Defective influenza viral ribonucleoproteins cause interference. J. Virol. 32, 697–702 (1979).PubMedGoogle Scholar
  39. [35]
    Janda, J. M., Davis, A. R., Nayak, D. P., De, B. K: Diversity and generation of defective interfering influenza virus particles. Virology 95, 48–58 (1979).PubMedCrossRefGoogle Scholar
  40. [36]
    D. P. Nayak and N. Sivasubramanian Kaptein, J., Nayak, D.P.: Complete nucleotide sequence of the polymerase 3 (P3) gene of human influenza vims A/WSN/33. J. Virol. 42, 55–63 (1982).PubMedGoogle Scholar
  41. [37]
    Kavern, N., Kolomietz, L., Rudneva, I.: Incomplete influenza vims. Partial functional complementation as revealed by hemadsorbing cell count test. J. Virol. 34, 506–511 (1980).Google Scholar
  42. [38]
    Keene, J. D., Chien, I. M., Lazzarini, R. A.: Vesicular Stomatitis defective interfering particle contained a muted, internal leader RNA gene. Proc. Nad. Acad. Sci. U.S.A. 18, 2090–2094 (1981).CrossRefGoogle Scholar
  43. [38a]
    King, A. M. Q, McCahon, D., Slade, W. R., Newman, J. W. L: Recombination in RNA. Cell 29, 921–928 (1982).PubMedCrossRefGoogle Scholar
  44. [39]
    Kitamura, N., Semer, B.L., Rothberg, P.O., Larsen, G.R., Adler, C.J., Dorner, A.J., Emini, E. A., Hanecak, R., Lee, J. I., Van der Werf, S., Anderson, C. W.,’Wimmer, E.: Primary Stmcture, gene organization and polypeptide expression of polio-vims RNA. Nature 291,547–553 (1981).PubMedCrossRefGoogle Scholar
  45. [39a]
    Lamb, R. A., Ching-Juh, Lai: Sequence of intermpted and unintermpted mRNAs and cloned DNA coding for the two overlapping nonstmctural proteins of Influenza Vims. Cell 21, 475–485 (1980).PubMedCrossRefGoogle Scholar
  46. [40]
    Lazzarini, R. A., Keene, J. D., Schubert, M.: The origins of Defective Interfering Particles of the negative strand RNA vimses. Cell 26, 145–154 (1981).PubMedCrossRefGoogle Scholar
  47. [41]
    Lehtovaara, P., Soderlund, H., Keranen, S., Petterson, R. F., Kaarianen, L.: 18 S defective interfering RNA of Semliki forest vims contains a triplicated linear repeat. Proc. Nad. Acad. Sci. U.S.A. 78, 5353–5357 (1981).CrossRefGoogle Scholar
  48. [42]
    Lenard, J., Compans, R. W.: Polypeptide composition of incomplete influenza vims grown in MDBK cells. Virology 65, 418–426 (1975).PubMedCrossRefGoogle Scholar
  49. [43]
    Moss, B. A., Brownlee, G. G.: Sequence of DNA complementary to a small RNA segment of Influenza vims A/NT/60/68. Nucleic Acids Res. 9, 1941–1947 (1981).PubMedCrossRefGoogle Scholar
  50. [44]
    Nakajima, K., Ueda, M., Sugiura, A.: Origin of small RNA in von Magnus particles of influenza vims. J. Virol. 29, 1142–1148 (1979).PubMedGoogle Scholar
  51. [45]
    Nayak, D. P., Baluda, M. A.: Isolation and partial characterization of nucleic acid of influenza vims. J. Virol. 1 (6), 1217–1223 (1967).PubMedGoogle Scholar
  52. [46]
    Nayak, D.P.: Influenza vimses: stmcture, replication and defectiveness. Fed. Proc. 28, 1858–1865 (1969).PubMedGoogle Scholar
  53. [47]
    Nayak, D. P.: Defective vims RNA synthesis and production of incomplete influenza vims in chick embryo cells. J. Gen. Virol. 14, 63 (1972).PubMedCrossRefGoogle Scholar
  54. [48]
    Nayak, D. P.: Defective interfering influenza vimses. Ann. Rev. Microbiol. 34, 619–644 (1980).CrossRefGoogle Scholar
  55. [49]
    Nayak, D.P., Tobita, K., Janda, J.M., Davis, A.R., De, B.K.: Homologous interference mediated by defective interfering influenza vims derived from a temperature-sensitive mutant of influenza vims.J. ViroL 28, 375–386 (1978).PubMedGoogle Scholar
  56. [50]
    Nayak, D.P., Davis, A. R., Cortini, R.: Defective interfering influenza vimses: Complete sequence analysis of a DI RNA. In: Genetic Variation Among Influenza Vimses (Nayak, D. P., ed.), 77–92. New York: Academic Press 1982.Google Scholar
  57. [51]
    Nayak, D.P., Sivasubramanian, N., Davis, A. R., Cortini, R., Sung, J.: Complete sequence analyses show that two defective interfering influenza viral RNAs contain a single internal deletion ofa polymerase gene. Proc. Nad. Acad. Sci. U.S.A. 79, 2216–2220 (1982).CrossRefGoogle Scholar
  58. [52]
    Pasek, M., Goto, T., Gilbert, W., Zink, B., Schaller, H., Mackay, P., Leadbetter, G., Murray, K.: Hepatitis B vims genome and their expression in Escherichia coli. Nature (Lond.) 282, 575–579 (1979).CrossRefGoogle Scholar
  59. [53]
    Perrault, J.: Origin and replication of Defective Interfering Particles. Curr. Topics in Microbiology and Immunology 93, 152–207 (1981).Google Scholar
  60. [54]
    Perrault, J., Semler, B.L., Leavitt, R.W., Holland, J.J.: Inverted complementary terminal sequences in defective interfering particle RNAs of vesicular somatitis vims and their possible role in autointerference. In: Negative Strand Vimses and the Host Cell (Mahy, B. W.J., Barry, R.D., eds.), 527–538. New York: Academic Press 1978.Google Scholar
  61. [55]
    Plotch, S. J., Kmg, R. M.: Influenza vims transcriptase: Synthesis in vitro, of large polyadenylic acid containing complementary RNA. J. Virol. 21, 24–34 (1977).PubMedGoogle Scholar
  62. [56]
    Plotch, S.J., Bouloy, M. Kmg, R.M.: Transfer of 5’ terminal cap of globin mRNA during transcription in vitro. Proc. Nad. Acad. Sci. U.S.A. 76, 1618–1622 (1979)CrossRefGoogle Scholar
  63. [56a]
    Schiffer, M., Edmundson, A. B.: Use of helical wheels to represent the stmctures of proteins and to identify segments with hehcal potential. Biophys. J. 7,121–135 (1967).PubMedCrossRefGoogle Scholar
  64. [57]
    Schnitzlein, W. M., Reichmann, M. E.: The size and the cistronic origin of defective vesicular stomatitis vims particle RNAs in relation to homotypic and heterotypic interference. J. Mol. Biol. 101, 307–325 (1976).PubMedCrossRefGoogle Scholar
  65. [57a]
    Sharp, P. A.: Speculations on RNA splicing. Cell 23, 643–646 (1981).PubMedCrossRefGoogle Scholar
  66. [58]
    Sivasuhramanian, N., Nayak, D. P.: Sequence analysis of the polymerase 1 gene and the secondary stmcture prediction of polymerase 1 protein of human influenza vims A/WSN/33. J. Virol. 44, 321–329 (1982).Google Scholar
  67. [59]
    Sivasuhramanian, N., Nayak, D. P.: Defective interfering influenza RNAs of polymerase 3 gene contain single as well as multiple internal deletions. Virology 124, 232–237 (1983).CrossRefGoogle Scholar
  68. [60]
    Soeda, E., Arrand, J. R., Grififm, B. E.: Polyoma vims DNA: Complete nucleotide sequence of the gene which codes for polyoma vims capsid protein VPl and overlaps the VP2-VP3 genes. J. Virol. 33, 619–630 (1980).PubMedGoogle Scholar
  69. [61]
    Ueda, M., Nakajima, K., Sugiura, A.: Extra RNAs of von Magnus particles of influenza vims cause reduction of particular polymerase genes. J. Virol. 34, 1–8 (1980).PubMedGoogle Scholar
  70. [62]
    Van Rompuy, L., Minjou, W, Huylebroeck, D., Devos, R., Fiers, W: Complete nucleotide sequence of the nucleoprotein gene from the human influenza strain /V/PR/8/34 (HON 1). Eur. J. Biochem. 116, 347–353 (1981).PubMedCrossRefGoogle Scholar
  71. [63]
    Von Heuverswyn, H., Van de Voorde, A., Fiers, W: Nucleotide sequence of the Simian vims 40 Hind II & III restriction fragment J and the total amino acid sequence of the major stmctural protein VPl. Eur. J. Biochem. 91, 415–430 (1978).PubMedCrossRefGoogle Scholar
  72. [64]
    Von Magnus, P.: Studies on interference in experimental influenza. I. Biological observations. Mineral. Geol. 24 (7), 1 (1947).Google Scholar
  73. [65]
    Von Magnus, P.: Propagation of the PR-8 strain of influenza A vims in chick embryos. III. Properties of the incomplete vims produced in serial passages of undiluted vims. Acta. Pathol. Microbiol. Scand. 29, 157 (1951).CrossRefGoogle Scholar
  74. [66]
    Von Magnus, P.: Incomplete forms of influenza vims. Adv. Vims Res. 2, 59–68 (1954).CrossRefGoogle Scholar
  75. [67]
    Winter, G., Fields, S.: Cloning of influenza cDNA into M13: The sequence of the RNAsegment encoding the A/PR/8/34 matrix protein. Nucleic Acids Res. 8, 1965–1974 (1980).PubMedCrossRefGoogle Scholar
  76. [68]
    Winter, G., Fields, S.: The stmcture of the gene encoding the nucleoprotein of human influenza vims A/PR/8/34. Virology 114, 423–428 (1981).PubMedCrossRefGoogle Scholar
  77. [69]
    Winter, G., Fields, S.: Nucleotide sequence of human influenza A/PR/8/34 segment 2. Nucleic Acids Res. 10, 2135–2143 (1982).PubMedCrossRefGoogle Scholar
  78. [70]
    Winter, G., Fields, S., Ratti, G.: The stmcture of the two subgenomic RNAs from human influenza vims A/PR/8/34. Nucleic Acid Res. 9, 6907–6915 (1981).PubMedCrossRefGoogle Scholar
  79. [71]
    Eisenberg, D., Weiss, R. M., Terwilliger, T. C.: The helical hydrophobic moment: a measure of the amphiphihcity of a helix. Nature 299, 371–374 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • D. P. Nayak
  • N. Sivasubramanian

There are no affiliations available

Personalised recommendations