Transcription and Replication of Influenza Viruses

  • R. M. Krug


The segmented RNA genome of influenza virus is of negative polarity, i.e., the viral messenger RNA (NA) is complementary to the genome or virion RNA (NA) and the virion contains the enzyme system which transcribes the NA into the viral NA [75]. The synthesis of influenza viral NA involves a unique interaction with the host cell transcriptional machinery in the nucleus of the infected cell. This interaction is required first for the initiation of the synthesis of the viral NA chains. A viral endonuclease cleaves 5’-terminal fragments from newly synthesized capped (m7GpppNm-containing) cellular RNAs in the nucleus. These are most likely heterogeneous nuclear RNAs (hNAs), the precursors of cellular NAs [33, 42, 77]. These fragments of capped host nuclear RNAs serve as primers to initiate viral NA synthesis. The interaction with host cell nuclear functions apparently continues after the viral NAs are synthesized. The viral NAs, like other NAs (both viral and cellular) synthesized in the nucleus [81], contain internal N6 methyl adenosine (m6A) residues [43, 46], and several of the viral NAs appear to be generated by splicing like that occurring during the processing of hNAs to form cellular NAs [50]. Most likely, internal methylation and splicing of influenza viral NAs are carried out by cellular RNA processing enzymes in the nucleus.


Influenza Virus Ribonucleoside Triphosphate Influenza Virus Genome vRNA Template vRNA Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allen, H., Mauley, J., Waterfield, M., Gething, M.J.: Influenza virus RNA segment 7 has the coding capacity for two polypeptides. Virology 107, 548–551 (1980).PubMedGoogle Scholar
  2. [2]
    Aloni, Y., Dhar, R., Khoury, G.: Methylation of nuclear simian virus 40 RNAs. J. Virol. 32, 52–60 (1979).PubMedGoogle Scholar
  3. [3]
    Bannerjee, A. K.: 5’-terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol. Rev. 44, 175–205 (1980).Google Scholar
  4. [4]
    Barrett, T., Wolstenholme, A. J., Mahy, B. W. J.: Transcription and replication of influenza virus RNA. Virology 98, 211–225 (1979).PubMedGoogle Scholar
  5. [5]
    Barry, R. D., Ives, D. R., Cruickshank, J. G.: Participation of deoxyribonucleic acid in the multiplication of influenza virus. Nature 194,1139–1140 (1962).PubMedGoogle Scholar
  6. [6]
    Beaton, A. R., Krug, R. M.: Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucl. Acids Res. 9, 4423–4436 (1981).PubMedGoogle Scholar
  7. [7]
    Beemon, K., Keith, J.: Localization of N6-methyladenosine in the Rous sarcoma virus genome. J. Mol. Biol. 113, 165–179 (1977).PubMedGoogle Scholar
  8. [8]
    Blaas, D., Patzelt, E., Kuechler, E.: Cap-recognizing protein of influenza virus. Virology 116, 339–348 (1982).PubMedGoogle Scholar
  9. [9]
    Blaas, D., Patzelt, E., Keuchler, E.: Identification of the cap binding protein of influenza virus. Nucl. Acids Res. 10, 4803–4812 (1982).PubMedGoogle Scholar
  10. [10]
    Bouloy, M., Morgan, M. A., Shatkin, A. J., Krug, R. M.: Cap and internal nucleotides of reovirus NA primers are incorporated into influenza viral complementary RNA during transcription in vitro. J. Virol. 32, 895–904 (1979).PubMedGoogle Scholar
  11. [11]
    Bouloy, M., Plotch, S.J., Krug, R. M.: Globin NAs are primers for the transcription of influenza viral RNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 75, 4886–4890 (1978).PubMedGoogle Scholar
  12. [12]
    Bouloy, M., Plotch, S.J., Krug, R. M.: Both the 7-methyl and 2-O-methyl groups in the cap ofa NA strongly influence its ability to act as a primer for influenza viral RNA transcriptions. Proc. Nad. Acad. Sci. U.S.A. 77, 3952–3956 (1980).Google Scholar
  13. [13]
    Briedis, D.J., Conti, G., Munn, E. A., Mahy, B W.J.: Migration of influenza virus-specific polypeptides from cytoplasm to nucleus of infected cells. Virology 111, 154–164 (1981).PubMedGoogle Scholar
  14. [14]
    Briedis, D.J., Lamb, R. A.: Influenza B virus genome: sequences and stmctural organization of RNA segment 8 and the NAs coding for the NSl and NS2 proteins. J. Virol. 42,186–193 (1982).PubMedGoogle Scholar
  15. [15]
    Caliguiri, L. A., Compans, R. W.: Analysis of thein vitro product of an RNA-dependent RNA polymerase isolated from influenza virus-infected cells. J. Virol. 14, 191–197 (1974).PubMedGoogle Scholar
  16. [16]
    Canaani, D., Kahana, C., Lavi, S., Groner, Y.: Identification and mapping of N6-methyladenosine containing sequences in Simian Virus 40 RNA. Nucl. Acids Res. 6, 2879–2899 (1979).PubMedGoogle Scholar
  17. [17]
    Caton, A.J., Robertson, J. S.: Stucture of the host-derived sequences present at the 5’ ends of influenza virus NA. Nucl. Acids Res. 8, 2591–2603 (1980).PubMedGoogle Scholar
  18. [18]
    Chen-Kiang, S., Nevins, J. R., Darnell, J. E.: N-6-Methyladenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA. J. Mol. Biol. 135, 733–752 (1979).PubMedGoogle Scholar
  19. [19]
    Compans, R.W., Caliguiri, L.A.: Isolation and properties of an RNA polymerase from influenza virus-infected cells. J. Virol. 11, 441–448 (1973).PubMedGoogle Scholar
  20. [20]
    Compans, R. W., Content, J., Duesberg, P. H.: Structure of the ribonucleoprotein of influenza virus. J. Virol. 10, 795–800 (1972).PubMedGoogle Scholar
  21. [21]
    Davis, A. R., Hiti, A. L., Nayak, D. P.: Influenza defective interfering viral RNA is formed by internal deletion of genomic RNA. Proc. Nafl. Acad. Sci. U.S.A. 77, 215–219 (1980).Google Scholar
  22. [22]
    Dhar, R., Chanock, R.M., Lai, C.-J.: Nonviral oligonucleotides at the 5’ terminus of cytoplasmic influenza viral NA deduced from cloned complete genomic sequences. Cell 21, 495–500 (1980).PubMedGoogle Scholar
  23. [23]
    Dimock, K., Stoltzfiis, C.M.: Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16, 471–478 (1977).PubMedGoogle Scholar
  24. [24]
    Etkind, P.R., Krug, R.M.: Influenza viral messenger RNA. Virology 62, 38–45 (1974).PubMedGoogle Scholar
  25. [25]
    Etkind, P. R., Krug, R. M.: Purification of influenza viral complementary RNA: its genetic content and activity in wheat germ cell-free extracts. J. Virol. 16, 1464–1475 (1975).PubMedGoogle Scholar
  26. [26]
    Gupta, K. C., Kingsbury, D.W.: Conserved polyadenylation signals in two negative-strand RNA virus famihes. Virology 120, 518–523 (1982).PubMedGoogle Scholar
  27. [27]
    Hastie, N. D., Mahy, B. W.J.: RNA-dependent RNA polymerase in nuclei of cells infected with influenza virus. J. Virol. 12, 951–961 (1973).PubMedGoogle Scholar
  28. [28]
    Hay, A. J., Abraham, G., Skehel, J.J., Smith, J. C., Fellner, P.: Influenza virus messenger RNAs are incomplete transcripts of the genome RNAs. Nucl. Acids Res. 4, 4179–4209 (1977).Google Scholar
  29. [29]
    Hay, A.J., Lomniczi, B., Bellamy, A.R., Skehel, J.J.: Transcription of the influenza virus genome. Virology 83, 337–355 (1977).PubMedGoogle Scholar
  30. [30]
    Hay, A. J., Skehel, J. J.: Studies on the synthesis of influenza virus proteins. In: Negative Strand Viruses (Mahy, B. W. J., Barry, R. D., eds.), Vol. 2,635–655. New York-London: Academic Press 1975.Google Scholar
  31. [31]
    Hay, A. J., Skehel, J. J., Mauley, J.: Structure and synthesis of influenza virus complementary RNAs. Phil. Trans. R. Soc. (Lond.) B 288, 341–348 (1980).Google Scholar
  32. [32]
    Hay, A. J., Skehel, J. J., Mauley, J.: Characterization of influenza virus RNA complete transcripts. Virology 116, 517–522 (1982).PubMedGoogle Scholar
  33. [33]
    Herz, C., Stavnezer, E., Kmg, R. M., Gurney, T., jr.: Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26, 391–400 (1981).PubMedGoogle Scholar
  34. [34]
    Horisberger, M. A.: The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology 107, 302–305 (1980).PubMedGoogle Scholar
  35. [35]
    Inglis, S. C., Barrett, T., Brown, C. M., Almond, J. W.: The smallest genome RNA segment of influenza virus contains two genes that may overlap. Proc. Natl. Acad. Sci. U.S.A. 76, 3790–3794 (1979).PubMedGoogle Scholar
  36. [36]
    Inghs, S. C., Carroll, A. R., Lamb, R. A., Mahy, B. W. J.: Polypeptides specified by the influenza virus genome. I. Evidence for eight distinct gene products specified by fowl plague virus. Virology 74, 489–503 (1976).Google Scholar
  37. [37]
    Inglis, S. C., Mahy, B. W. J.: Polypeptides specified by the influenza virus genome. 3. Control of synthesis in infected cells. Virology 95, 154–164 (1979).PubMedGoogle Scholar
  38. [38]
    Jackson, D. A., Caton, A. J., Mready, S. J., Cook, P. R.: Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 296, 366–368 (1982).PubMedGoogle Scholar
  39. [39]
    Koennecke, I., Boschek, C. B., Scholtissek, C.: Isolation and properties of a temperature-sensi- tive mutant (ts 412) of an influenza A virus recombinant with a ts lesion in the gene coding for the nonstmctural protein. Virology 110, 16–25 (1981).PubMedGoogle Scholar
  40. [40]
    Kmg, R. M.: Influenza viral RNPs newly synthesized during the latent period of viral growth in MDCK cells. Virology 44, 125–136 (1971).Google Scholar
  41. [41]
    Kmg, R. M.: Cytoplasmic and nucleoplasmic viral RNPs in influenza virus-infected MDCK cells. Virology 50, 103–113 (1972).Google Scholar
  42. [42]
    Kmg, R. M.: Priming of influenza viral RNA transcription by capped heterologous RNAs. Current Topics in Microbiol, and Immunol. 93, 125–150 (1981).Google Scholar
  43. [43]
    Kmg, R. M., Broni, B. A., Bouloy, M.: Are the 5’ ends of influenza viral NAs synthesized in vivo donated by host NAs? Cell 18, 329–334 (1979).Google Scholar
  44. [44]
    Kmg, R. M., Broni, B. A., Liandra, A. J., Morgan, M. A., Shatkin, A. J.: Priming and inhibitory activities of RNAs for the influenza viral transcriptase do not require base-pairing with the virion RNA template. Proc. Natl. Acad. Sci. U.S.A. 77, 5874–5878 (1980).Google Scholar
  45. [45]
    Kmg, R. M., Etkind, P. E.: Cytoplasmic and nuclear virus-specific proteins in influenza virus- infected MDCK cells. Virology 56, 334–348 (1973).Google Scholar
  46. [46]
    Kmg, R. M., Morgan, M. M., Shatkin, A.J.: Influenza viral messenger RNA contains internal N-methyladenosine and 5-terminal 7-methylguanosine in cap stmctures. J. Virol. 20, 45–53 (1976).Google Scholar
  47. [47]
    Kmg, R. M., Plotch, S.J., Ulmanen, I., Herz, C., Bouloy, M.: The mechanism of initiation of influenza viral RNA transcription. In: The Replication of Negative-Strand Viruses (Compans, R.W., Bishop, D.H.L., eds.), 291–302. Elsevier/North-Holland 1981.Google Scholar
  48. [48]
    Kmg, R. M., Soeiro, R.: Studies on the intranuclear localization of influenza virus-specific proteins. Virology 64, 378–387 (1975).Google Scholar
  49. [49]
    Kmg, R. M., Ueda, M., Palese, P.: Temperature-sensitive mutants of influenza WSN virus defective in virus-specific RNA synthesis. J. Virol. 16, 790–796 (1975).Google Scholar
  50. [50]
    Lamb, R.A., Briedis, D.J., Lai, C.-J., Choppin, P.W.: Multiple NAs and coding regions derived from individual influenza A and B virus RNA segments. In: Genetic Variation Among Influenza Viruses (Nayak, D.P., ed.), 141–158. Academic Press 1981.Google Scholar
  51. [51]
    Lamb, R. A., Choppin, P. W.: Synthesis of influenza virus protein in infected cells: translation of viral proteins including three P polypeptides, from RNA produced by primary transcription. Virology 74, 504–519 (1976).PubMedGoogle Scholar
  52. [52]
    Lamb, R.A., Choppin, P.W.: Synthesis of influenza virus polypeptides in cells resistant to alpha-amanitin: evidence for the involvement of cellular RNA polymerase II in virus replication. J. Virol. 23, 816–819 (1977).PubMedGoogle Scholar
  53. [53]
    Lamb, R. A., Choppin, P. W.: Segment 8 of the Influenza virus genome is unique in coding for two polypeptides. Proc. Nad. Acad. Sci. U.S.A. 76, 4908–4912 (1979).Google Scholar
  54. [54]
    Lamb, R. A., Choppin, P. W.: Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virol. 112, 729–737 (1981).Google Scholar
  55. [55]
    Lamb, R. A., Choppin, P. W., Chanock, R. M., Lai, C.-J.: Mapping of the two overlapping genes for polypeptides NSl and NS2 on RNA segment 8 of influenza virus genome. Proc. Nad. Acad. Sci. U.S.A. 77, 1857–1861 (1980).Google Scholar
  56. [56]
    Lamb, R. A., Etkind, P. R., Choppin, P. W.: Evidence for a ninth influenza virus polypeptide. Virology 91, 60–78 (1978).PubMedGoogle Scholar
  57. [57]
    Lamb, R. A., Lai, C.-J.: Sequence of intermpted and unintermpted NAs and cloned DNA coding for the two overlapping nonstmctural proteins of influenza virus. Cell 21, 475–485 (1980).PubMedGoogle Scholar
  58. [58]
    Lamb, R. A., Lai, C.-J.: Conservation of the influenza virus membrane protein (Ml) amino acid sequence and an open reading frame of RNA segment 7 encoding a second protein (M2) in Hl and H3N2 strains. Virology 112, 746–751 (1981).PubMedGoogle Scholar
  59. [59]
    Lamb, R.A., Lai, C.-J.: Spliced and unspliced messenger RNAs synthesized from cloned influenza virus M DNA in an SV40 vector: Expression of the influenza virus membrane protein (Ml). Virology 123, 237–256 (1982).PubMedGoogle Scholar
  60. [60]
    Lamb, R.A., Lai, C.-J., Choppin, P.W.: Sequences of NAs derived from genome RNA segment 7 of influenza virus: Colinear and intermpted NAs code for overlapping proteins. Proc. Nad. Acad. Sci. U.S.A. 78, 4170–4174 (1981).Google Scholar
  61. [61]
    Lazarowitz, S. G., Compans, R. W., Choppin, P. W.: Influenza virus stmctural and non-stmc- tural proteins in infected cells and their plasma membranes. Virology 46, 830–843 (1971).PubMedGoogle Scholar
  62. [62]
    Mahy, B. W. J., Barrett, T., Nichol, S. T., Penn, C. R., Wostenholme, A. J.: Analysis of the functions of influenza virus genome RNA segments by use of temperature-sensitive mutants of fowl plague virus. In: The Replication of Negative Strand Viruses—Developments in Cell Biology, Vol. 7 (Bishop, D.H.L., Compans, R.W., eds.), 379–387. Elsevier/North-Holland. 1981.Google Scholar
  63. [63]
    Mahy, B. W.J., Bromley, P. A.: In vitro product of a ribonucleic acid polymerase induced by influenza virus. J. Virol. 6, 259–268 (1970).PubMedGoogle Scholar
  64. [64]
    Mahy, B.WJ., Hastie, N.D., Armstrong, S.J.: Inhibition of influenza virus rephcation by a-amanitin: mode of action, Proc. Nafl. Acad. Sci. U.S.A. 69, 1421–1424 (1972).Google Scholar
  65. [65]
    Mahy, B. W.J., Hastie, N. D., Raper, R. H., Brownson, J. M.T., Carroll, A. R.: RNA polymerase activities of nuclei from influenza virus-infected cells. In: Negative Strand Viruses (Mahy, B W.J., Barry, R.D., eds.), 445–467. New York: Academic Press 1975.Google Scholar
  66. [66]
    Manley, J. L., Sharp, P. A., Gefter, M. L.: RNA synthesis in isolated nuclei. Processing of adeno- virus serotype 2 late messenger RNA precursors. J. Mol. Biol. 159, 581–599 (1982).PubMedGoogle Scholar
  67. [67]
    Mark, G. E., Taylor, J. M., Broni, B. B., Kmg, R. M.: Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and a-amanitin. J. Virol. 29, 744–752 (1979).PubMedGoogle Scholar
  68. [68]
    Meoch, D., Kitron, N.: Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds. J. Virol. 15, 686–695 (1975).Google Scholar
  69. [69]
    Meier-Ewert, H., Compans, R. W.: Time course of synthesis and assembly of influenza virus proteins. J. Virol. 14, 1083–1091 (1974).PubMedGoogle Scholar
  70. [70]
    Mount, S.M.: A catalog of splice junction sequences. Nucl. Acids Res. 10, 459–472 (1982).PubMedGoogle Scholar
  71. [71]
    Mowshowitz, S.L.: PI is required for initiation of NA synthesis in WSN influenza virus. Virology 493–495 (1978).Google Scholar
  72. [72]
    Mowshowitz, S. L., Ueda, M.: Temperature-sensitive virion transcriptase activity in mutants of WSN influenza virus. Arch. Virol. 52, 135–141 (1976).PubMedGoogle Scholar
  73. [73]
    Nevins, J. R., Darnell, J. E., jr.: Steps in the processing of Ad2 NA: poly A” nuclear sequences are conserved and poly A addition precedes splicing. Cell 15, 1477–1493 (1978).PubMedGoogle Scholar
  74. [74]
    Nichol, T., Penn, C.R., Mahy, B. W.J.: Evidence for the involvement of influenza A (fowl plague Rostock) virus protein P2 in A and NA primed in vitro RNA synthesis. J. Gen. Virol. 57, 407–413 (1981).PubMedGoogle Scholar
  75. [75]
    Palese, P.: The genes of influenza virus. Cell 10, 1–10 (1977).PubMedGoogle Scholar
  76. [76]
    Plotch, S. J., Bouloy, M., Kmg, R. M.: Transfer of 5’ terminal cap of globin NA to influenza viral complementary RNA during transcription in vitro. Proc. Natl. Acad. Sci. U.S.A. 76, 1618–1622 (1979).PubMedGoogle Scholar
  77. [77]
    Plotch, S.J., Bouloy, M., Ulmanen, I., Kmg, R. M.: A unique cap (mGpm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847–858 (1981).PubMedGoogle Scholar
  78. [78]
    Plotch, S.J., Kmg, R. M.: Influenza virion transcriptase: the synthesis in vitro of large, poly- adenylic acid-containing complementary RNA. J. Virol. 21, 24–34 (1977).PubMedGoogle Scholar
  79. [79]
    Plotch, S.J., Kmg, R. M.: Segments of influenza virus complementary RNA synthesized in vitro. J. Virol. 25, 579–586 (1978).PubMedGoogle Scholar
  80. [80]
    Plotch, S.J., Tomasz, J., Kmg, R. M.: Absence of detectable capping and methylating enzymes in influenza virions, J. Virol. 28, 75–83 (1978).PubMedGoogle Scholar
  81. [81]
    Revel, M., Groner, Y.: Post-transcriptional and translational controls of gene expression in eukaryotes. Ann. Rev. of Biochem. 47, 1079–1126 (1978).Google Scholar
  82. [82]
    Robertson, H. D., Dickson, E., Plotch, S. J., Kmg, R. M.: Identification of the RNA region transferred from a representative primer, yff-globin NA, to influenza NA duringin vitro transcription. Nucl. Acids Res. 8, 925–942 (1980).PubMedGoogle Scholar
  83. [83]
    Robertson, J. S.: 5’ and 3’ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucl. Acids Res. 6, 3745–3757 (1979).PubMedGoogle Scholar
  84. [84]
    Robertson, J. S., Schubert, M., Lazzarini, R.A.: Polyadenylation sites for influenza virus NA. J. Virol. 38, 157–163 (1981).PubMedGoogle Scholar
  85. [85]
    Rott, R., Scholtissek, C.: Specific inhibition of influenza rephcation by a a-amanitin. Nature 228, 56 (1970).PubMedGoogle Scholar
  86. [86]
    Salditt-Geogrieff, M., Harpold, M., Chen-Kiang, S., Darnell, J. E., jr.: The addition of 5’ cap stmctures occurs early in hnRNA synthesis and prematurely terminated molecules are capped. Cell 19, 69–78 (1981).Google Scholar
  87. [87]
    Schibler, U., Kelly, D. E., Perry, R. P.: Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115, 695–714 (1977).PubMedGoogle Scholar
  88. [88]
    Scholtissek, C., Rott, R.: Ribonucleic acid nucleotidyl tranferase induced in chick fibroblasts after infection with an influenza virus. J. Gen. Virol. 4, 125–137 (1969).PubMedGoogle Scholar
  89. [89]
    Genetics Scholtissek, C., Rott, R.: Synthesis in vivo of influenza virus plus and minus strand RNA and its preferential inhibition by antibiotics. Virology 40, 989–996 (1970).Google Scholar
  90. [90]
    Schubert, M., Keene, J. D., Herman, R. C., Lazzarini, R. A.: Site on the vesicular stomatitis virus genome specifying polyadenylation and the end of the L gene NA. J. Virol. 34, 550–559 (1980).PubMedGoogle Scholar
  91. [91]
    Shatkin, A. J.: Capping of eukaryotic NAs. Cell 9, 645–653 (1976).PubMedGoogle Scholar
  92. [92]
    Skehel, J.J., Burke, D. C.: Ribonucleic acid synthesis in chick embryo cells infected with fowl plaque virus. J. Virol. 3, 429–438 (1969).PubMedGoogle Scholar
  93. [93]
    Skehel, J. J., Hay, A. J.: Nucleotide sequences at the 5’ termini of influenza virus RNAs and their transcripts. Nucl. Acids Res. 5, 1207–1219 (1978).PubMedGoogle Scholar
  94. [94]
    Smith, G. L., Hay, A. J.: Replication of the influenza virus genome. Virology 118,96–108 (1982).PubMedGoogle Scholar
  95. [95]
    Spooner, L. L. R., Barry R. D.: Participation of DNA-dependent RNA polymerase II in replication of influenza viruses. Nature 268, 650–652 (1977).PubMedGoogle Scholar
  96. [96]
    Stoltzfus, C. M., Dane R. W.: Accumulation of spliced avian retrovirus NA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J. Virol. 42, 918–931 (1982).PubMedGoogle Scholar
  97. [97]
    Taylor, J. M., Hampson, A. W., White, D.O.: The polypeptides of influenza virus. I. Cytoplasmic synthesis and nuclear accumulation. Virology 39, 419–425 (1969).PubMedGoogle Scholar
  98. [98]
    Taylor, J. M., Illmensee, R., Litwin, S., Herring, L., Broni, B. A., Kmg, R. M.: The use of specific radioactive probes to study the transcription and replication of the influenza virus genome. J. Virol. 21, 530–540 (1977).PubMedGoogle Scholar
  99. [99]
    Ulmanen, L, Broni, B. A., Kmg, R. M.: The role of two of the influenza virus core P proteins in recognizing cap 1 stmctures (m7GppNm) on RNAs and in initiation viral RNA transcription. Proc. Natl. Acad. Sci. U.S.A. 78, 7355–7359 (1981).PubMedGoogle Scholar
  100. [100]
    Ulmanen, L, Broni, B. A., Krug, R. M.: Influenza virus temperature-sensitive cap (m7GppNm)- dependent endonuclease. J. Virol. 45, 27–35 (1983).PubMedGoogle Scholar
  101. [101]
    Wei, C-M., Gershowitz, A., Moss, B.: 5-terminal and internal methylated nucleotide sequences in Ha cell NA. Biochemistry 15, 397–401 (1976).PubMedGoogle Scholar
  102. [102]
    Wei, C-M., Moss, B.: Nucleotide sequence at the N6-methyladenosine sites oa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676 (1977).PubMedGoogle Scholar
  103. [103]
    Winter, G., Fields, S.: Cloning of influenza NA into M13: the sequence of the RNA segment encoding the A/PR/8/34 matrix protein. Nucl. Acids Res. 8, 1965–1974 (1980).PubMedGoogle Scholar
  104. [104]
    Wolstenholme, A. J., Barrett, T., Nichol, S. T., Mahy, B. W. J.: Influenza virus-specific RNA and protein syntheses in cells infected with temperature-sensitive mutants defective in the genome segment encoding nonstmctural proteins. J. Virol. 35, 1–7 (1980).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • R. M. Krug

There are no affiliations available

Personalised recommendations