Advertisement

Virus-Determined Differences in the Pathogenesis of Influenza Virus Infections

  • J. L. Schulman

Abstract

Among the variations in phenotype expressed by different influenza viruses are differences in biological activity in various host cell systems, including differences in host range, organ specificity and dissemination in animals and plaquing efficiency in various cell culture systems. With the availability of reliable laboratory techniques to determine the parental origins of individual RNA segments in reassortant viruses obtained in nature or in the laboratory, it has become possible to obtain previously unavailable information concerning the contribution of individual genes or combinations of genes to some of these biological differences and to begin to address some fundamental questions regarding the molecular mechanisms involved.

Keywords

Influenza Virus Mixed Infection Avian Influenza Virus Influenza Virus Infection MDBK Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D.J., Allan, W. H., Parsons, D. G., Parsons, G.: The pathogenicity of four avian influenza vimses from fowls, turkeys and ducks. Res. Vet Sci. 24, 242–257 (1978).PubMedGoogle Scholar
  2. Almond, J. W.: A single gene determines the host range of influenza vims. Nature (Lond.) 270, 617–618 (1977).CrossRefGoogle Scholar
  3. Askonas, B. A., McMichael, A. J., Webster, R. G.: The immune response to influenza vimses and the problem of protection against infection. In: Basic and Apphed Influenza Research (Beare, A. S., ed.), 157–188. Boca Raton: CRC Press 1982.Google Scholar
  4. Baez, M., Palese, P., Kilbourne, E. D.: Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis. 747, 362–365 (1980).CrossRefGoogle Scholar
  5. Bean, W.J., Webster, R. G.: Phenotype properties associated with influenza genome segments. In: Negative Strand Vimses and the Host Cell (Mahy, B. W. J., Barry, R. D., eds.), 685–692. New York: Academic Press 1978.Google Scholar
  6. Bean, W. J., Sriram, G., Webster, R. G.: Electrophoretic analysis of iodine-labeled influenza virus RNA segments. Analyt. Biochem. 228–232 (1980).Google Scholar
  7. Beare, A. S.: Research into the immunization of humans against influenza by means of living viruses. In: Basic and Applied Influenza Research (Beare, A. S., ed.), 211–234. Boca Raton: CRC Press 1982.Google Scholar
  8. Bosch, F.X., Garten, W., Klenk, H.-D., Rott, R.: Proteolytic cleavage of influenza vims hemagglutinins: Primary stmcture of the connecting peptide between HAI and HA2 determines proteolytic cleavability and pathogenicity of avian influenza vimses. Virology 113, 725–735 (1981).PubMedCrossRefGoogle Scholar
  9. Burnet, P. M., Bull, D. R.: Changes in influenza vimses associated with adaptation to passage in chick embryos. AustraLj. Exp. Biol. Med. Sci. 2i, 55–69 (1943).CrossRefGoogle Scholar
  10. Burnet, P.M.: Genetic interactions between animal viruses. In: The Viruses (Burnet, P.M., Stanley, W. M., eds.). Vol. 3, 275–306. New York: Academic Press 1959.Google Scholar
  11. Campbell, D., Sweet, C., Hay, A.J., Douglas, A., Skehel, J.J., Mason, T.J., Smith, H.: Genetic composition and vimlence of influenza vims: Differences in facets ofvimlence in ferrets, between two pairs of recombinants with RNA segments of the same parental origin.J. Gen. Virol. 58,387–398 (1982).PubMedCrossRefGoogle Scholar
  12. Conti, G., Valcavi, P., Natali, A., Schito, G. C.: Different patterns of rephcation in influenza virus- infected KB cells. Arch. Virology 66, 309–320 (1980).CrossRefGoogle Scholar
  13. Erickson, A.H., Kilbourne, E.D.: Mutation in the hemagglutinin of A/NWS/33 influenza vims recombinants influencing sensitivity to trypsin and antigenic reactivity. Virology 107, 320–330 (1980).PubMedCrossRefGoogle Scholar
  14. Gething, M. J., White, J. M., Waterfield, M.D.: Purification of the fusion protein of Sendai vims: Analysis of the NH2-terminal sequences generated during precursor activation. Proc. Nafl. Acad. Sci. U.S.A. 75, 2737–2740 (1978).CrossRefGoogle Scholar
  15. Haller, O.: A mouse hepatotropic variant of influenza virus. Arch. Virology 48, 77–88 (1975).Google Scholar
  16. Haller, O., Arnheiter, H., Gresser, I., Lindenmann,].: Genetically determined interferon-dependent resistance to influenza in mice.]. Exp. Med. 149, 601–612 (1979).CrossRefGoogle Scholar
  17. Hay, A. J., Kennedy, N. C.T., Skehel, J.J., Appleyard, G.: The matrix protein gene determines amantadine-sensitivity of influenza vimses.J. Gen. Virol. 42, 189–191 (1979).PubMedCrossRefGoogle Scholar
  18. Hinshaw, VS., Webster, R. G.: The natural history of influenza A viruses. In: Basic and Applied Influenza Research (Beare, A.S., ed.), 79–104. Boca Raton: CRC Press 1982.Google Scholar
  19. Hrdy, D. B., Rubin, D. H., Fields, B. N.: Molecular basis of reovirus neurovirulence: Role of the M2 gene in avimlence. Proc. Nafl. Acad. Sci. U.S.A. 79, 1298–1302 (1982).CrossRefGoogle Scholar
  20. Huang, R.T. C., Wahn, K., Klenk, H.-D., Rott, R.: Fusion between cell membrane and liposomes containing the glycoproteins of influenza vims. Virology 104, 294–302 (1980).PubMedCrossRefGoogle Scholar
  21. Huang, R. T. C., Rott, R., Klenk, H.-D.: Influenza vimses cause hemolysis and ftision of cells. Virology 110, 243–247 (1981).PubMedCrossRefGoogle Scholar
  22. Israel, A.: Genotypic and phenotypic characterization of a mammalian cell-adapted mutant of fowl plague virus (FPV). J. Gen. Virol. 51, 33–44 (1980).PubMedCrossRefGoogle Scholar
  23. Jennings, R., Potter, C. W., Teh, C. Z., Mahmud, M. I. A.: The replication of type A influenza viruses in the infant rat: A marker for vims attenuation. J. Gen. Virol. 49, 343–354 (1980).PubMedCrossRefGoogle Scholar
  24. Kilbourne, E. D., Murphy, J. S.: Genetic studies of influenza vimses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaption of early passage Asian strain isolates by combination with PR8. J. Exp. Med. 3, 387–406 (1960).CrossRefGoogle Scholar
  25. Kilbourne, E. D.: Genetic dimorphism in influenza vimses. Characterization of stably assocuated hemagglutinin mutants differing in antigenicity and biological properties. Proc. Natl. Acad. Sci. U.S.A. 75, 6258–6262 (1978).PubMedCrossRefGoogle Scholar
  26. Kilbourne, E. D.: Influenza: Viral determinants of the pathogenicity and epidemicity of an invariant disease of variable occurrence. Phil. Trans. R. Soc. (Lond.) B288, 291–297 (1980).CrossRefGoogle Scholar
  27. Klenk, H.-D., Rott, R., Orlich, M., Blodorn,].: Activation of influenza vimses by trypsin treatment. Virology 68, 426–439 (1975).PubMedCrossRefGoogle Scholar
  28. Lazarowitz, S.G., Choppin, P. W.: Enhancement of the infectivity of influenza A and B vimses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68, 440–454 (1975).PubMedCrossRefGoogle Scholar
  29. Lenard, J., Miller, D. K.: PH dependent hemolysis by influenza vims, Semliki Forest vims, and Sendai vims. Virology 110, 479–482 (1981)PubMedCrossRefGoogle Scholar
  30. Lübeck, M.D., Schulman, J. L., Palese, P.: Susceptibility of influenza A vimses to amantadine is influenced by the gene coding for M protein. J. Virol. 28, 710–716 (1978).PubMedGoogle Scholar
  31. Mayer, V., Schulman, J.L., Kilbourne, E.D.: Nonlinkage of neurovimlence exclusively to viral hemagglutinin in genetic recombinants of A/NWS (HONl) influenza virus. J. Virol. 11, 272–278 (1973).PubMedGoogle Scholar
  32. Michaels, R. H., Mahmud, M. I. A., Coup, A. J., Jennings, R., Potter, C. W.: Influenza virus infection in newborn rats: A possible marker of attenuation for man. J. Med. Vir 2, 253–264 (1978).CrossRefGoogle Scholar
  33. Murphy, B.R., Markoff, L.J., Chanock, R.M., Spring, S.S., Maassab, H.F., Kendal, A.P., Cox, N.J., Levine, M.M., Douglas, R.G., Betts, R.F., Couch, R.B., Cate, T.R.: Genetic approaches to attenuation of influenza A vimses for man. Phil. Trans. R. Soc. (Lond.) B288, 401–415 (1980).CrossRefGoogle Scholar
  34. Nakajima, S., Sugiura, A.: Neurovimlence of influenza vims in mice. II. Mechanism of vimlence as studied in a neuroblastoma cell line. Virology 101, 450–457 (1980).PubMedCrossRefGoogle Scholar
  35. Ogawa, T, Ueda, M.: Genes involved in the vimlence of an avian influenza vims. Virology 113, 304–313 (1981).PubMedCrossRefGoogle Scholar
  36. Oxford, J. S.: Specific inhibitors of influenza related to the molecular biology of vims replication. In: Chemoprophylaxis and Vims Infections of the Respiratory Tract (Oxford, J.S., ed.). Vol. 1, 140–187. Cleveland: CRC Press 1977.Google Scholar
  37. Palese, P., Schulman, J. L.: Mapping of the influenza vims genome: Identification of the hemagglutinin and the neuraminidase genes. Proc. Natl. Acad. Sci. U.S.A. 73, 2142–2146 (1976).PubMedCrossRefGoogle Scholar
  38. Ritchey, M.B., Palese, P., Schulman, J. L.: Differences in protein patterns of influenza A vimses. Virology 76,122–128 (1977).PubMedCrossRefGoogle Scholar
  39. Rott, R., Orlich, M., Scholtissek, C.: Correlation of pathogenicity and gene constellation of influenza A vimses. III. Non-pathogenic recombinants derived from highly pathogenic parent strains. J. Gen. Vir 44, 471–477 (1979).CrossRefGoogle Scholar
  40. Rott, R.: Genetic determinants for infectivity and pathogenicity of influenza vimses. Phil. Trans. R. Soc. (Lond.) B288, 393–399 (1980).CrossRefGoogle Scholar
  41. Rott, R., Reinacher, M., Orlich, M., Klenk, H.-D.: Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Arch. Vir 65, 123–133 (1980).CrossRefGoogle Scholar
  42. Rott, R.: Determinants of influenza virus pathogenicity. Hoppe-Seyler’s Z. Physiol. 363,1273–1282 (1982).Google Scholar
  43. Rott, R., Orlich, M., Scholtissek, C.: Differences in the multiphcation at elevated temperature of influenza vims recombinants pathogenic and nonpathogenic for chicken. Virology 120, 215–224 (1982).PubMedCrossRefGoogle Scholar
  44. Scheid, A., Graves, M.C., Silver, S.M., Choppin, P.W.: Studies on the stmcture and function of paramyxovirus glycoproteins. In: Negative Strand Viruses and the Host Cell (Mahy, B. W.J., Barry, R.D., eds.), 181–193. New York: Academic Press 1978.Google Scholar
  45. Scholtissek, C., Harms, E., Rohde, W, Orhch, M., Rott, R.: Correlation between RNA fragments of fowl plague vims and their corresponding gene functions. Virology 74, 332–344 (1976).PubMedCrossRefGoogle Scholar
  46. Scholtissek, C., Rott, R., Orlich, M., Harms, E., Rohde, W.: Correlation of pathogenicity and gene constellation of an influenza A virus (fowl plague). 1. Exchange of a single gene. Virology 85,74–80 (1977).CrossRefGoogle Scholar
  47. Scholtissek, C., Rohde, W, von Hoyningen, V., Rott, R.: On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20 (1978).PubMedCrossRefGoogle Scholar
  48. Scholtissek, C., Faulkner, G.: Amantadine-resistant and amantadine-sensitive influenza A strains and recombinants. J. Gen. Vir 44, 807–815 (1979).CrossRefGoogle Scholar
  49. Scholtissek, C., Vallbracht, A., Flehmig, B., Rott, R.: Correlation of pathogenicity and gene constellation of influenza A vimses. II. Highly neurovirulent recombinants derived from non-neuro-virulent or weakly neurovirulent parent vims strains. Virology 95, 492–500 (1979).PubMedCrossRefGoogle Scholar
  50. Schulman, J. L.: Experimental transmission of influenza vims infection in mice. IV. Relationship of transmissibility of different strains of vims and recovery of airborne vims in the environment of infector mice. J. Exp. Med. 125, 479–488 (1967).PubMedCrossRefGoogle Scholar
  51. Schulman, J. L.: The use of an animal model to study transmission of influenza vims infection. Am. J. of Public Health 58, 2092–2096 (1968).CrossRefGoogle Scholar
  52. Schulman, J. L.: Immunology of influenza. In: The Influenza Viruses and Influenza (Kilbourne, E. D., ed.), 373–394. New York: Academic Press 1975.Google Scholar
  53. Schulman, J. L., Palese, P.: Vimlence factors of influenza vimses. WSN vims neuraminidase is required for productive infection of MDBK cells. J. Virol. 24, 170–176 (1977).PubMedGoogle Scholar
  54. Schulman, J. L., Palese, P.: Biological properties of influenza A/Hong Kong and PR8 vimses: Effects of genes for matrix protein and nucleoprotein on vims yield in embryonated eggs. In: Negative Strand Viruses and the Host Cell (Mahy, B.W.J., Barry, R.D., eds.), 663–674. New York: Academic Press 1978.Google Scholar
  55. Skehel, J.J., Waterfield, M.D.: Studies on the primary stmcture of influenza vims hemagglutinin. Proc. Na Acad. Sci. U.S.A. 72, 93–97 (1975).CrossRefGoogle Scholar
  56. Slemons, R. D., Easterday, B. C.: Host response difference among five avian species to an influenza vims A/turkey/Ontario 7732/66 (Hav5N?). Bull. W.H.O. 47, 521–527 (1972).PubMedGoogle Scholar
  57. Sugiura, A.: Influenza vims genetics. In: The Influenza Vimses and Influenza (Kilbourne, E. D., ed.), 171–213. New York: Academic Press 1975.Google Scholar
  58. Sugiura, A., Ueda, M.: Neurovirulence of influenza vims in mice. 1. Neurovimlence of recombinants between vimlent and avimlent strains. Virology 101, 440–449 (1980).PubMedCrossRefGoogle Scholar
  59. Teh, C., Jennings, R., Potter, C.W.: Influenza vims infection of newborn rats: Vimlence of recombinant strains prepared from influenza vims strain A/Okuda/57. J. Med. Microbiol. 13, 297–306 (1980).PubMedCrossRefGoogle Scholar
  60. Vallbracht, A., Scholtissek, C., Plehmig, B., Gerth, H.-J.: Recombination of influenza A strains with fowl plague vims can change pneumotropism for mice to a generalized infection with involvement of the central nervous system. Virology 107, 452–460 (1980).PubMedCrossRefGoogle Scholar
  61. Webster, R. G., Hinshaw, V S., Bean, W. J., van Wyke, K. L., Geraci, J. R., St. Aubin, D. J., Petursson, G.: Characterization of an influenza A vims from seals. Virology 113, 712–724 (1981).PubMedCrossRefGoogle Scholar
  62. White, J., Kartenbeck, J., Helenius, A.: Membrane fusion activity of influenza vims. The EMBOJ. 1, 217–222 (1982).Google Scholar
  63. Wright, P. P., Thompson, J., Karzon, D. T.: Differing vimlence of Hl and H3N2 influenza strains. Amer. J. Epidemiol. 112, 814–818 (1980).Google Scholar
  64. Young, J. F., Palese, P.: Evolution of human influenza A vimses in nature: Recombination contributes to genetic variation of Hl strains. Proc. Natl. Acad. Sci. U.S.A. 76, 6547–6651 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • J. L. Schulman

There are no affiliations available

Personalised recommendations