The Evolution of Influenza Viral Genetics— A Perspective

  • E. D. Kilbourne


It is probable that the course of human history has been affected many times by mutations in the hemagglutinin protein of influenza A viruses. Because the clinical and epidemiological features of past and modern epidemics are so similar, we can assume that past epidemics were caused by antigenically variable viruses like contemporary strains now under study. The legitimacy of this assumption is strengthened by serologic, and more recently, molecular genetic evidence of the return or recycling of virus variants from the past. By inference, contemporary studies of the genetics of influenza viruses have not only archaeological but predictive implications for this recycling virus.


Influenza Virus Newcastle Disease Virus Antigenic Variation Human Influenza Hong Kong 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Air, G. M.: Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc. Natl. Acad. Sci. 78,7639–7643 (1981).PubMedCrossRefGoogle Scholar
  2. Almond, J. W. (1977): A single gene determines the host range of influenza virus. Nature 270,617–618 (1977).PubMedCrossRefGoogle Scholar
  3. Baez, M., Palese, P., Kilbourne, E.D.: Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis. 141,362–365 (1980).PubMedCrossRefGoogle Scholar
  4. Baron, S., Jensen, K.E.: Evidence for genetic interaction between noninfections and infections influenza A viruses. J. Exp. Med. 102,677–697 (1955).PubMedCrossRefGoogle Scholar
  5. Barry, R. D.: Study of infectivity and hemagglutination of influenza virus in deembryonated eggs. J. Immunol. 65,571–583 (1950 a).Google Scholar
  6. Barry, R. D.: The multiplication of influenza virus. II. Multiplicity reactivation of ultraviolet irradiated virus. Virology 14,398–405 (1961b).PubMedCrossRefGoogle Scholar
  7. Bean, WJ.: Recombination of human influenza A viruses in nature. Nature 284,638–640 (1980).PubMedCrossRefGoogle Scholar
  8. Bean, W.J., Webster, R. G.: Phenotypic properties associated with influenza genome segments. In: Negative Strand Viruses and the Host Cell (Mahy, B. W. J., Barry, R. D., eds.), 685–692. New York: Academic Press 1978.Google Scholar
  9. Beare, A. S., Hall, T. S.: Recombinant influenza-A viruses as live vaccines for man. Lancet 1271–1273 (1971).Google Scholar
  10. Both, G. W., Sleigh, M.J.: Conservation and variation in the hemagglutinins of Hong Kong subtype influenza vimses during antigen drift. J. Virol. 39,663–672 (1981).PubMedGoogle Scholar
  11. Both, G. W., Sleigh, M. J., Bender, V.J., Moss, B. A.: A comparison of antigenic variation in Hong Kong influenza virus haemagglutinins at the nuclei acid level. In: Structure and Variation in Influenza Vims (Laver, W. G., Air, G. M., eds.), 81–89. New York: Elsevier/North-Holland 1980.Google Scholar
  12. Briody, B. A., Cassell, W. A., Medili, M. A.: Adaptation of influenza vims to mice. III. Development of resistance to inhibitor. J. Immunol. 74,41–45 (1955).PubMedGoogle Scholar
  13. Buchmann, T. G., Roizman, B., Adams, G., Stover, B. H.: Restriction endonuclease fingerprinting of herpes simplex vims DNA: A novel epidemiological tool aped to a nosocomial outbreak. J. Infect Dis. 138,488–498 (1978).CrossRefGoogle Scholar
  14. Bürge, B. W., Pfefferkorn, E. R.: Isolation and characterization of conditional lethal mutants of sindbis vims. Virology 30,204–213 (1966).PubMedCrossRefGoogle Scholar
  15. Burnet, P.M.: Influenza virus infections of the chick embryo by the amniotic route. 1. General character of the infections. Austral J. Exp. Biol. Med. Sci. 18,353–360 (1940).CrossRefGoogle Scholar
  16. Burnet, P.M.: Stmcture of influenza vims. Science 123,1101–1104 (1956).PubMedCrossRefGoogle Scholar
  17. Burnet, P. M., Bull, D. R.: Changes in influenza vims associated with adaptation to passage in chick embryos. Austral. J. Exp. Biol. Med. Sci. 21,55–69 (1943).CrossRefGoogle Scholar
  18. Burnet, P. M., Lind, P. E.: Recombination of characters between two influenza vims strains. Austral. J. Sci. 12,109–110 (1949).Google Scholar
  19. Burnet, P. M., Lind, P. E.: Reactivation of heat inactivated influenza vims by recombination. Austral. J. Exp. Biol. Med. Sci. 32,133–143 (1954 a).CrossRefGoogle Scholar
  20. Burnet, P. M., Lind, P. E.: An analysis of the adaptation of an influenza vims to produce lesions in the mouse lung. Austral. J. Exp. Biol. Med. Sci. 32,711–720 (1954 b).CrossRefGoogle Scholar
  21. Campbell, D., Sweet, C., Hay, A.J., Douglas, A., Skehel, J.J., Mason, T. J., Smith, H.: Genetic composition and vimlence of influenza virus: Differences in facets of vimlence in ferrets between two pairs of recombinants with RNA segments of the same parental origin. J. Gen. Virol. 58,387–398 (1982).PubMedCrossRefGoogle Scholar
  22. Couch, R.B., Douglas, R.G., jr., Pedson, D.S., Kasel, J. A.: Correlated studies of a recombinant influenza-vims vaccine. III. Protection against experimental influenza in man. J. Infect. Dis. 124,473–480 (1971).PubMedCrossRefGoogle Scholar
  23. Couch, R. B., Kasel, J. A., Gerin, J. L., Schulman, J. L., Kilbourne, E. D.: Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 129,411–420 (1974).PubMedCrossRefGoogle Scholar
  24. Desselberger, U., Racaniello, V. R., Zazra, J., Palese, P.: The 3’and 5’terminal sequences of influenza A, B, and C vims genes are highly conserved and show partial inverted complementarity. Gene 8,315–328 (1980).PubMedCrossRefGoogle Scholar
  25. Desselberger, U., Zamecnik, P., Palese, P.: 3-Terminal sequences ofhemagglutinin and neuraminidase genes of different influenza A vimses. In: Proceedings of the International Workshop on Stmcture and Variation in Influenza Vims, Thredbo, Australia (Laver, W. G., Air, G. M., eds.), 169–179. New York: Elsevier/North-Holland 1980.Google Scholar
  26. Duesberg, P.H.: The RNA’s of influenza vims. Proc. Nad. Acad. Sci. 59,930–937 (1968).CrossRefGoogle Scholar
  27. Erickson, A. H., Kilbourne, E. D.: Mutation in the hemagglutinin of A/N-WS/33 influenza vims recombinants influencing sensitivity to trypsin and antigenic reactivity. Virology 107,320–330 (1980).PubMedCrossRefGoogle Scholar
  28. Pang, R., Jou, W. M., Huylebroeck, D., Devos, R., Piers, W.: Complete stmcture of A/duck/Ukraine/63 influenza hemagglutinin gene: Animal vims as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 2, 315–323 (1981).Google Scholar
  29. Penner, P.: Conditional lethal mutants in the study of the genetics of animal vimses. In: Perspectives in Virology IV (Pollard, M., ed.), 34–46. New York: Harper & Row 1965.Google Scholar
  30. Plorent, G., Lobmann, M., Beare, A. S., Zygraich, N.: RNAs of influenza vims recombinants derived from parents of known vimlence for man. Arch. Virol. 54,19–28 (1977).CrossRefGoogle Scholar
  31. Francis, T., jr., Moore, A. E.: A study of the neurotropic tendency in strains of the vims of epidemic influenza. J. Exp. Med. 72,717–745 (1940).PubMedCrossRefGoogle Scholar
  32. Gottlieb, T., Hirst, G. K.: The experimental production of combination forms of virus. III. The formation of doubly antigenic particles from influenza A and B virus and a study of the ability of individual particles of X vims to yield separate strains. J. Exp. Med. 99, 307–320 (1954).CrossRefGoogle Scholar
  33. Henle, W., Liu, O.C.: Studies on host-vims interactions in the chick embryo-influenza vims system. VI. Evidence for multiplicity reactivation of inactivated vims system. J. Exp. Med. 94,305–322 (1951).PubMedCrossRefGoogle Scholar
  34. Hinshaw, V. S., Bean, W.J., Webster, R. B., Siram, G.: Genetic reassortment of influenza A vimses in the intestinal tract of ducks. Virology 102,412–419 (1980).PubMedCrossRefGoogle Scholar
  35. Hirst, G.K.: Agglutination of red cells by allantoic fluid of chick embryos infected with influenza vims. Science 94,22–23 (1941).PubMedCrossRefGoogle Scholar
  36. Hirst, G. K.: Genetic recombination with newcastle disease vims, poliovimses, and influenza. Cold Spring Harbor Symp. on Quant, biol. 27,303–309 (1962).Google Scholar
  37. Hirst, G. K.: Mechanism of influenza recombination. L Factors influencing recombination rates between temperature-sensitive mutants of strain WSN and the classification of mutants into complementation-recombination groups. Virology 55,81–93 (1973).PubMedCrossRefGoogle Scholar
  38. Hirst, G. K., Gotlieb, T.: The experimental production of combination forms of vims. II. A study of serial passage in the allantoic sac of agents that combine the antigens of two distinct influenza A strains. J. Exp. Med. 98,53–70 (1953).PubMedCrossRefGoogle Scholar
  39. Holland, J., Spindler, K., Horodysky, F., Grabau, E., Nichol, S., Vande Pol, S.: Rapid evolution oNA genomes. Science 215,1577–1585 (1982).PubMedCrossRefGoogle Scholar
  40. Horsfall, F. L.: Reproduction of influenza vimses. Quantitative investigations with particle enumeration procedures on the dynamics of influenza A and B vims reproduction. J. Exp. Med. 102,441–473 (1955).PubMedCrossRefGoogle Scholar
  41. Hoyle, L.: The influenza vimses. In: Gard, S., Hallauer, C., Meyer, K. F. (eds.). Virology Monographs, Vol. 4. Wien-New York: Springer 1968.Google Scholar
  42. Isaacs, A., Edney, M.: Variation in laboratory stocks of influenza vimses: Genetic aspects of the variations. Brit. J. Exp. Path. 31,209–216 (1950).PubMedGoogle Scholar
  43. Israel, A.: Genotypic and phenotypic characterization of a mammalian cell-adapted mutant of fowl plague vims (FPV). J. Gen. Virol. 51,33–44 (1980).PubMedCrossRefGoogle Scholar
  44. Jahiel, R. I., Kilbourne, E. D.: Reduction in plaque size and reduction in plaque number as differing indices of influenza vims-antibody reactions. J. Bacteriol. 92,1521–1534 (1966).PubMedGoogle Scholar
  45. Jou, W. M., Verhoeyen, M., Debos, R., Saman, E., Fang, R., Huylebroeck, D., Fiers, W., Threlfall, G., Barber, C., Carey, N., Emtage, S.: Complete stmcture of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell 19,683–696 (1980).PubMedCrossRefGoogle Scholar
  46. Kendal, A.R, Lee, D.T., Parish, H.S., Raines, D. Noble, G.R., Dowdle, W.R.: Laboratory-based surveillance of influenza vims in the United States during the winter of 1977–1978. II. Isolation of a mixture of A/Victoria- and A/USSR-like vimses from a single person during an epidemic in Wyoming, U.S.A., January 1978. Amer. J. Epidemiol. 110,462–468 (1979).Google Scholar
  47. Kilbourne, E. D.: Reactivation of non-infective vims in a cortisone injected host. J. Exp. Med. 101,437–450 (1955).PubMedCrossRefGoogle Scholar
  48. Kilbourne, E. D.: The influence of cortisone on experimental viral infection. IV. Negation of interference as the mechanism by which cortisone induces increased vims yields. J. Exp. Med. 106,863–881 (1957).PubMedCrossRefGoogle Scholar
  49. Kilbourne, E.D.: Influenza vims genetics. Progr. Med. Virol. 5, 79–126 (1963).Google Scholar
  50. Kilbourne, E. D.: Recombination of influenza A vimses of human and animal origin. Science 160, 74–76 (1968).CrossRefGoogle Scholar
  51. Kilbourne, E.D.: The molecular epidemiology of influenza. J. Infect. Dis. 127, 478–487 (1973).PubMedCrossRefGoogle Scholar
  52. Kilbourne, E. D.: An explanation of the interpandemic antigenic mutability of influenza vimses. J. Infect. Dis. 128, 668–670 (1973).PubMedCrossRefGoogle Scholar
  53. Kilbourne, E.D.: Vims research (letter). Science 184, 410–411 (1974).CrossRefGoogle Scholar
  54. Kilbourne, E. D.: Epidemiology of influenza. In: The Influenza Vimses and Influenza (Kilbourne, E.D., ed.), 483–538. New York: Academic Press 1975.Google Scholar
  55. Kilbourne, E. D.: Genetic dimorphism in influenza viruses: Characterization of stably associated hemagglutinin mutants differing in antigenicity and biological properties. Proc. Natl. Acad. Sci. 75, 6258–6262 (1978).PubMedCrossRefGoogle Scholar
  56. Kilbourne, E. D.: Molecular epidemiology-influenza as archetype. The Harvey Lectures 73,225–258 (1979).Google Scholar
  57. Kilbourne, E. D.: Influenza: Viral determinations of the pathogenicity and epidemicity of an invariant disease of variable occurrence. Phil. Trans. R. Soc. (Lond.) B288,291–297 (1980).CrossRefGoogle Scholar
  58. Kilbourne, E. D.: Recent contributions of molecular biology to the clinical virology of m3rxoviruses. Yale J. Biol. Med. 53,41–45 (1980).PubMedGoogle Scholar
  59. Kilbourne, E. D.: Segmented genome viruses and the evolutionary potential of asymmetrical sex. Per- spect. Biol. Med. 25,66–77 (1981).Google Scholar
  60. Kilbourne, E. D., Choppin, P. W., Schulze, LT., Scholtissek, C., Bucher, D. L.: Influenza vims polypeptides and antigens-summary of influenza workshop I. J. Infect. Dis. 125,447–455 (1972).CrossRefGoogle Scholar
  61. Kilbourne, E. D., Laver, W. G., Schulman, J. L., Webster, R. G.: Antiviral activity of antisemm specific for an influenza vims neuraminidase. J. Virol. 2,281–288 (1968).PubMedGoogle Scholar
  62. Kilbourne, E. D., Lief, F. S., Schulman, J. L., Jahiel, R. L, Laver, W. G.: Antigenic hybrids of influenza vimses and their implications. Perspect. Virology 5,87–106 (1967).Google Scholar
  63. Kilbourne, E. D., Mregor, S., Easterday, B.C.: Hemagglutinin mutants of swine influenza vims differing in replication characteristics in their natural host. Infect. Immun. 26,197–201 (1979).PubMedGoogle Scholar
  64. Kilbourne, E. D., Murphy, J. S.: Genetic studies of influenza vimses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapidin ovoadaptation of early passage asian strain isolates by combination with PR8. J. Exp. Med. 111,387–406 (1960).PubMedCrossRefGoogle Scholar
  65. Kilbourne, E. D., Schulman, J. L.: The induction of broadened (multitypic) immunity with doubly antigenic influenza vims recombinants. Trans. Assoc. Am. Physicians 78,323–333 (1965).PubMedGoogle Scholar
  66. Kilbourne, E.D., Schulman, J.L., Schild, G.G., Schioer, G., Swanson, J., Bucher, D.: Correlated studies of a recombinant influenza-vims vaccine. I. Derivation and characterization of vims and vaccine. J. Infect. Dis. 124,449–462 (1971).PubMedCrossRefGoogle Scholar
  67. Klenk, H.-D., Rott, R., Orlich, M., Blodorn, J.: Activation of influenza A vimses by Trypsin treatment. Virology 68,426–439 (1975).PubMedCrossRefGoogle Scholar
  68. Koprowski, H., Gerhard, W.: In: Animal Vims Genetics (Pields, B., Jaenisch, R., Fox, C., eds.), 591. New York: Academic Press 1980.Google Scholar
  69. Kuo, Y. C., Pengen, J., Min, W., Ping, W., Chu, C. M.: Influenza C vims isolated from pigs in China. Kexue Tongbao 27,1118–1121 (1982).Google Scholar
  70. Laver, W. G.: The stmcture of influenza vimses. 3. Dismption of the vims particle and separation of neuraminidase activity. Virology 20,251–262 (1963).CrossRefGoogle Scholar
  71. Laver, W. G.: Stmctural studies on the protein subunits from three strains of influenza vims. J. Mol. Biol. 9,109–124 (1964).PubMedCrossRefGoogle Scholar
  72. Laver, W.G., Air, G.M., Dopheide, T. A., Ward, C. W.: Amino acid sequence changes in the hemagglutinin of A/Hong Kong (H3N2) influenza vims during the period 1968–77. Nature 283,454–457 (1980).PubMedCrossRefGoogle Scholar
  73. Laver, W. G., Kilbourne, E. D.: Identification in a recombinant influenza vims of stmctural proteins derived from both parents. Virology 30,493–501 (1966).PubMedCrossRefGoogle Scholar
  74. Laver, W. G., Webster, R. G.: Selection of antigenic mutants of influenza vimses. Isolation and peptide mapping of their hemagglutinating proteins. Virology 34,193–202 (1968).PubMedCrossRefGoogle Scholar
  75. Laver, W. G., Webster, R. G.: Studies on the origin of pandemic influenza. III. Evidence implicating duck and equine influenza vimses as possible progenitors of the Hong Kong strain of human influenza. Virology 51,383–391 (1973).PubMedCrossRefGoogle Scholar
  76. Lazarowitz, S. G., Choppin, P. W.: Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68,440–454 (1975).PubMedCrossRefGoogle Scholar
  77. Leibovitz, A., Coultrip, R. L., Kilbourne, E. D., Legters, L.J., Smith, C. D., Chin, J., Schulman, J. L.: Correlated studies of a recombinant influenza-vims vaccine. IV. Prodection against naturally occurring influenza in military trainees. J. Infect. Dis. 124,481–487 (1971).PubMedCrossRefGoogle Scholar
  78. Lübeck, M. D., Gerhard, W.: Topological mapping of antigenic sites on the influenza A/PR/8/34 vims hemagglutinin using monoclonal antibodies. Virology 113,64–72 (1981).PubMedCrossRefGoogle Scholar
  79. Massicot, J. G., Murphy, B.R., Van Wyke, K., Huan, K-Y., Chanock, R.M.: ts Pl and P3 genes responsible for satisfactory level of attenuation of ts-2 recombinants bearing Hl or H3N2 surface antigenes of influenza A virus. Virology 106,187–190 (1980).PubMedCrossRefGoogle Scholar
  80. Massicot, J. G., Van Wyke, K., Chanock, R. B., Murphy, B. R.: Evidence for intrasegmental complementation between two influenza A viruses having ts mutations on their PI genes. Virology 117,496–500 (1982).PubMedCrossRefGoogle Scholar
  81. Mayer, V, Schulman, J. L., Kilbourne, E. D.: Nonlinkage of neurovirulence exclusively to viral hemagglutinin or neuraminidase in genetic recombinants of A/NWS (HONl) influenza virus. J.Virol. 11,272–278 (1973).PubMedGoogle Scholar
  82. Mlelland, A. J., Hare, J. D.: Adsorption of influenza virus by red cells and a new in vitromethod of measuring antibodies for influenza virus. Ganad. Pubi. Health J. 530–538 (1941).Google Scholar
  83. Murphy, B. R., Tolpin, M. D., Massicot, J. G., Kim, H. Y., Parrott, R. H., Chanock, R. M.: Escape of a highly defective influenza A virus mutant from its temperature sensitive phenotype by extragenic suppression and other types of mutation. Annals New York Acad. Sci. 354,172–182 (1980).CrossRefGoogle Scholar
  84. Nakajima, K., Desselberger, U., Palese, P.: Recent human influenza A (Hl) viruses are closely related genetically to strains isolated in 1950. Nature 274,334–339 (1978).PubMedCrossRefGoogle Scholar
  85. Nakajima, K., Sugiura, A.: Three-factor cross of influenza virus. Virology 81,486–489 (1977).PubMedCrossRefGoogle Scholar
  86. Nottay, B. K., Kew, O. M., Hatch, M. H., Heyward, J. T., Obijeski, J. F.: Molecular variation of type 1 vaccine-related and wild polioviruses during replication in humans. Virology 108,405–423 (1981).PubMedCrossRefGoogle Scholar
  87. Palese, P., Brand, C., Young, J. F., Baez, M., Six, H. R., Kasel, J. A.: Molecular epidemiology of influenza viruses. Perspect. Virology 11,115–127 (1981).Google Scholar
  88. Palese, P., Elliott, R. M., Baez, M., Zazra, J.J., Young, J. F.: Genome diversity among influenza A, B and C viruses and genetic structure of RNA 7 and RNA 8 of influenza A viruses. In: Genetic Variation Among Influenza Viruses (Nayak, D., ed.), 127–140. New York: Academic Press 1981.Google Scholar
  89. Palese, P., Schulman, J. L.: Differences in RNA pattern of influenza viruses. J. Virol. 17,876–884 (1976).PubMedGoogle Scholar
  90. Palese, P., Young, J. F.: Variation of influenza A, B and C viruses. Science 215,1468–1474 (1982).PubMedCrossRefGoogle Scholar
  91. Perry, B. T., Van Den Ende, M., Burnet, F. M.: Recombination with two influenza B strains in the deembryonated egg. Austral. J. Exp. Biol. 32,469–478 (1954).PubMedCrossRefGoogle Scholar
  92. Pons, M.W., Hirst, G.K.: Polyacrylamide gel electrophoresis of influenza virus RNA. Virology 34,385–388 (1968).PubMedCrossRefGoogle Scholar
  93. Racaniello, V.R., Palese, P.: Isolation of influenza C virus recombinants. J.Virol. 32,1006–1014 (1979).PubMedGoogle Scholar
  94. Rasmussen, jr., A. F.: Avian myxoviruses and man. In: Newcastle Disease Virus: An Evolving Pathogen (Hanson, R.P., ed.), 313–325. Madison: University Wisconsin Press 1964.Google Scholar
  95. Ritchey, M., Palese, P.: In vitrotranslation of influenza virus messenger RNAs. Virology 72,410 (1976).CrossRefGoogle Scholar
  96. Ritchey, M.B., Palese, P., Schulman, J.L.: Differences in protein patterns of influenza A viruses. Virology 76,122–128 (1977).PubMedCrossRefGoogle Scholar
  97. Rohde, W., Scholtissek, C.: On the origin of the gene coding for an influenza A virus nucleocapsid protein. Arch. Virol. 64,213–223 (1980).PubMedCrossRefGoogle Scholar
  98. Rott, R., Och, M., Scholtissek, C.: Attenuation of pathogenicity of fowl plague vims by recombination with other influenza A vimses nonpathogenic for fowl: nonexclusive dependence of pathogenicity on hemagglutinin and neuraminidase of the vims. J. Virol. 19,54–60 (1976).PubMedGoogle Scholar
  99. Rott, R., Orlich, M., Scholtissek, C.: Correlation of pathogenicity and gene constellation of influenza A vimses. III. Non-pathogenic recombinants derived from highly pathogenic parent strains. J. Gen. Virol. 44,471–477 (1979).PubMedCrossRefGoogle Scholar
  100. Rott, R., Scholtissek, C., Klenk, H-D., Orlich, M.: In: Negative Strand Vimses and the Host Cell (Many, B. W.J., Barry, R.D., eds.), 652–662. New York: Academic Press 1978.Google Scholar
  101. Scholtissek, C., Rohde, W., Harms, E., Rott, R., Och, M., Boschek, C. B.: A possible partial hetero- zygote of an influenza A vims. Virology 89,506–516 (1978).PubMedCrossRefGoogle Scholar
  102. Scholtissek, C., Rohde, W., Von Hoyningen, V., Rott, R.: On the origin of the human influenza vims subtypes H2N2 and H3N2. Virology 87,13–20 (1978).PubMedCrossRefGoogle Scholar
  103. Scholtissek, C., Rott, R., Orlich, M., Harms, E., Rohde, W.: Correlation of pathogenicity and gene constellation of an influenza A vims (fowl plaque). I. Exchange of a single gene. Virology 82,74–80 (1977).CrossRefGoogle Scholar
  104. Scholtissek, C., Vallbracht, A., Plehmig, B., Rott, R.: Correlation of pathogenicity and gene constellation of influenza A viruses. II. Highly neurovirulent recombinants derived from non-neuro- virulent or weakly neurovirulent parent vims strains. Virology 95,492–500 (1979).PubMedCrossRefGoogle Scholar
  105. Schulman, J. L., Kilbourne, E. D.: Experimental influenza vims infection of mice. Proc. Pirst Intern. Symp. Aerobi, 141–146. University of Cahfornia Press 1963.Google Scholar
  106. Schulman, J. L., Kilbourne, E. D.: Independent variation in nature ofhemagglutinin and neuraminidase antigens of influenza vims: Distinctiveness ofhemagglutinin antigen of Hong Kong/ 68 vims. Proc. Nafl. Acad. Sci. 63,326–333 (1969).CrossRefGoogle Scholar
  107. Schulman, J. L., Palese, P.: Selection and identification of influenza vims recombinats of defined genetic composition. J. Virol 20,248–254 (1976).PubMedGoogle Scholar
  108. Schulman, J. L., Palese, P.: Vimlence factors of influenza A vimses. WSN vims neuraminidase required for productive infection in MDCK cells. J. Virol 24,170–176 (1977).PubMedGoogle Scholar
  109. Schulman, J.L., Palese, P.: Biological properties of recombinants of influenza A/Hong Kong and A/PR8 vimses: Effects of genes for matrix protein and nucleoprotein on vims yield in embryo- nated eggs. In: Negative Strand Vimses and the Host Cell (Mahy, B.W.J., Barry, R.D., eds.), 663–674. New York: Academic Press 1978.Google Scholar
  110. Semple, A. B.: Epidemiology of the influenza epidemic in Liverpool in 1950/51. Proc. Roy. Soc. Med. 44,794–796 (1951).Google Scholar
  111. Simpson, R. W., Hirst, G. K.: Genetic recombination among influenza vimses. 1. Cross reactivation of plaque-forming capacity as a method for selecting recombinants from the progeny of crosses between influenza A strains. Virology 15,436–451 (1961).PubMedCrossRefGoogle Scholar
  112. Simpson, R. W., Hirst, G. K.: Temperature-sensitive mutants of influenza A vims: Isolation of mutants and preliminary observations on genetic recombination and complementation. Virology 35,41–49 (1968).PubMedCrossRefGoogle Scholar
  113. Sleigh, M. J., Both, G. W., Underwood, P. A., Bender, V. J.: Antigenic drift: in the hemagglutinin of the Hong Kong influenza subtype: Correlation of amino acid changes with alterations in viral antigenicity. J. Virol 37,845–853 (1981).PubMedGoogle Scholar
  114. Smith, J. M.: The Evolution of Sex. New York: Cambridge Univ. Press. 1978.Google Scholar
  115. Smith, W.: Cultivation of the virus of influenza. Brit. J. Exp. Path. 16,508–512 (1935).Google Scholar
  116. Spring, S. B., Nusinoff, S. R., Tierney, E. L., Richman, D. D., Murphy, B. R., Chanock, R. M.: Tempera- ture-sensitive mutants of influenza. VIIL Genetic and biological characterizations ofts mutants of influenza vims A (H3N2) and their assignment to complementation groups. Virology 66,542–550 (1975).PubMedCrossRefGoogle Scholar
  117. Staiger, H.R.: Plaque-type recombination in fowl plague vims. Virology 22,419–422 (1964).PubMedCrossRefGoogle Scholar
  118. Stuart-Harris, C.: A neurotropic strain of human influenza vims. Lancet i,497–499 (1939).CrossRefGoogle Scholar
  119. Stuart-Harris, C.: The present status of live influenza vims vaccine. J. Infect. Dis. 142,784–793 (1980).PubMedCrossRefGoogle Scholar
  120. Sugiura, A.: Influenza vims genetics. In: The Influenza Vimses and Influenza (Kilbourne, E. D., ed.), 171–213. New York: Academic Press 1975.Google Scholar
  121. Sugiura, A., Kilbourne, E. D.: Genetic studies of influenza vimses. II. Plaque formation by influenza vimses in a clone of a variant human heteroploid cell line. Virology 26,478–488 (1965).PubMedCrossRefGoogle Scholar
  122. Sugiura, A., Kilbourne, E. D.: Genetic studies of influenza vimses. III. Production of plaque-type recombinants with A0and A1strains. Virology 29,84–91 (1966).PubMedCrossRefGoogle Scholar
  123. Sugiura, A., Tobita, K., Kilbourne, E.D.: Isolation and preliminary characterization of temperature- sensitive mutants of influenza vims. J. Virol 10,639–647 (1972).PubMedGoogle Scholar
  124. Sugiura, A., Ueda, M.: Marker rescue with ultraviolet-inactivated influenza vims. J. Virol 7,499–503 (1971).PubMedGoogle Scholar
  125. Sugiura, A., Ueda, M., Tobita, K., Enomoto, C.: Purther isolation and characterization of temperature- sensitive mutants of influenza vims. Virology 65,363–373 (1975).PubMedCrossRefGoogle Scholar
  126. Tobita, K., Kilbourne, E. D.: Stmctural polypeptides of antigenically distinct strains of influenza B vims. Arch. Virol 47,367–374 (1975).PubMedCrossRefGoogle Scholar
  127. Tumova, B., Pereira, H. G.: Genetic interaction between influenza A vimses of human and animal origin. Virology 27,253–261 (1956).CrossRefGoogle Scholar
  128. Ward, C. W., Dopheide, T. A.: Evolution of the Hong Kong influenza A sub-type. Biochem. J. 195,337–340 (1981).PubMedGoogle Scholar
  129. Webster, R. G., Campbell, C.H., Granofif, A.: The in vivoproduction of new influenza A viruses. I. Genetic recombination between avian and mammalian influenza viruses. Virology 44,317–328 (1971).PubMedCrossRefGoogle Scholar
  130. Webster, R. G., Campbell, C.H., Granoff, A.: The in vivoproduction of “new” influenza viruses. III. Isolation of recombinant influenza vimses under simulated conditions of natural transmission. Virology 51,149–162 (1973).PubMedCrossRefGoogle Scholar
  131. Webster, R. G., Laver, W. G.: Antigenic variation of influenza vimses. In: The Influenza Vimses and Influenza (Kilbourne, E.D., ed.), 270–314. New York: Academic Press 1975.Google Scholar
  132. Webster, R. G., Laver, W. G., Air, G. M., Schild, G. C.: Molecular mechanisms of variation in influenza vimses. Nature 296,115–121 (1982).PubMedCrossRefGoogle Scholar
  133. Webster, R.G., Laver, W.G., Granoff, A.: Genetic reassortment with orthomyxovimses. In: Vims Research (Fox, C.F., Robinsion, W.S., eds.), 513–524. New York: Academic Press 1973.Google Scholar
  134. Wiley, D. C., Wilson, I. A., Skehel, J.J.: Stmctural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289,373–378 (1981).PubMedCrossRefGoogle Scholar
  135. Wilson, LA., Skehel, J.J., Wiley, D. C.: Stmcture of the haemagglutinin membrane glycoprotein of influenza vims at 3 A resolution. Nature 289,366–373 (1981).PubMedCrossRefGoogle Scholar
  136. Young, J. F., Desselberger, U., Palese, P.: Evolution of human influenza A vimses in nature. Sequential mutations in the genomes of new Hl isolates. Cell 18,73–83 (1979).PubMedCrossRefGoogle Scholar
  137. Young, J. F., Palese, P.: Evolution of human influenza A vimses in nature: Recombination contributes to genetic variation of Hl strains. Proc. Nati. Acad. Sci. U.SA. 76,6547–6551 (1979).CrossRefGoogle Scholar
  138. Young, J. F., Taussig, R., Aaronson, R. P., Palese, P.: Advantages and limitations of the oligonucleotide mapping technique for the analysis of viral RNAs. In: Replication of Negative Strand Viruses (Bishop, D.H.L., Compans, R.W., eds.), 209–215. New York: Elsevier/North-Holland 1981.Google Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • E. D. Kilbourne

There are no affiliations available

Personalised recommendations