Advertisement

Abstract

Poisons for arrows and blow darts have been derived from a wide spectrum of sources in both the plant and animal kingdoms. One unique source of such poisons is the skin secretion of certain brightly colored frogs native to the rain forests of Western Colombia. The Noanamá and Emberá Indians of this region undoubtedly used secretions from these frogs to poison blow darts even in pre-Colombian times, but the first account of dart envenomation with poison frogs did not appear until 1825 (67). Secretions from a single frog were purported to be sufficient for envenomation of at least twenty blow darts [(67,214,221,270,271); see (176) for review of early literature]. Only three species of neotropical frogs can be stated with assurance to have been used to poison blow darts (191). All of these frogs occur only in western Colombia where the practice of poisoning blow darts with frog secretions still persists today in spite of the inroads of civilization. The poison-dart frog (Phyllobates bicolor) from the headwaters of the Río San Juan is called “neará” by the Indians, while lower in the same drainage the poison-dart frog (Phyllobates aurotaenia) is called “kokoi”. Envenomation of darts with the most toxic species (Phyllobates terribilis) from the Río Saija is done simply by drawing the tip of the dart across the back of a living frog while the other two species are impaled in order to elicit a copious flow of skin secretions.

Keywords

Sodium Channel Skin Extract Scorpion Toxin Tetrahedron Letter Poison Frog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, H. J., A. R. Mastri, D. Doherty, Jr., and D. Charron: Spinal anesthesia with batrachotoxin in sheep and microscopic examination of spinal cords and roots. Pharmacol. Res. Comm. 10, 719–728 (1978).Google Scholar
  2. 2.
    Adler, M., A. C. Oliveira, E. X. Albuquerque, N. A. Mansour, and A. T. Eldefrawi: Reaction of tetraethylammonium with the open and closed conformations of the acetylcholine receptor ionic channel complex. J. Gen. Physiol. 74, 129–152 (1979).Google Scholar
  3. 3.
    Adler, M., A. C. Oliveira, M. E. Eldefrawi, A. T. Eldefrawi, and E. X. Albuquerque: Tetraethylammonium: Voltage-dependent action on endplate conductance and inhibition of ligand binding to postsynaptic proteins. Proc. Nat. Acad. Sci. (USA) 76, 531–535 (1979).Google Scholar
  4. 4.
    Albuquerque, E. X.: The mode of action of batrachotoxin. Federat. Proc. 31, 1133–1138 (1972).Google Scholar
  5. 5.
    Albuquerque, E. X., and J. W. Daly: Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Receptors and Recognition 1, series B (P. Cuatracasas, ed.), pp. 297–338. London: Chapman and Hall. 1977.Google Scholar
  6. 6.
    Albuquerque, E.X., and P. W. Gage: Differential effects of perhydrohistrionicotoxin on neurally and iontophoretically evoked endplate currents. Proc. Nat. Acad. Sci. (USA) 75, 1596–1599 (1978).Google Scholar
  7. 7.
    Albuquerque, E. X., and A. C. Oliveira: Physiological studies on the ionic channel of nicotinic neuromuscular synapses. Adv. Cytopharmacol. 3, 197–211 (1979).Google Scholar
  8. 8.
    Albuquerque, E. X., and J. E. Warnick: Pharmacology of batrachotoxin. IV. Interaction with tetrodotoxin on innervated and chronically denervated rat skeletal muscle. J. Pharmacol. Exp. Therapeut. 180, 683–697 (1972).Google Scholar
  9. 9.
    Albuquerque, E. X., M. Adler, C. E. Spivak, and L. Aguayo: Mechanism of nicotinic channel activation and blockade. Ann. N. Y. Acad. Sci. 358, 204–238 (1980).Google Scholar
  10. 10.
    Albuquerque, E. X., E. A. Barnard, T. H. Chiu, A. J. Lapa, J. O. Dolly, S.-E. Jansson, J. Daly, and B. Witkop: Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions. Proc. Nat. Acad. Sci. (USA) 70, 949–953 (1973).Google Scholar
  11. 11.
    Albuquerque, E. X., N. Brookes, R. Onur, and J. E. Warnick: Kinetics of interaction of batrachotoxin and tetrodotoxin on rat diaphragm muscle. Mol. Pharmacol. 12, 82–91 (1976).Google Scholar
  12. 12.
    Albuquerque, E. X., J. W. Daly, and B. Witkop: Batrachotoxin: Chemistry and pharmacology. Science 172, 995–1002 (1971).Google Scholar
  13. 13.
    Albuquerque, E. X., A. T. Eldefrawi, M. E. Eldefrawi, N. A. Mansour, and M.-C. Tsai: Amantadine: Neuromuscular blockade by suppression of ionic conductance of the acetylcholine receptor. Science 199, 788–790 (1978).Google Scholar
  14. 14.
    Albuquerque, E. X., P. W. Gage, and A. C. Oliveira: Differential effect of perhydrohistrionicotoxin on ‘intrinsic’ and ‘extrinsic’ end-plate responses. J. Physiol. 297, 423–442 (1979).Google Scholar
  15. 15.
    Albuquerque, E. X., K. Kuba, and J. Daly: Effect of histrionicotoxin on the ionic conductance modulator of the cholinergic receptor: A quantitative analysis of the endplate current. J. Pharmacol. Exp. Therapeut. 189, 513–524 (1974).Google Scholar
  16. 16.
    Albuquerque, E. X., K. Kuba, A. J. Lapa, J. W. Daly, and B. Witkop: Acetylcholine receptor and ionic conductance modulator of innervated and denervated muscle membranes. Effect of histrionicotoxins. In: Exploratory Concepts in Muscular Dystrophy, Vol. 11 (Molhorat, A. T., ed.), pp. 585–600. Amsterdam: Excerpta Medica. 1974.Google Scholar
  17. 17.
    Albuquerque, E. X., M. Sasa, B. P. Avner, and J. W. Daly: Possible site of action of batrachotoxin. Nature New Biology 234, 93–94 (1971).Google Scholar
  18. 18.
    Albuquerque, E. X., M. Sasa, and J. M. Sarvey: Batrachotoxin has no effect on the electrogenic membranes of lobster and crayfish muscles. Life Sci. 11, 357–363 (1972).Google Scholar
  19. 19.
    Albuquerque, E. X., I. Seyama, and T. Narahashi: Characterization of batrachotoxin-induced depolarization of the squid giant axons. J. Pharmacol. Exp. Therapeut. 184, 308–314 (1973).Google Scholar
  20. 20.
    Albuquerque, E. X., M.-C. Tsai, R. S. Aronstam, A. T. Eldefrawi, and M. E. Eldefrawi: Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor. Mol. Pharmacol. 18, 167–178 (1980).Google Scholar
  21. 21.
    Albuquerque, E. X., M.-C. Tsai, R. S. Aronstram, B. Witkop, A. T. Eldefrawi, and M. E. Eldefrawi: Phencyclidine interactions with the ionic channel of the acetylcholine receptor and electrogenic membrane. Proc. Nat. Acad. Sci. (USA) 77, 1224–1228 (1980).Google Scholar
  22. 22.
    Albuquerque, E. X., J. E. Warnick, and L. Guth: Spinal cord regeneration and paraplegia. Prog. Clin. Biol. Res. 39, 41–62 (1980).Google Scholar
  23. 23.
    Albuquerque, E. X., J. E. Warnick, and F. M. Sansone: The pharmacology of batrachotoxin. II. Effect on electrical properties of the mammalian nerve and skeletal muscle membranes. J. Pharmacol. Exp. Therapeut. 176, 511–528 (1971).Google Scholar
  24. 24.
    Albuquerque, E. X., J. E. Warnick, M. A. Maleque, F. C. Kaufmann, R. Tamburini, Y. Nimit, and J. W. Daly: The pharmacology of pumiliotoxin-B. I. Interaction with calcium sites in the sarcoplasmic reticulum of skeletal muscle. Mol. Pharmacol. 19, 411–424 (1981).Google Scholar
  25. 25.
    Albuquerque, E. X., J. E. Warnick, F. M. Sansone, and J. Daly: The pharmacology of batrachotoxin. V. A comparative study of membrane properties and the effects of batrachotoxin on sartorius muscles of the frogs Phyllobates aurotaenia and Rana pipiens. J. Pharmacol. Exp. Therapeut. 184, 315–329 (1973).Google Scholar
  26. 26.
    Albuquerque, E. X., J. E. Warnick, R. Tamburini, F. C. Kaufmann, and J. W. Daly: Interaction of pumiliotoxin-B with calcium sites in the sarcoplasmic reticulum and nerve terminal of normal and dystrophic muscle. In: Exploratory Concepts in Muscular Dystrophy. Amsterdam: Excerpta Medica. In press (1982).Google Scholar
  27. 27.
    Anwyl, R., and T. Narahashi: Inhibition of the acetylcholine receptor by histrionicotoxin. Brit. J. Pharmacol. 68, 611–616 (1980).Google Scholar
  28. 28.
    Aratani, M., L. V. Dunkerton, T. Fukuyama, Y. Kishi, H. Kakoi, S. Sugiura, and S. Inoue: Synthetic studies on histrionicotoxins. I. A stereocontroiled synthesis of (+)-perhydrohistrionicotoxin. J. Org. Chem. 40, 2009–2011 (1975).Google Scholar
  29. 29.
    Aronstam, R. S.: Interactions of tricyclic antidepressants with a synaptic ion channel. Life Sci. 28, 59–64 (1981).Google Scholar
  30. 30.
    Aronstam, R. S., A. T. Eldefrawi, and M. E. Eldefrawi: Similarities in the binding sites of the muscarinic receptor and the ionic channel of the nicotinic receptor. Biochem. Pharmacol. 29, 1311–1314 (1980).Google Scholar
  31. 31.
    Aronstam, R. S., A. T. Eldefrawi, I. N. Pessah, J. W. Daly, E. X. Albuquerque, and M. E. Eldefrawi: Regulation of [3H]-perhydrohistrionicotoxin binding to Torpedo ocellata electroplax by effectors of the acetylcholine receptor. J. Biol. Chem. 256, 2843–2851 (1981).Google Scholar
  32. 32.
    Bartels-Bernal, E., T. L. Rosenberry, and J. W. Daly: Effects of batrachotoxin on the electroplax of electric eel: Evidence for voltage-dependent interaction with sodium channels. Proc. Nat. Acad. Sci. (USA) 74, 951–955 (1977).Google Scholar
  33. 33.
    Bartels de Bernal, E., M. I. Llano, and E. Diaz: Algunos efectos de la batrachotoxina sobre las electroplacas de la anguila electrica y su antagonismo con anesthesicos locales. Acta Med. Valle 6, 74–80 (1975).Google Scholar
  34. 34.
    Bennett, G. B., and H. Minor: 7,8-Dihydro-5-(6H)-quinolines: Potential inter-mediates for the synthesis of pumiliotoxin C. J. Heterocycl. Chem. 16, 633–635 (1979).Google Scholar
  35. 35.
    Berner, H., L. Berner-Fenz, R. Binder, W. Graf, T. Grutter, C. Pascual, and H. Wehrli: Die Synthese von 5ßO,19N-Ep-(oxyathanoimino)-Steroiden. Helv. Chim. Acta 53, 2252–2258 (1970).Google Scholar
  36. 36.
    Berner-Fenz, L., H. Berner, W. Graf, and H. Wehrli: Synthese von 14β0,18N-Ep-(oxyathanoimino)-Steroiden. Helv. Chim. Acta 53, 2258–2265 (1970).Google Scholar
  37. 37.
    Blanchard, S. G., and M. A. Raftery: Identification of the polypeptide chains in Torpedo California electroplax membranes that interact with a local anesthetic analog. Proc. Nat. Acad. Sci. (USA) 76, 81–85 (1979).Google Scholar
  38. 38.
    Blanchard, S. G., J. Elliott, and M. A. Raferty: Interaction of local anesthetics with Torpedo californica membrane-bound acetylcholine receptor. Biochemistry 18, 5880–5885 (1979).Google Scholar
  39. 39.
    Boegman, R. J., and E. X. Albuquerque: Axonal transport in rats rendered paraplegic following a single subarachnoid injection of either batrachotoxin or 6-aminonicotin-amide into the spinal cord. J. Neurobiol. 11, 283–290 (1980).Google Scholar
  40. 40.
    Boegman, R. J., and T. W. Oliver: Neural influence on muscle hydrolase activity. Life Sci. 27, 1339–1344 (1980).Google Scholar
  41. 41.
    Boegman, R. J., and R. J. Riopelle: The role of axonal transport and impulse conduction on the uptake and retrograde transport of nerve growth factor and bovine serum albumin in peripheral nerve. J. Neurobiol. 11, 497–501 (1980).Google Scholar
  42. 42.
    Boegman, R. J., and R. J. Riopelle: Batrachotoxin blocks slow and retrograde axonal transport in vivo. Neurosci. Lett. 18, 143–147 (1980).Google Scholar
  43. 43.
    Boegman, R. J., S. S. Deshpande, and E. X. Albuquerque: Consequences of axonal transport blockade induced by batrachotoxin on mammalian neuromuscular junction I. Early pre- and postsynaptic changes. Brain Res. 187, 183–196 (1980).Google Scholar
  44. 44.
    Bond, F. T., J. E. Stemke, and D. W. Powell: Facile synthesis of 1-azaspiro-(5.5)-undecan-2,7-dione. Synthetic Commun. 5, 427–433 (1975).Google Scholar
  45. 45.
    Brown, G. B., and J. W. Daly: Interaction of batrachotoxinin-A benzoate with voltage sensitive sodium channels. The effects of pH. Cell. Mol. Neurobiol., in press (1982).Google Scholar
  46. 46.
    Brown, G. B., S. C. Tieszen, J. W. Daly, J. E. Warnick, and E. X. Albuquerque: Batrachotoxin-A 20-a-benzoate: A new radioactive ligand for voltage sensitive sodium channels. Cell. Mol. Neurobiol. 1, 19–40 (1981).Google Scholar
  47. 47.
    Brown, J. H.: Calcium-dependent blockade of cardiac cyclic AMP accumulation by batrachotoxin and veratridine. Mol. Pharmacol. 20, 113–117 (1981).Google Scholar
  48. 48.
    Burgermeister, W., W. A. Catterall, and B. Witkop: Histrionicotoxin enhances agonist-induced desensitization of acetylcholine receptor. Proc. Nat. Acad. Sci. (USA) 74, 5754–5758 (1977).Google Scholar
  49. 49.
    Burgermeister, W., W. L. Klein, M. Nirenberg, and B. Witkop: Comparative binding studies with cholinergic ligands and histrionicotoxin at muscarinic receptors of neural cell lines. Mol. Pharmacol. 14, 751–767 (1978).Google Scholar
  50. 50.
    Catterall, W. A.: Inhibition of voltage-sensitive sodium channels in neuroblastoma cells by antiarrhythmic drugs. Mol. Pharmacol. 20, 356–362 (1981).Google Scholar
  51. 51.
    Catterall, W. A.: Activation of the action potential Na+ ionophore by neurotoxins: An allosteric model. J. Biol. Chem. 252, 8669–8676 (1977).Google Scholar
  52. 52.
    Catterall, W. A.: Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J. Biol. Chem. 250, 4053–4059 (1975).Google Scholar
  53. 53.
    Catterall, W. A.: Cooperative activation of action potential Na + ionophore by neurotoxins. Proc. Nat. Acad. Sci. (USA) 72, 1782–1786 (1975).Google Scholar
  54. 54.
    Catterall, W. A.: Activation and inhibition of the action potential Na+ ionophore of cultured rat muscle cells by neurotoxin. Biochem. Biophys. Res. Comm. 68, 136–142 (1976).Google Scholar
  55. 55.
    Catterall, W. A.: Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore. J. Biol. Chem. 251, 5528–5536 (1976).Google Scholar
  56. 56.
    Catterall, W. A.: Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination. J. Biol. Chem. 252, 8660–8668 (1977).Google Scholar
  57. 57.
    Catterall, W. A.: Neurotoxins as allosteric modifiers of voltage-sensitive sodium channels. Adv. Cytopharmacol. 3, 305–316 (1979).Google Scholar
  58. 58.
    Catterall, W. A.: Pharmacologic properties of voltage-sensitive sodium channels in chick muscle fibers developing in vitro. Dev. Biol. 78, 222–230 (1980).Google Scholar
  59. 59.
    Catterall, W. A.: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 20, 15–44 (1980).Google Scholar
  60. 60.
    Catterall, W. A., and D. A. Beneski: Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. J. Supramol. Struct. 14, 295–304 (1980).Google Scholar
  61. 61.
    Catterall, W. A., and L. Beress: Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore. J. Biol. Chem. 253, 7393–7396 (1978).Google Scholar
  62. 62.
    Catterall, W. A., and R. Ray: Interactions of neurotoxins with the action potential Na+ ionophore. J. Supramol. Struct. 5, 397–407 (1976).Google Scholar
  63. 63.
    Catterall, W. A., and M. Risk: Toxin T46 from Ptychodiscus brevis (formerly Gymnodinium breve) enhanced activation of voltage sensitive sodium channels by veratridine. Mol. Pharmacol. 19, 345–348 (1981).Google Scholar
  64. 64.
    Catterall, W. A., C. S. Morrow, and R. P. Hartshorne: Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J. Biol. Chem. 254, 11379–11388 (1979).Google Scholar
  65. 65.
    Catterall, W. A., R. Ray, and C. S. Morrow: Membrane potential dependent binding of scorpion toxin to action potential Na+ ionophore. Proc. Nat. Acad. Sci. (USA) 73, 2682–2686 (1976).Google Scholar
  66. 66.
    Catterall, W. A., C. S. Morrow, G. B. Brown, and J. W. Daly: Binding of batrachotoxinin A 20-α-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J. Biol. Chem. 256, 8922–8927 (1981).Google Scholar
  67. 67.
    Cochrane, C. S.: Journal of a residence and travels in Colombia during the years 1823 and 1824. London: Henry Colburn. 1825.Google Scholar
  68. 68.
    Colquhoun, D., R. Henderson, and J. M. Ritchie: The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J. Physiol. (London) 227, 95–126 (1972).Google Scholar
  69. 69.
    Conn, P. J., and D. C. Rogers: Gonadotropin release from pituitary cultures following activation of endogenous ion channels. Endocrinology 107, 2133–2134 (1980).Google Scholar
  70. 70.
    Corey, E. J., and R. D. Balanson: Studies directed toward the total synthesis of perhydrohistrionicotoxin. Heterocycles 5, 445–470 (1976).Google Scholar
  71. 71.
    Corey, E. J., and R. A. Ruden: Stereoselective methods for the synthesis of terminal cis and trans enyne units. Tetrahedron Letters 1973, 1495–1499.Google Scholar
  72. 72.
    Corey, E. J., J. F. Arnett, and G. N. Widiger: A simple total synthesis of (+)-perhydrohistrionicotoxin. J. Amer. Chem. Soc. 98, 430–431 (1975).Google Scholar
  73. 73.
    Corey, E. J., M. Petrzilka, and Y. Ueda: A new synthetic route to (±)-perhydrohistrionicotoxin. Tetrahedron Letters 1975, 4343–4346.Google Scholar
  74. 74.
    Corey, E. J., M. Petrzilka, and Y. Ueda: A new synthetic route to (±)-perhydrohistrionicotoxin. Helv. Chim. Acta 60, 2294–2302 (1977).Google Scholar
  75. 75.
    Corey, E. J., Y. Ueda, and R. A. Ruden: Synthetic route to neurotoxins in the 2,1-epihistrionicotoxin series. Tetrahedron Letters 1975, 4347–4350.Google Scholar
  76. 76.
    Creveling, C. R., E. T. McNeal, D. H. McCulloh, and J. W. Daly: Membrane potentials in cell-free preparations from guinea pig cerebral cortex: Effect of depolarizing agents and cyclic nucleotides. J. Neurochem. 35, 922–932 (1980).Google Scholar
  77. 77.
    Daly, J. W., and C. W. Myers: Toxicity of Panamanian poison frogs (Dendrobates): Some biological and chemical aspects. Science 156, 970–973 (1967).Google Scholar
  78. 78.
    Daly, J., and B. Witkop: Batrachotoxin, an extremely active cardio- and neurotoxin from the Colombian arrow poison frog. Clinical Toxiology 4, 331–342 (1971).Google Scholar
  79. 79.
    Daly, J., E. X. Albuquerque, F. C. Kauffman, and F. Oesch: Effects of batrachotoxin on electroplax Na+-K+-ATPase and levels of ATP in rat muscle. J. Neurochem. 19, 2829–2833 (1972).Google Scholar
  80. 80.
    Daly, J. W., G. B. Brown, M. Mensah-Dwumah, and C. W. Myers: Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon 16, 163–188 (1978).Google Scholar
  81. 81.
    Daly, J. W., I. Karle, C. W. Myers, T. Tokuyama, J. A. Waters, and B. Witkop: Histrionicotoxins: Roentgen-ray analysis of the novel allenic and acetylenic spiro-alkaloids isolated from a Colombian frog, Dendrobates histrionicus. Proc. Nat. Acad. Sci. (USA) 68, 1870–1875 (1971).Google Scholar
  82. 82.
    Daly, J. W., E. McNeal, C. Partington, M. Neuwirth, and C. R. Creveling: Accumulations of cyclic AMP in adenine-labeled cell-free preparations from guinea pig cerebral cortex: Role of a-adrenergic and Hi-histaminergic receptors. J. Neurochem. 35, 326–337 (1980).Google Scholar
  83. 83.
    Daly, J. W., C. W. Myers, J. E. Warnick, and E. X. Albuquerque: Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208, 1383–1385 (1980).Google Scholar
  84. 84.
    Daly, J. W., T. Tokuyama, T. Fujiwara, R. J. Highet, and I. L. Karle: A new class of indolizidine alkaloids from the poison frog, Dendrobates tricolor. X-ray analysis of 8-hydroxy-8-methyl-6-(2′-methylhexylidene)-l-azabicyclo-[4.3.0]-nonane. J. Amer. Chem. Soc. 102, 830–836 (1980).Google Scholar
  85. 85.
    Daly, J. W., B. Witkop, P. Bommer, and K. Biemann: Batrachotoxin. The active principle of the Colombian arrow poison frog, Phyllobates bicolor. J. Amer. Chem. Soc. 87, 124–126 (1965).Google Scholar
  86. 86.
    Daly, J. W., B. Witkop, T. Tokuyama, T. Nishikawa, and I. L. Karle: Gephyrotoxins, histrionicotoxins and pumiliotoxins from the neotropical frog Dendrobates histrionicus. Helv. Chim. Acta 60, 1128–1140 (1977).Google Scholar
  87. 87.
    Daly, J. W., T. Tokuyama, G. Habermehl, I. L. Karle, and B. Witkop: Froschgifte. Isolierung und Struktur von Pumiliotoxin C. Justus Liebigs Ann. Chem. 729, 198–204 (1969).Google Scholar
  88. 88.
    Dolly, J. O., E. X. Albuquerque, J. M. Sarvey, B. Mallick, and E. A. Barnard: Binding of perhydrohistrionicotoxin to the postsynaptic membrane of skeletal muscle in relation to its blockade of acetylcholine-induced depolarization. Mol. Pharmacol. 13, 1–14 (1977).Google Scholar
  89. 89.
    Eldefrawi, M. E., and A. T. Eldefrawi: Biochemical studies on the ionic channel of Torpedo acetylcholine receptor. Adv. Cytopharmacol. 3, 213–223 (1979).Google Scholar
  90. 90.
    Eldefrawi, M. E., and A. T. Eldefrawi: Coupling between the nicotinic acetylcholine receptor site and the ionic channel site. Ann. N. Y. Acad. Sci. 358, 239–252 (1980).Google Scholar
  91. 91.
    Eldefrawi, A. T., N. M. Bakry, M. E. Eldefrawi, M.-C. Tsai, and E. X. Albuquerque: Nereistoxin interaction with the acetylcholine receptor-ionic channel complex. Mol. Pharmacol. 17, 172–179 (1980).Google Scholar
  92. 92.
    Eldefrawi, A. T., M. E. Eldefrawi, E. X. Albuquerque, A. C. Oliveira, N. Mansour, M. Adler, J. W. Daly, G. B. Brown, W. Bürgermeister, and B. Witkop: Perhydrohistrionicotoxin: A potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc. Nat. Acad. Sci. (USA) 74, 2172–2176 (1977).Google Scholar
  93. 93.
    Eldefrawi, M. E., R. S. Aronstam, N. M. Bakry, A. T. Eldefrawi, and E. X. Albuquerque: Activation, inactivation, and desensitization of acetylcholine receptor channel complex detected by binding of perhydrohistrionicotoxin. Proc. Nat. Acad. Sci. (USA) 77, 2309–2313 (1980).Google Scholar
  94. 94.
    Eldefrawi, M. E., D. S. Copio, C. S. Hudson, J. Rash, N. A. Mansour, A. T. Eldefrawi, and E. X. Albuquerque: Effects of antibodies to Torpedo acetylcholine receptor on the acetylcholine receptor-ionic channel complex of Torpedo electroplax and rabbit intercostal muscle. Exp. Neurol. 64, 428–444 (1979).Google Scholar
  95. 95.
    Eldefrawi, M. E., A. T. Eldefrawi, R. S. Aronstam, M. A. Maleque, J. E. Warnick, and E. X. Albuquerque: [H-3]-phencyclidine — a probe of the ionic channel of the nicotinic receptor. Proc. Nat. Acad. Sci. USA 77, 7458–7462 (1980).Google Scholar
  96. 96.
    Eldefrawi, M. E., A. T. Eldefrawi, N. A. Mansour, J. W. Daly, B. Witkop, and E. X. Albuquerque: Acetylcholine receptor and ionic channel of Torpedo electroplax: Binding of perhydrohistrionicotoxin to membrane and solubilized preparations. Biochemistry 17, 5474–5484 (1978).Google Scholar
  97. 97.
    Eldefrawi, M. E., N. Shaker, N. A. Mansour, J. E. Warnick, and E. X. Albuquerque: Detection of nicotinic cholinergic transmission in Malapterurus electricus electroplax. Life Science 29, 1033–1037 (1981).Google Scholar
  98. 98.
    Elliott, J., and M. A. Raftery: Interactions of perhydrohistrionicotoxin with postsynaptic membranes. Biochem. Biophys. Res. Comm. 77, 1347–1353 (1977).Google Scholar
  99. 99.
    Elliott, J., and M. A. Raftery: Binding of perhydrohistrionicotoxin to intact and detergent-solubilized membranes enriched in nicotinic acetylcholine receptor. Biochemistry 18, 1868–1874 (1979).Google Scholar
  100. 100.
    Elliott, J., S. M. J. Dunn, S. G. Blanchard, and M. A. Raftery: Specific binding of perhydrohistrionicotoxin to Torpedo acetylcholine receptor. Proc. Nat. Acad. Sci. (USA) 76, 2576–2579 (1979).Google Scholar
  101. 101.
    Evans, D. A., and E. W. Thomas: A formal synthesis of (±)-perhydrohistrionicotoxin via α-acylimmonium ion-olefin cyclizations. Tetrahedron Letters 1979, 411–414.Google Scholar
  102. 102.
    Ezhov, V. V., P. F. Potashnikov, O. V. Verenikin, and G. A. Sokolskii: Bioactivity — a function of the structure. VII. Simulation of the bioactivity of batrachotoxin analogs. Khim.-Farm. Zh. 13, 31–35 (1979).Google Scholar
  103. 103.
    Flier, J., M. W. Edwards, J. W. Daly, and C. W. Myers: Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na +, K+- ATPase. Science 208, 503–505 (1980).Google Scholar
  104. 104.
    Flippen, J. L.: 2-n-Propyl-7-methyl-trans-decahydroquinoline hydrochloride, a synthetic isomer of pumiliotoxin C. Acta Crystallogr. B30, 2906–2907 (1974).Google Scholar
  105. 105.
    Forman, D. S., and W. G. Shain, Jr.: Batrachotoxin blocks saltatory organelle movement in electrically excitable neuroblastoma cells. Brain Res. 211, 242–247 (1981).Google Scholar
  106. 106.
    Frelin, C., P. Vigne, G. Ponzio, G. Romey, Y. Tourneur, H. P. Husson, and M. Lazdunski: The interaction of ervatamine and epiervatamine with the action potential Na+ ionophore. Mol. Pharmacol. 20, 107–112 (1981).Google Scholar
  107. 107.
    Fujimoto, R., and Y. Kishi: On the absolute configuration of gephyrotoxin. Tetrahedron Letters 1981, 4197–4198.Google Scholar
  108. 108.
    Fujimoto, R., Y. Kishi, and J. F. Blount: Total synthesis of (±)-gephyrotoxin. J. Amer. Chem. Soc. 102, 7154–7156 (1980).Google Scholar
  109. 109.
    Fukuyama, T., L. V. Dunkerton, M. Aratani, and Y. Kishi: Synthetic studies on histrionicotoxins. II. A practical synthetic route to (+)-perhydro- and (±)-octahydro-histrionicotoxin. J. Org. Chem. (USA) 40, 2011–2012 (1975).Google Scholar
  110. 110.
    Garcia, J. H., S. S. Deshpande, R. S. Pence, and E. X. Albuquerque: Spinal myelopathy induced by subarachnoid batrachotoxin: Ultrastructure and electro- physiology. Brain Res. 140, 75–87 (1978).Google Scholar
  111. 111.
    Garrison, D. L., E. X. Albuquerque, J. E. Warnick, J. W. Daly, and B. Witkop: Antagonism of carbamylcholine-induced depolarization by batrachotoxin and veratridine. Mol. Pharmacol. 14, 111–121 (1978).Google Scholar
  112. 112.
    Gilardi, R. D.: The absolute configuration of a steroidal substance, the O-p-bromobenzoate derivative of batrachotoxinin A. Acta Crystallogr. B26, 440–441 (1970).Google Scholar
  113. 113.
    Gill, D. L., E. F. Grollman, and L. D. Kohn: Calcium transport mechanism in membrane vesicles from guinea pig brain synaptosomes. J. Biol. Chem. 256, 184–192 (1981).Google Scholar
  114. 114.
    Glavinovic, M., J. L. Henry, G. Kato, K. Krnjevic, and E. Puil: Histrionicotoxin: Effects on some central and peripheral excitable cells. Canad. J. Physiol. Pharmacol. 52, 1220–1226 (1974).Google Scholar
  115. 115.
    Gossinger, E., W. Graf, R. Imhof, and H. Wehrli: Herstellung von 14ß-Hydroxy-20- keto-A16-Steroiden: Ein neuer ergiebiger Zugang zu 3-0-Methyl-17α-20ζ-tetrahydro-batrachotoxinin A. Helv. Chim. Acta 54, 2785–2788 (1971).Google Scholar
  116. 116.
    Gossinger, E., R. Imhof, and H. Wehrli: Modellversuche in der Histrionicotoxinreihe Synthese des (±)-Cis-l-azaspiro-[5.5]-undecan-8-ols. Helv. Chim. Acta 58, 96–103 (1975).Google Scholar
  117. 117.
    Graf, W., H. Berner, L. Berner-Fenz, F. E. Gossinger, R. Imhof, and H. Wehrli: Die Synthese von 3 β - Methoxy - 3 α, 9 α - oxido -11 α, 20 ζ - dihydroxy -14 β 0,18 N - [ep (oxy - athano - N - methylimino)] - 5 β, 17 α - pregnan (3 - O - methyl - 17 α, 20 ζ - tetrahydrobatrachotoxinin A). Helv. Chim. Acta 53, 2267–2275 (1970).Google Scholar
  118. 118.
    Graf, W., E. Gossinger, R. Imhof, and H. Wehrli: Die Partialsynthese von 3-O-Methyl-20ζ-7,8-dihydrobatrachotoxinin A. Helv. Chim. Acta 54, 2789–2793 (1971).Google Scholar
  119. 119.
    Graf, W., F. E. Gossinger, R. Imhof, and H. Wehrli: Synthese der C-20 epimeren 7,8-Dihydrobatrachotoxinine. Helv. Chim. Acta 55, 1545–1560 (1972).Google Scholar
  120. 120.
    Habermehl, G., H. Andres, and B. Witkop: Synthese von rac.-pumiliotoxin C. Naturwiss. 62, 345–346 (1975).Google Scholar
  121. 121.
    Habermehl, G., and W. Kissing: Pumiliotoxins and related compounds. 2.2-Propyl-cis-perhydroquinolin-5.alpha.-ol. Chem. Ber. 107, 2326–2328 (1974).Google Scholar
  122. 122.
    Habermehl, G., H. Andres, K. Miyahara, B. Witkop, and J. W. Daly: Synthese von pumiliotoxin C. Justus Liebigs Ann. Chem. 1976, 1577–1583.Google Scholar
  123. 123.
    Hart, D. J.: The effect of A(1,3) strain on the stereochemical course of N-acyliminium ion cyclizations. J. Amer. Chem. Soc. 102, 397–398 (1980).Google Scholar
  124. 124.
    Hart, D. J.: A synthesis of (±)-gephyrotoxin. J. Organ. Chem. (USA) 46, 3576–3578 (1981).Google Scholar
  125. 125.
    Heidmann, T., and J.-P. Changeux: Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Ann. Rev. Biochem. 47, 317–357 (1978).Google Scholar
  126. 126.
    Henderson, R., and G. Strichartz: Ion fluxes through the sodium channels of garfish olfactory nerve membranes. J. Physiol. (London) 238, 329–342 (1974).Google Scholar
  127. 127.
    Hery, F., G. Simonnet, S. Bourgoin, P. Soubrie, F. Artaud, M. Hamon, and J. Glowinski: Effect of nerve activity on the in vivo release of [3H]-serotonin continuously formed from L-[3H]-tryptophan in the caudate nucleus of the cat. Brain Res. 169, 317–334 (1979).Google Scholar
  128. 128.
    Highet, R. J., J. W. Daly, T. Fujiwara, and T. Tokuyama: Indolizidine alkaloids from poison frogs of Dendrobates spp. Planta Medica 39, 260–261 (1980).Google Scholar
  129. 129.
    Hogan, P. M., and E. X. Albuquerque: The pharmacology of batrachotoxin. III. Effect on the heart Purkinje fibers. J. Pharmacol. Exp. Therapeut. 176, 529–537 (1971).Google Scholar
  130. 130.
    Holmes, A. B., R. A. Raphael, and N. K. Wellard: Model studies in the histrionicotoxin series: A highly stereoselective synthesis of terminal cis enyne units. Tetrahedron Letters 1976, 1539–1542.Google Scholar
  131. 131.
    Holz, R. W., and J. T. Coyle: The effects of various salts, temperature, and the alkaloids veratridine and batrachotoxin on the uptake of [3H]-dopamine into synaptosomes from rat striatum. Mol. Pharmacol. 10, 746–758 (1974).Google Scholar
  132. 132.
    Honerjaeger, P., and M. Reiter: Batrachotoxin: Activity-dependent prolongation of the cardiac action potential and positive inotropic effect. Brit. J. Pharmacol. 58, 415P (1976).Google Scholar
  133. 133.
    Honerjaeger, P., and M. Reiter: The cardiotoxic effect of batrachotoxin. Naunyn-Schmiedeberg’s Arch. Pharmacol. 299, 239–252 (1977).Google Scholar
  134. 134.
    Huang, L.-Y. M., W. A. Catterall, and G. Ehrenstein: Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants. J. Gen. Physiol. 73, 839–854 (1979).Google Scholar
  135. 135.
    Huang, L.-Y. M., and G. Ehrenstein: Local anesthetics QX572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel. J. Physiol. 77, 137–154 (1981).Google Scholar
  136. 136.
    Huang, L.-Y. M., G. Ehrenstein, and W. A. Catterall: Interaction between batrachotoxin and yohimbine. Biophys. J. 23, 219–231 (1978).Google Scholar
  137. 137.
    Huang, M., and J. W. Daly: Interrelationship among levels of ATP, adenosine and cyclic AMP in incubated slices of guinea pig cerebral cortex: Effect of depolarizing agents, psychotropic drugs and metabolic inhibitors. J. Neurochem. 23, 393–404 (1974).Google Scholar
  138. 138.
    Huang, M., H. Shimizu, and J. W. Daly: Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effect of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors and adenosine analogs. J. Med. Chem. 15, 462–466 (1972).Google Scholar
  139. 139.
    Ibuka, T., Y. Inubushi, I. Saji, K. Tanaka, and N. Masaki: Total synthesis of dl-pumiliotoxin C hydrochloride and its crystal structure. Tetrahedron Letters 1975, 323–326.Google Scholar
  140. 140.
    Ibuka, T., N. Masaki, I. Saji, K. Tanaka, and Y. Inubushi: Synthesis of dl-pumiliotoxin C hydrochloride and its crystal structure. Chem. Pharm. Bull. (Japan) 23, 2779–2790 (1975).Google Scholar
  141. 141.
    Ibuka, T., H. Minakata, Y. Mitsui, E. Tabushi, T. Taga, and Y. Inubushi: Efficient stereoselective synthesis of rel-(6S,7S,8S)-7-butyl-8-hydroxyl-l-azaspiro[5,5]-undecan-2-one, a key intermediate for perhydrohistrionicotoxin and its rel-(6R) isomer. Chemistry Letters 1981, 1409–1412.Google Scholar
  142. 142.
    Ibuka, T., Y. Mori, and Y. Inubushi: A new stereoselective synthesis of dl-pumiliotoxin C using novel l,2-bis-(trimethylsilyloxy)-l,2-dienes. Tetrahedron Letters 1976, 3169–3172.Google Scholar
  143. 143.
    Ibuka, T., Y. Mori, and Y. Inubushi: A stereoselective synthesis of dl-pumiliotoxin C. Cem. Pharm. Bull. (Japan) 26, 2442–2448 (1978).Google Scholar
  144. 144.
    Imhof, R., E. Gossinger, W. Graf, H. Berner, L. Berner-Fenz, and H. Wehrli: Partial synthesis of batrachotoxinin A. Helv. Chim. Acta 55, 1151–1153 (1972).Google Scholar
  145. 145.
    Imhof, R., E. Gossinger, W. Graf, L. Berner-Fenz, H. Berner, R. S. Chanfelberger, and H. Wehrli: Die Partialsynthese von Batrachotoxinin A. Helv. Chim. Acta 56, 139–162 (1973).Google Scholar
  146. 146.
    Imhof, R., E. Gossinger, W. Graf, W. Schnuriger, and H. Wehrli: Die Partialsynthese von 3β-Methoxy-3α,9α-oxido-7α-hydroxy-11α-acetoxy-5β-steroiden. Helv. Chim. Acta 54, 2775–2785 (1971).Google Scholar
  147. 147.
    Inubushi, Y., and T. Ibuka: Synthesis of pumiliotoxin C. A toxic alkaloid from Central American arrow poison frogs, Dendrobatespumilio and D. auratus. Heterocycles 8, 633–660 (1977).Google Scholar
  148. 148.
    Jacques, Y., G. Romey, and M. Lazdunski: Toxin-induced K+ efflux through the Na+ channel of neuroblastoma cells. Eur. J. Biochem. 111, 265–273 (1980).Google Scholar
  149. 149.
    Jansson, S.-E., E. X. Albuquerque, and J. Daly: The pharmacology of batrachotoxin. VI. Effects on the mammalian motor nerve terminal. J. Phamacol. Exp. Therapeut. 189, 525–537 (1974).Google Scholar
  150. 150.
    Johnson, D. F., and J. W. Daly: Biosynthesis of cholesterol and cholesterol acetate in dendrobatid arrow poison frogs. Biochem. Pharmacol. 20, 2555–2559 (1971).Google Scholar
  151. 151.
    Karle, I. L.: The structure of dihydroisohistrionicotoxin, a unique unsaturated alkaloid and anticholinergic agent. J. Amer. Chem. Soc. 95, 4036–4040 (1973).Google Scholar
  152. 152.
    Karle, I. L.: Configuration of the C(20) epimer of 7,8-dihydrobatrachotoxinin A. Proc. Nat. Acad. Sci. (USA) 69, 2932–2936 (1972).Google Scholar
  153. 153.
    Karle, I. L., and J. Karle: The structural formula and crystal structure of the O-p-bromobenzoate derivative of batrachotoxinin A, C31H38NO6Br, a frog venom and steroidal alkaloid. Acta Crystallogr. B25, 428–434 (1969).Google Scholar
  154. 154.
    Kato, G., and J.-P. Changeux: Studies on the effect of histrionicotoxin on the monocellular electroplax from Electrophorus electricus and on the binding of [3H]- acetylcholine to membrane fragments from Torpedo marmorata. Mol. Pharmacol. 12, 92–100 (1976).Google Scholar
  155. 155.
    Kato, G., M. Glavinovic, J. Henry, K. Krnjevic, E. Puil, and B. Tattrie: Actions of histrionicotoxin on acetylcholine receptors. Croatica Chemica Acta 47, 439–447 (1975).Google Scholar
  156. 156.
    Kayaalp, S. O., E. X. Albuquerque, and J. E. Warnick: Ganglionic and cardiac actions of batrachotoxin. Eur. J. Pharmacol. 12, 10–18 (1970).Google Scholar
  157. 157.
    Keana, J. F. W., and R. R. Schumaker: Synthesis of the ABC ring system of batrachotoxin and several related highly functionalized cholane derivatives. J. Organ. Chem. (USA) 41, 3840–3846 (1976).Google Scholar
  158. 158.
    Kerb, U., H.-D. Berndt, U. Eder, R. Wiechert, P. Buchschacher, A. Furlenmeier, A. Fürst, and M. Muller: Zur Synthese des Batrachotoxinins: Synthese von 3β-Acetoxy-16β,20β-dihydroxy-4′-methyl-18-nor-5β,14β-pregnano-[13,14-f]-hexahydro-1′,4′-oxazepin-3′-on-(20a). Experientia 15, 759–761 (1971).Google Scholar
  159. 159.
    Khodorov, B., I.: Some aspects of the pharmacology of sodium channels in nerve membrane. Process of inactivation. Biochem. Pharmacol. 28. 1451–1459 (1979).Google Scholar
  160. 160.
    Khodorov, B., I.: Chemicals as tools to study nerve fiber sodium channels: Effects of batrachotoxin and some local anesthetics. In: Membrane Transport Processes, Vol. II (D.C. Tosteson, Y. A. Duchinnikov, and R. Latorre, eds.), pp. 153–174. New York: Raven Press. 1978.Google Scholar
  161. 161.
    Khodorov, B., I.: Pharmacologic analysis of sodium channel inactivation in a nerve fiber membrane. Neirofiziologiya 12, 317–331 (1980).Google Scholar
  162. 162.
    Khodorov, B. I., and S. V. Revenko: Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience 4, 1315–1330 (1979).Google Scholar
  163. 163.
    Khodorov, B. I., E. M. Peganov, S. V. Revenko, and L. D. Shishkova: Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine. Brain Res. 84, 541–546 (1975).Google Scholar
  164. 164.
    Kilpatrick, D. L., R. Slepetis, and N. Kirshner: Inhibition of catecholamine secretion from adrenal medulla cells by neurotoxins and cholinergic antagonists. J. Neurochem. 37, 125–131 (1981).Google Scholar
  165. 165.
    Kilpatrick, D. L., R. Slepetis, and N. Kirshner: Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245–1255 (1981).Google Scholar
  166. 166.
    Kissing, W., and B. Witkop: Ein einfacher Zugang zu l-Azaspiro-[5.5]-undecanen. Chem. Ber. 108, 1623–1629 (1975).Google Scholar
  167. 167.
    Krodel, E. K., R. A. Beckman, and J. B. Cohen: Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated from Torpedo marmorata electric tissue. Mol. Pharmacol. 15, 294–312 (1979).Google Scholar
  168. 168.
    Krueger, B. K., and M. P. Blaustein: Sodium channels in presynaptic nerve terminals. J. Gen. Physiol. 76, 287–313 (1980).Google Scholar
  169. 169.
    Kumara-Siri, M. H.: Batrachotoxin inhibits axonal transport without affecting membrane potential in single neurons of Aplysia californica. J. Neurobiol. 10, 509–512 (1979).Google Scholar
  170. 170.
    Lapa, A. J., E. X., Albuquerque, J. M. Sarvey, J. Daly, and B. Witkop: Effects of histrionicotoxins on the chemosensitive and electrical properties of skeletal muscle. Exp. Neurol. 47, 558–578 (1975).Google Scholar
  171. 171.
    Lawrence, J. C., and W. A. Catterall: Textrodotoxin-insensitive sodium channels. Binding of polypeptide neurotoxins in primary cultures of rat muscle cells. J. Biol. Chem. 256, 6223–6229 (1981).Google Scholar
  172. 172.
    Tetrodotoxin-insensitive sodium channels. Ion flux studies of neurotoxin action in a clonal rat muscle cell line. J. Biol. Chem. 256, 6213–6222 (1981b).Google Scholar
  173. 173.
    Lazdunski, M., M. Balerna, J. Barhanin, R. Chicheportiche, M. Fosset, C. Frelin, Y. Jacques, A. Lombet, J. Pouyssequr, J. F. Renaud, G. Romey, H. Schweitz, and J. P. Vincent: Molecular aspects of the structure and mechanism of the voltage-dependent sodium channel. Ann. N. Y. Acad. Sci. 358, 169–182 (1980).Google Scholar
  174. 174.
    Lester, H. A.: Analysis of sodium and potassium redistribution during sustained permeability increases at the innervated face of Electrophorus electroplaques. J. Gen. Physiol. 72, 847–862 (1978).Google Scholar
  175. 175.
    MacDonald, T. L.: Indolizidine alkaloid synthesis. Preparation of the pharaoh ant trail pheromoneand gephyrotoxin 223 stereoisomers. J. Organ. Chem. (USA) 45, 193–195 (1980).Google Scholar
  176. 176.
    Märki, F., and B. Witkop: The venom of the Colombian arrow poison frog Phyllobates bicolor. Experientia 19, 329–338 (1963).Google Scholar
  177. 177.
    Masukawa, L. M., and E. X. Albuquerque: Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle. J. Gen. Physiol. 72, 351–367 (1978).Google Scholar
  178. 178.
    Matthews, J. C., E. X. Albuquerque, and M. E. Eldefrawi: Influence of batrachotoxin, veratridine, grayanotoxin I and tetrodotoxin on uptake of Na-22 by rat brain membrane preparations. Life Sci. 25, 1651–1658 (1979).Google Scholar
  179. 179.
    Matthews, J. C., J. E. Warnick, E. X. Albuquerque, and M. E. Eldefrawi: Characterization of the electrogenic sodium channel from rat brain membranes using neurotoxin-dependent 22Na+ uptake. Membrane Biochem. 4, 71–104 (1981).Google Scholar
  180. 180.
    Max, S. R., S. S. Deshpande, and E. X. Albuquerque: Neural regulation of muscle acetylcholinesterase: Effects of batrachotoxin and 6-aminonicotinamide. Brain Res. 130, 101–107 (1977).Google Scholar
  181. 181.
    McCarthy, K. D., and T. K. Harden: Identification of two benzodiazepine binding sites on cells cultured from rat cerebral cortex. J. Pharmacol. Exp. Therapeut. 216, 183–191 (1981).Google Scholar
  182. 182.
    McNeal, E. T., C. R. Creveling, and J. W. Daly: Cyclic AMP-generating systems in cell-free preparations from guinea pig cerebral cortex: Loss of adenosine and amine responsiveness due to low levels of endogenous adenosine. J. Neurochem. 35, 338–342 (1980).Google Scholar
  183. 183.
    Mensah-Dwumah, M., and J. W. Daly: Pharmacological activity of alkaloids from poison-dart frogs (Dendrobatidae). Toxicon 16, 189–194 (1978).Google Scholar
  184. 184.
    Mezey, K.: Venenos de flecha de Colombia. Acad. Colombiana de Ciencias Exactas físicas y naturales (Bogota) Revista 7, 319–323 (1947).Google Scholar
  185. 185.
    Mezey, K.: “Fiù-Fiù”. Estudio toxicológica y farmacodinamico de un veneno de flechas y dardos, obtenido de la secreción cutánea de una “Rana del Choco” (Dendrobates sp.) [Cèsar Uribe-Piedriahita]. Bogota, Colombia (1947).Google Scholar
  186. 186.
    Moore, G. R. W., R. J. Boegman, D. M. Robertson, and R. J. Riopelle: Batrachotoxin induced axonal necrosis in peripheral nerves. Brain Res. 207, 481–485 (1981).Google Scholar
  187. 187.
    Myers, C. W., and J. W. Daly: A new species of poison frog (Dendrobates) from Andean Ecuador, including an analysis of its skin toxins. Occasional Papers of the Museum of Natural History Univ. Kansas 1976, 1–12.Google Scholar
  188. 188.
    Myers, C. W., and J. W. Daly: Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bull. Amer. Museum Natural History 157, 173–262 (1976).Google Scholar
  189. 189.
    Myers, C. W., and J. W. Daly: A name for the poison frog of Cordillera Azul, eastern Peru, with notes on its biology and skin toxins (Dendrobatidae). American Museum Novitates No. 2674, 1979, 1–24.Google Scholar
  190. 190.
    Myers, C. W., and J. W. Daly: Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. American Museum Novitates No. 2692 1980, 1–23.Google Scholar
  191. 191.
    Myers, C. W., J. W. Daly, and B. Malkin: A dangerously toxic new frog (Phyllobates) used by Embera Indians of western Colombia, with discussion of blowgun fabrication and dart poisoning. Bull. Amer. Museum Natural History 161, 307–366 (1978).Google Scholar
  192. 192.
    Narahashi, T.: Toxic chemicals as probes of nerve membrane function. Adv. Exp. Med. Biol. 84, 407–445 (1977).Google Scholar
  193. 193.
    Narahashi, T., E. X. Albuquerque, and T. Deguchi: Effects of batrachotoxin on membrane potential and conductance of squid giant axons. J. Gen. Physiol. 58, 54–70 (1971).Google Scholar
  194. 194.
    Narahashi, T., T. Deguchi, and E. X. Albuquerque: Effects of batrachotoxin on nerve membrane potential and conductances. Nature New Biology 229, 221–222 (1971).Google Scholar
  195. 195.
    Neubig, R. R., E. K. Krodel, N. D. Boyd, and J. B. Cohen: Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc. Nat. Acad. Sci. (USA) 76, 690–694 (1979).Google Scholar
  196. 196.
    Neuwirth, M., J. W. Daly, C. W. Myers, and L. W. Tice: Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue & Cell 11, 755–771 (1979).Google Scholar
  197. 197.
    Nimitkitpaisan, Y., J. W. Daly, P. J. Jessup, L. E. Overman, J. W. Warnick, and E. X. Albuquerque: Pumiliotoxin-C and synthetic analogs: A new class of nicotinic antagonists. Trans. Am. Soc. Neurochem. 11, 233 (1980).Google Scholar
  198. 198.
    Ochs, S., and R. Worth: Batrachotoxin block of fast axoplasmic transport in mammalian nerve fibers. Science 187, 1087–1089 (1975).Google Scholar
  199. 199.
    Otten, U., and H. Thoenen: Role of membrane depolarization in transsynaptic induction of tyrosine hydroxylase in organ cultures of sympathetic ganglia. Neurosci. Lett. 2, 93–96 (1976).Google Scholar
  200. 200.
    Oppolzer, W., and E. Flaskamp: An enantioselective synthesis and the absolute configuration of natural pumiliotoxin-C. Helv. Chim. Acta 60, 204–207 (1977).Google Scholar
  201. 201.
    Oppolzer, W., and W. Frostl: A stereoselective approach to cis- and trans-1,2,3,4,4a, 5, 6, 8a-octahydroquinolines by intramolecular Diels-Adler reactions. Helv. Chim. Acta 58, 590–593 (1975).Google Scholar
  202. 202.
    Oppolzer, W., C. Fehr, and J. Warneke: A new total synthesis of dl-pumiliotoxin-C via an indanone. Helv. Chim. Acta 60, 48–58 (1977).Google Scholar
  203. 203.
    Oppolzer, W., W. Frostl, and H. P. Weber: The total synthesis of (±)-pumiliotoxin-C. Helv. Chim. Acta 58, 593–595 (1975).Google Scholar
  204. 204.
    Oswald, R., and J.-P. Changeux: Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo mamorata. Proc. Nat. Acad. Sci. (USA) 78, 3925–3929 (1981).Google Scholar
  205. 205.
    Overman, L. E.: Synthesis of l-azaspiro-[5.5]-undec-7-en-2-one. Tetrahedron Letters 1975, 1149–1152.Google Scholar
  206. 206.
    Overman, L. E., and K. L. Bell: Enantiospecific total synthesis of dendrobatid toxin 251D. A short chiral entry to the cardiac-active pumiliotoxin A alkaloids via stereospecific iminium ion — vinylsilane cyclizations. J. Amer. Chem. Soc. 103, 1851–1852 (1981).Google Scholar
  207. 207.
    Overman, L. E., and C. Fukaya: Stereoselective total synthesis of (±)-perhydrogephyrotoxin. Synthetic applications of directed 2-azonia-[3,3]-sigmatropic rearrangements. J. Amer. Chem. Soc. 102, 1454–1456 (1980).Google Scholar
  208. 208.
    Overman, L. E., and P. J. Jessup: A short stereospecific total synthesis of dl- pumiliotoxin C. Tetrahedron Letters 1977, 1253–1256.Google Scholar
  209. 209.
    Overman, L. E., and P. J. Jessup: Synthetic applications of N-acylamino-1,3-dienes. An efficient stereospecific total synthesis of dl-pumiliotoxin C, and a general entry to ds-decahydroquinoline alkaloids. J. Amer. Chem. Soc. 100, 5179–5185 (1978).Google Scholar
  210. 210.
    Overman, L. E., and T. Yokomatsu: A new method for stereoselective piperidine annulation. Directing the 2-azonia-[3,3]-sigmatropic rearrangement by irreversible hydrolysis. J. Organ. Chem. (USA) 45, 5229–5230 (1980).Google Scholar
  211. 211.
    Overman, L. E., and R. L. Freerks: Short total synthesis of (+) perhydrogephyrotoxin. J. Org. Chem. 46, 2833–2835 (1981).Google Scholar
  212. 212.
    Peganov, E. M., S. V. Revenko, B. I. Khodorov, and L. D. Shishkova: Batrachotoxin and aconitine, modifiers of rapid sodium channels in the nerve fiber membrane. Mol. Biol. (Kiev) 15, 42–56 (1976).Google Scholar
  213. 213.
    Ponzio, G., Y. Jacques, C. Frelin, R. Chicheportiche, and M. Lazdunski: An in vitro system to study the action potential sodium channel. FEBS Lett. 121, 265–269 (1980).Google Scholar
  214. 214.
    Posada Arango, A.: El veneno de rana de los indios del Choco. In: Estudios cientificos del doctor Andres Posado con algunos otros escritos suyos sobre diversos temas (Molina, C. A., ed.), pp. 78 — 88. Medellin, Colombia: Imprenta Oficial. 1909.Google Scholar
  215. 215.
    Ramos, S., E. F. Grollman, P. S. Lazo, S. A. Dyer, W. H. Habig, M. C. Hardegree, H. R. Kaback, and L. D.. Kohn: Effect of tetanus toxin on the accumulation of the permeant lipophilic cation tetraphenylphosphonium by guinea pig brain synaptosomes. Proc. Nat. Acad. Sci. (USA) 76, 4783–4787 (1979).Google Scholar
  216. 216.
    Ray, R., and W. A. Catterall: Membrane potential dependent binding of scorpion toxin to the action of potential sodium ionophore. Studies with a 3-(4-hydroxy-3-[125I]-iodophenyl)-propionyl derivative. J. Neurochem. 31, 397–407 (1978).Google Scholar
  217. 217.
    Ray, R., C. S. Morrow, and W. A. Catterall: Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J. Biol. Chem. 253, 7307–7313 (1978).Google Scholar
  218. 218.
    Revenko, S. V.: Effect of electrical stimulation of nodes of Ranvier on the rate of sodium channel modification by batrachotoxin under conditions of potential fixation. Neirofiziologiya 9, 546–549 (1977).Google Scholar
  219. 219.
    Revenko, S. V., and B. I. Khodorov: Effect of batrachotoxin on the selectivity of sodium channels in myelinated nerve fibre membrane. Neirofiziologiya 9, 313–316 (1977).Google Scholar
  220. 220.
    Roseen, J. S., and F. A. Fuhrman: Comparison of the effects of atelopidtoxin with those of tetrodotoxin, saxitoxin and batrachotoxin on beating of cultured chick heart cells. Toxicon 9, 411–415 (1971).Google Scholar
  221. 221.
    Saffray, le Docteur: Voyage a la Novelle-Grenade, X., Paris. In: Le Tour du Monde, Noveau Journal des Voyages 26, 97–112 (1873).Google Scholar
  222. 222.
    Santesson, C. G.: An arrow poison with cardiac effect from the New World. In: Comparative Ethnographical Studies, 9 (E. Nordenskiold, ed.), pp. 157–187. Goteborg: Elanders Boktryckeri. 1931.Google Scholar
  223. 223.
    Santesson, C. G.: Froschgift aus Columbia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 181, 180 (1936).Google Scholar
  224. 224.
    Schimerlik, M. I., U. Quast, and M. A. Raftery: Ligand-induced changes in membrane-bound acetylcholine receptor observed by ethidium fluorescence. 3. Stopped-flow studies with histrionicotoxin. Biochemistry 18, 1902–1906 (1979).Google Scholar
  225. 225.
    Schoemaker, H. E., and W. N. Speckamp: A novel synthetic approach to perhydrohistrionicotoxin. Stereoselective synthesis of 1-aza-spiranes. Tetrahedron Letters 1978, 1515–1518.Google Scholar
  226. 226.
    Schoemaker, H. E., and W. N. Speckamp: A short and stereoselective synthesis of perhydrohistrionicotoxin. Tetrahedron Letters 1978, 4841–4844.Google Scholar
  227. 227.
    Schoemaker, H. E., and W. N. Speckamp: Stereocontrolled synthesis of functionalized 1-azaspirans. Efficient synthesis of perhydrohistrionicotoxin. Tetrahedron 36, 951–958 (1980).Google Scholar
  228. 228.
    Schumaker, R. R., and J. F. W. Keana: Synthesis of the ABC ring system of the steroid batrachotoxin. J. Chem. Soc. Chem. Commun. 1972, 622.Google Scholar
  229. 229.
    Shimizu, H., and J. W. Daly: Effect of depolarizing agents on accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices. Eur. J. Pharmacol. 17, 240–252 (1972).Google Scholar
  230. 230.
    Shimizu, H., C. R. Creveling, and J. W. Daly: Stimulated formation of adenosine 3′-5′-cyclic phosphate in cerebral cortex: Synergism between electrical activity and biogenic amines. Proc. Nat. Acad. Sci. (USA) 65, 1033–1040 (1970).Google Scholar
  231. 231.
    Shimizu, H., C. R. Creveling, and J. W. Daly: Cyclic adenosine 3′,5′-monophosphate formation in brain slices: Stimulation by batrachotoxin, ouabain, veratridine, and potassium ions. Mol. Pharmacol. 6, 184–188 (1970).Google Scholar
  232. 232.
    Shimizu, H., C. R. Creveling, and J. W. Daly: Effect of membrane depolarization and biogenic amines on the formation of cyclic AMP in incubated brain slices. Adv. Biochem. Psychopharmacol. 3, 135–154 (1970).Google Scholar
  233. 233.
    Shotzberger, G. S., E. X. Albuquerque, and J. W. Daly: The effects of batrachotoxin on cat papillary muscle. J. Pharmacol. Exp. Therapeut. 196, 433–444 (1976).Google Scholar
  234. 234.
    Silverstone, P. A.: A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History Museum of Los Angeles County, Science Bulletin 21, 1–55 (1975).Google Scholar
  235. 235.
    Silverstone, P. A.: A revision of the poison-arrow frogs of the genus Phyllobates Bibron in Sagra (family Dendrobatidae). Natural History Museum of Los Angeles, Science Bulletin 27, 1–53 (1976).Google Scholar
  236. 236.
    Simpson, L. L.: Pharmacological studies on the subcellular site of action of botulinum toxin type A. J. Pharmacol. Exp. Therapeut. 206, 661–669 (1978).Google Scholar
  237. 237.
    Smythies, J. R.: A simplified model of the molecular structure of the sodium channel. Ala. J. Med. Sci. 15, 372–382 (1978).Google Scholar
  238. 238.
    Smythies, J. R.: A model of the molecular structure of part of the sodium channel. Adv. Cytopharmacol. 3, 317–324 (1979).Google Scholar
  239. 239.
    Smythies, J. R., F. Benington, R. J. Bradley, W. F. Bridgers, and R. D. Morin: The molecular structure of the sodium channel. J. Theor. Biol. 43, 29–42 (1974).Google Scholar
  240. 240.
    Smythies, J. R., F. Benington, and R. D. Morin: Model for the action of tetrodotoxin and batrachotoxin. Nature 231, 188–190 (1971).Google Scholar
  241. 241.
    Sobel, A., T. Heidmann, and J.-P. Changeux: Purification of a protein binding quinacrine and histrionicotoxin from membrane fragments rich in acetylcholine receptor from Torpedo-marmorata. Comp. Rendus Acad. Sci. Paris 285D, 1255–1258 (1977).Google Scholar
  242. 242.
    Sobel, A., T. Heidmann, J. Hofler, and J.-P. Changeux: Distinct protein components from Torpedo marmorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin. Proc. Nat. Acad. Sci. (USA) 75, 510–514 (1978).Google Scholar
  243. 243.
    Sonnett, P. E., D. A. Netzel, and R. Mendoza: 13C Nmr assignments of selected octahydroindolizines. J. Heterocyclic Chem. 16, 1041–1047 (1979).Google Scholar
  244. 244.
    Spande, T. F., J. W. Daly, D. J. Hart, Y.-M. Tsai, and T. L. MacDonald: The structure of gephyrotoxin 223 AB. Experientia 37, 1242–1245 (1981).Google Scholar
  245. 245.
    Spivak, C. E., M. A. Maleque, A. C. Oliveira, L. Masukawa, T. Tokuyama, J. W. Daly, and E. X. Albuquerque: Actions of histrionicotoxins at the ion channel of the nicotinic acetylcholine receptor and the voltage sensitive ion channels of muscle membranes. Mol. Pharmacol., in press (1982).Google Scholar
  246. 246.
    Takahashi, K., B. Witkop, A. Brossi, A. C. Maleque, and E. X. Albuquerque: Total synthesis and electrophysiological properties of natural (-)-perhydrohistrionicotoxin, its unnatural (+)-antipode and their desamyl analogs. Helv. Chim. Acta, submitted (1982).Google Scholar
  247. 247.
    Tamburini, R., E. X. Albuquerque, J. W. Daly, and F. C. Kauffman: Inhibition of calcium-dependent ATPase from sarcoplasmic reticulum by a new class of indolizidine alkaloids pumiliotoxins A, B and 251D. J. Neurochem. 37, 775–780 (1981).Google Scholar
  248. 248.
    Tamkun, M. M., and W. A. Catterall: Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Mol. Pharmacol. 19, 78–86 (1981).Google Scholar
  249. 249.
    Tang, C. M., G. R. Strichartz, and R. K. Orkand: Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa. J. Gen. Physiol. 74, 629–642 (1979).Google Scholar
  250. 250.
    Tiedt, T. N., E. X. Albuquerque, N. M. Bakry, M. E. Eldefrawi, and A. T. Eldefrawi: Voltage- and time-dependent actions of pipcrocaine on the ion channel of the acetylcholine receptor. Mol. Pharmacol. 16, 909–921 (1979).Google Scholar
  251. 251.
    Tokuyama, T., J. Daly, and B. Witkop: The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs. J. Amer. Chem. Soc. 91, 3931–3938 (1969).Google Scholar
  252. 252.
    Tokuyama, T., J. Daly, B. Witkop, I. L. Karle, and J. Karle: The structure of batrachotoxinin A, a novel steroidal alkaloid from the Colombian arrow poison frog. J. Amer. Chem. Soc. 90, 1917–1918 (1968).Google Scholar
  253. 253.
    Tokuyama, T., K. Uenoyama, G. Brown, J. W. Daly, and B. Witkop: Allenic and acetylenic spiropiperidine alkaloids from the neotropical frog, Dendrobates histrionicus. Helv. Chim. Acta 57, 2597–2604 (1974).Google Scholar
  254. 254.
    Tokuyama, T., and J. W. Daly: Steroidal alkaloids (batrachotoxins and 4-hydoxy-batrachotoxins), indole alkaloids (calycanthine and chimonanthine) and a piperidinyl-dipyridine alkaloid (noranabasamine) in skin extracts from the Colombian poison-dart frog Phyllobates terribilis ( Dendrobatidae ). Tetrahedron Letters, in preparation (1982).Google Scholar
  255. 255.
    Tokuyama, T., J. W. Daly, and R. J. Highet: Histrionicotoxins: Carbon-13 magnetic resonance spectral assignments and structural definition of further alkaloids from poison frogs ( Dendrobatidae ). Tetrahedron Letters, in preparation (1982).Google Scholar
  256. 256.
    Tokuyama, T., R. J. Highet, and J. W. Daly: Pumiliotoxins: Magnetic resonance spectral assignments and further structural definition of pumiliotoxin A and B and the isomeric allopumiliotoxins (7-hydroxypumiliotoxin A). Tetrahedron Letters, in preparation (1982).Google Scholar
  257. 257.
    Tsai, M.-C., N. A. Mansour, A. T. Eldefrawi, M. E. Eldefrawi, and E. X. Albuquerque: Mechanism of action of amantadine on neuromuscular transmission. Mol. Pharmacol. 14, 787–803 (1978).Google Scholar
  258. 258.
    Tsai, M.-C., A. C. Oliveira, E. X. Albuquerque, M. E. Eldefrawi, and A. T. Eldefrawi: Mode of action of quinacrine on the acetylcholine receptor ionic channel complex. Mol. Pharmacol. 16, 382–392 (1979).Google Scholar
  259. 259.
    Tufariello, J. J., and E. J. Trybulski: A synthetic approach to the skeleton of histrionicotoxin. J. Org. Chem. (USA) 39, 3378–3384 (1974).Google Scholar
  260. 260.
    Venit, J. J., and P. Magnus: Studies on histrionicotoxin: Rearrangement of the spirocyclic histrionicotoxin carbon skeleton into the fused pumiliotoxin skeleton. Tetrahedron Letters 1980, 4815–4818.Google Scholar
  261. 261.
    Vincent, J. P., M. Balerna, J. Barhanin, M. Fosset, and M. Lazdunski: Binding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro. Proc. Nat. Acad. Sci. (USA) 77, 1646–1650 (1980).Google Scholar
  262. 262.
    Von Braun, J., W. Gmelin, and A. Petzold: Über Bz-Tetrahydro-chinoline und ihre Derivate (IV). Ber. dtsch. chem. Ges. 57, 382–391 (1924).Google Scholar
  263. 263.
    Wagner, H. R., and J. N. Davis: β-Adrenergic receptor regulation by agonists and membrane depolarization in rat brain slices. Proc. Nat. Acad. Sci. (USA) 76, 2057–2061 (1979).Google Scholar
  264. 264.
    Wan, K. K., and R. J. Boegman: Changes in rat muscle sarcoplasmic reticulum following neural application of batrachotoxin or tetrodotoxin. Exp. Neurol. 70, 475–486 (1980).Google Scholar
  265. 265.
    Wan, K. K., and R. J. Boegman: Calcium uptake by muscle sarcoplasmic reticulum following neural application of batrachotoxin or tetrodotoxin. FEBS Lett. 112, 163–167 (1980).Google Scholar
  266. 266.
    Warnick, J. E., and E. X. Albuquerque: Models of paraplegia in animals: Trophic relationships. Federat. Proc. 37, 2811–2817 (1978).Google Scholar
  267. 267.
    Warnick, J. E., E. X. Albuquerque, A. J. Lapa, J. Daly, and B. Witkop: Actions of neurotoxins on the acetylcholine receptor-ionic conductance modulator unit and on sodium channels. Proc. Sixth Int. Congr. Pharmacol. 1, 67–76 (1976).Google Scholar
  268. 268.
    Warnick, J. E., E. X. Albuquerque, R. Onur, S.-E. Jansson, J. Daly, T. Tokuyama, and B. Witkop: The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH. J. Pharmacol. Exp. Therapeut. 193, 232–245 (1975).Google Scholar
  269. 269.
    Warnick, J. E., E. X. Albuquerque, and F. M. Sansone: The pharmacology of batrachotoxin. I. Effects on the contractile mechanism and on neuromuscular transmission of mammalian skeletal muscle. J. Pharmacol. Exp. Therapeut. 176, 497–510 (1971).Google Scholar
  270. 270.
    Wassen, S. H.: Notes on southern groups of Choco Indians in Colombia. Etnograsfiska Museum, Goteborg Etnologiska Studier, pp. 35–182 (1935).Google Scholar
  271. 271.
    Wassen, S. H.: On Dendrobates-frog-poison material among Empera (Choco)-speaking Indians in western Caldas, Colombia. Ethnografiska Museum, Goteborg, Arstryck 1955–1956, pp. 73–94 (1957).Google Scholar
  272. 272.
    Waters, J. A., C. R. Creveling, and B. Witkop: 2,4,5-Trimethylpyrrole-3-carboxylic acid esters of various alkaloids. J. Med. Chem. 17, 488–491 (1974).Google Scholar
  273. 273.
    Wennogle, L. P., R. Oswald, T. Saitoh, and J.-P. Changeux: Dissection of the 66000-Dalton subunit of the acetylcholine receptor. Biochemistry 20, 2492–2496 (1981).Google Scholar
  274. 274.
    West, G. J., and W. A. Catterall: Selection of variant neuroblastoma clones with missing or altered sodium channels. Proc. Nat. Acad. Sci. (USA) 76, 4136–4140 (1979).Google Scholar
  275. 275.
    Winterfeldt, E.: Recent progress in alkaloid synthesis. Heterocycles 12, 1631–1650 (1979).Google Scholar
  276. 276.
    Witzemann, V., and M. Raftery: Ligand binding sites and subunit interactions of Torpedo californica acetylcholine receptor. Biochemistry 17, 3598–3604 (1978).Google Scholar
  277. 277.
    Wu, W. C.-S., and M. A. Raftery: Functional properties of acetylcholine receptor monomeric and dimeric forms in reconstituted membranes. Biochem. Biophys. Res. Commun. 99, 436–444 (1981).Google Scholar

Copyright information

© Springer-Verlag/Wien 1982

Authors and Affiliations

  • J. W. Daly
    • 1
  1. 1.Laboratory of Bioorganic Chemistry, National Institute of Arthritis, Diabetes, and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations