Skip to main content

Abstract

A collaborative effort between researchers at Chas. Pfizer, Inc. and at the Sloan-Kettering Institute led to the discovery that a filtrate from cultures of Streptomyces flocculus had significant anticancer and antibiotic activity. The active agent was eventually isolated, named streptonigrin, and shown to have the structure depicted in (1). During the last twenty years streptonigrin has been the subject of intensive study regarding its use as an anticancer drug, its cytotoxic mechanism of action, its laboratory synthesis, and its biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, K. V., and W. P. Cullen: Streptonigrin, An Antitumor Substance I. Isolation and Characterization. Antibiot. Annu. 950 (1959–1960).

    Google Scholar 

  2. Kudrina, E. S., O. L. Olkhovatova, L. I. Muraveva, and G. F. Gauze: Systematic Position and Variation of the Organism Producing Bruneomycin, an Antitumor Antibiotic. Antibiotiki 11, 400 (1966). BRAZHNIKOVA, M. G., V. I. PONOMARENKO, I. N. KOVSHAROVA, E. B. KRUGLYAK, and V. V. PROSHLYAKOVA: Study on Bruneomycin Produced by Act. albus var. Bruneomycini and its Identification with Streptonigrin. Antibiotiki 13, 99 (1968).

    Google Scholar 

  3. Société des usines chimiques Rhône-Poulenc, Brit. Pat. 872, 261, July 5, 1961; Chem. Abstr. 55, p25158a (1961).

    Google Scholar 

  4. Rao, K. V., K. Biemann, and R. B. Woodward: The Structure of Streptonigrin. J. Amer. Chem. Soc. 85, 2532 (1963).

    Article  CAS  Google Scholar 

  5. Gould, S. J.: Unpublished results.

    Google Scholar 

  6. Lown, J. W., and A. Begleiter: Studies Relating to Aziridine Antitumor Antibiotics. Part II. 13C and 1H Nuclear Magnetic Resonance Spectra of Mitomycin C and Structurally Related Streptonigrin. Canad. J. Chem. 52, 2331 (1974).

    Article  CAS  Google Scholar 

  7. Gould, S. J., and D. E. Cane: Unpublished results.

    Google Scholar 

  8. Chiu, Y.-Y., and W. N. Lipscomb: Molecular and Crystal Structure of Streptonigrin. J. Amer. Chem. Soc. 97, 2525 (1975).

    Article  CAS  Google Scholar 

  9. Doyle, T. W.: Unpublished results.

    Google Scholar 

  10. Kremer, W. B., and J. Laszlo: Comparison of Biochemical Effects of Isopropylidine Azastreptonigrin (NSC-62709) with Streptonigrin (NSC-45383). Cancer Chemother. Rep. 51, 19 (1967).

    CAS  Google Scholar 

  11. —— Biochemical Effects of the Methyl Ester of Streptonigrin. Biochem. Pharmacol. 15, 1111 (1966).

    Google Scholar 

  12. Rao, K. V.: Quinone Natural Products. Streptonigrin (NSC-45383) and Lapachol (NSC-11905) Structure-Activity Relationships. Cancer Chemother. Rep. part 4, 4, 11 (1974).

    Google Scholar 

  13. Cohen, M. M., M. W. Shaw, and A. P. Craig: The Effects of Streptonigrin on Cultured Human Leucocytes. Proc. Nat. Acad. Sci. (USA) 50, 16 (1963).

    Article  CAS  Google Scholar 

  14. Rosazza, J.: University of Iowa, private communication.

    Google Scholar 

  15. Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VII. Synthesis of Streptonigrin Analogs and Their Single Strand Scission of DNA. Canad. J. Chem. 54, 2563 (1976).

    Article  CAS  Google Scholar 

  16. Rao, K. V.: Streptonigrin and Related Compounds, I. Some 2-Phenyl- and 2,2-Pyridyiquinoline-5,8-diones. J. Heterocycl. Chem. 12, 725 (1975).

    CAS  Google Scholar 

  17. Kende, A. S., and P. C. Naegely: Total Synthesis of the Streptonigrin Quinone Carbon Framework. Tetrahedron Letters 4775 (1978).

    Google Scholar 

  18. Rao, K. V.: Streptonigrin and Related Compounds III. Synthesis and Microbiological Activity of Destrioxyphenylstreptonigrin and Analogs. J. Heterocycl. Chem. 14, 653 (1977).

    Article  CAS  Google Scholar 

  19. Kremer, W. B., and J. Laszlo: In: Antineoplastic and Immunosupressive Agents II, Handb. Exp. Pharm. 38/2, pp. 633–641, eds. A. C. Sartorelli and D. G. Johns. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  20. Mizuno, N. S., and D. P. Gilboe: Binding of Streptonigrin to DNA. Biochem. Biophys. Acta 224, 319 (1970).

    CAS  Google Scholar 

  21. Dudnik, Yu. V., G. G. Gauze, V. L. Karpov, L. I. Kozmyan, and E. Padron: Interaction in vitro of Bruneomycin (Streptonigrin) with DNA. Antibiotiki. 18, 968 (1973); Chem. Abstr. 80; 105000e.

    CAS  Google Scholar 

  22. White, H. L., and J. R. White: Lethal Action and Metabolic Effects of Streptonigrin in Escherichia coli. Mol. Pharmacol. 4, 549 (1968).

    CAS  Google Scholar 

  23. Rao, K. V.: Interaction of Streptonigrin with Metals and with DNA. J. Pharm. Sci. 68, 853 (1979).

    Article  CAS  Google Scholar 

  24. Cone, R., S. K. Hasan, J. W. Lown, and A. R. Morgan: The Mechanism of the Degradation of DNA by Streptonigrin. Canad. J. Biochem. 54, 219 (1976).

    Article  CAS  Google Scholar 

  25. White, J. R.: Streptonigrin-Transition Metal Complexes: Binding to DNA and Biological Activity. Biochem. Biophys. Res. Comm. 77, 387 (1977).

    Article  CAS  Google Scholar 

  26. Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VIII. Cleavage of DNA by Streptonigrin Analogs and the Relationship to Antineoplastic Activity. Canad. J. Biochem. 54, 446 (1976).

    Article  CAS  Google Scholar 

  27. Hajdu, J., and E. C. Armstrong: Interaction of Metal Ions with Streptonigrin. 1. Formation of Copper (II) and Zinc (II) Complexes of the Antitumor Antibiotic. J. Amer. Chem. Soc. 103, 232 (1981).

    Article  CAS  Google Scholar 

  28. Hajdu, J.: Private communication.

    Google Scholar 

  29. Liao, T. K., W. H. Nyberg, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. I. Synthesis of the A-B Ring Portion of Streptonigrin. J. Heterocycl. Chem. 13, 1063 (1976).

    CAS  Google Scholar 

  30. Ishizu, K., H. H. Dearman, M. T. Huang, and J. R. White: Electron Paramagnetic Resonance Observations on Biogenic Semiquinone and 5-Methyl Phenazinium Radicals. Biochem. Biophys. Acta 165, 283 (1968).

    Article  CAS  Google Scholar 

  31. White, J. R., and H. H. Dearman: Generation of Free Radicals from Phenazine Methosulfate, Streptonigrin, and Rubiflavin in Bacterial Suspensions. Proc. Nat. Acad. Sci. (USA) 54, 887 (1965).

    Article  CAS  Google Scholar 

  32. Lown, J. W., S.-K. Sim, and H.-H. Chen: Hydroxyl Radical Production by Free and DNA-Bound Aminoquinone Antibiotics and its Role in DNA Degradation. Electron-Spin Resonance Detection of Hydroxyl Radicals by Spin Trapping. Canad. J. Biochem. 56, 1042 (1978).

    Article  CAS  Google Scholar 

  33. Bachur, N. R., S. L. Gordon, M. V. Gee, and H. Kon: NADPH Cytochrome P-450 Reductase Activation of Quinone Anticancer Agents to Free Radicals. Proc. Nat. Acad. Sci. (USA) 76, 954 (1979).

    Article  CAS  Google Scholar 

  34. See reference 32, note 27.

    Google Scholar 

  35. Kuang, D. T., R. M. Whittington, H. H. Spenser, and M. E. Patno: Comparison of Chlorambucil and Streptonigrin (NSC 45383) in the Treatment of Chronic Lymphocytic Leukemia. Cancer 23, 597 (1969).

    Article  Google Scholar 

  36. Nissen, N. I., T. Pajak, O. Glidewell, H. Blom, M. Flaherty, D. Hayes, R. McIntyre, and J. F. Holland: Overview of Four Clinical Studies of Chemotherapy for Stage III and Stage IV Non-Hodgkin’s Lymphomas by the Cancer and Leukemia Group B. Cancer Treatment Reports 61, 1097 (1977).

    CAS  Google Scholar 

  37. Forcier, R. J., O. R. McIntyre, N. I. Nissen, T. F. Pajak, O. Glidewell, and J. F. Holland: Combination Chemotherapy of Non-Hodgkin Lymphoma. Med. and Pediatr. Oncol. 4, 351 (1978).

    CAS  Google Scholar 

  38. Banzet, P., C. Jacquillat, J. Civatte, A. Puissant, J. Maral, C. Chastang, L. Israel, S. Belaich, J. C. Jourdain, M. Weil, and G. Auclerc: Adjuvant Chemotherapy in the Management of Primary Malignant Melanoma. Cancer 41, 1240 (1978).

    Article  CAS  Google Scholar 

  39. Gout-Lemerle, M., C. Rodary, and D. Sarrazin: Arch. Fr. Pediatr. 33, 527 (1976).

    Google Scholar 

  40. Karpov, V. L., and L. G. Romanova: Carbon and Tritium-Labeled Bruneomycin Obtained by Biosynthetic Method. Antibiotiki 17, 419 (1972).

    CAS  Google Scholar 

  41. Gould, S. J., and C. C. Chang: Streptonigrin Biosynthesis. 3. Determination of the Primary Precursors to the 4-Phenylpicolinic Acid Portion. J. Amer. Chem. Soc. 102, 1702 (1980).

    Article  CAS  Google Scholar 

  42. Gould, S. J., C. C. Chang, D. S. Darling, J. D. Roberts, and M. Squillacote: Streptonigrin Biosynthesis. 4. Details of the Tryptophan Metabolism. J. Amer. Chem. Soc. 102, 1707 (1980).

    Article  CAS  Google Scholar 

  43. Doyle, T. W., and S. J. Gould: Unpublished results.

    Google Scholar 

  44. Gould, S. J., and C. C. Chang: Studies of Nitrogen Metabolism Using 13C NMR Spectroscopy. 1. Streptonigrin Biosynthesis. J. Amer. Chem. Soc. 100, 1624 (1978).

    Article  CAS  Google Scholar 

  45. Speedie, M. K.: University of Maryland, private communication.

    Google Scholar 

  46. Hornemann, U., L. H. Hurley, M. K. Speedie, and H. G. Floss: The Biosynthesis of Indolmycin. J. Amer. Chem. Soc. 93, 3028 (1971).

    Article  CAS  Google Scholar 

  47. This technique was first used to study the sesquiterpene antibiotic pentalenolactone: Cane, D E., T. rossi, and J. P. Pachlatko: The Biosynthesis of Pentalenolactone. Tetrahedron Letters, 3639 (1979).

    Google Scholar 

  48. Nadzan, A. M., and K. L. Rinehart, Jr.: Nybomycin. 8. Biosynthetic Origin of the Central Ring Carbons Studied by 13C-Labeled Substrates. J. Amer. Chem. Soc. 98, 5012 (1976).

    Article  CAS  Google Scholar 

  49. Zmijewski, M. J.: Biosynthesis of Antibiotic A23187. Incorporation of Precursors into A23187. J. Antibiotics 33, 447 (1980).

    CAS  Google Scholar 

  50. Kametani, T., and K. Ogasawara: Streptonigrin and Related Compounds. I. Syntheses of 5,6,8-Trimethoxy-7-dimethylaminoquinoline and 7-Amino-6-hydroxy-5,8-quinolinedione. Yakugaku Zasshi 85, 985 (1965).

    CAS  Google Scholar 

  51. —— Streptonigrin and Related Compounds II. Syntheses of 7-Aminoquinoline Derivatives from Hexachlorocyclohexane. Yakugaku Zasshi 86, 55 (1966).

    Google Scholar 

  52. Liao, T. K., W. H. Nybert, and C. C. Cheng: Synthesis of 7-Amino-6-methoxy- 5,8-quinolinedione. Angew. Chem. Int. Ed. 6, 82 (1967).

    Google Scholar 

  53. Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VII. Synthesis of Streptonigrin Analogues and Their Single Strand Scission of DNA. Canad. J. Chem. 54, 2563 (1976).

    Article  CAS  Google Scholar 

  54. Hibino, S., and S. M. Weinreb: Synthetic Approaches to the Quinolinequinone System of Streptonigrin. J. Organ. Chem. (USA) 42, 232 (1977).

    Article  CAS  Google Scholar 

  55. Kametani, T., K. Ogasawara, and M. Shio: Streptonigrin and Related Compounds. III. Syntheses of 4-Phenylpyridine Derivatives. Yakugaku Zasshi 86, 809 (1966).

    CAS  Google Scholar 

  56. Kametani, T., K. Ogasawara, and A. Kozuka: Streptonigrin and Related Com-pounds. IV. Syntheses of 4-(3,4-Methylenedioxyphenyl)- and 4-(3,4-Dimethoxyphenyl)-3-cyano-5-ethoxycarbonyl-6-methyl-2-quinolylpyridine. Yakugaku Zasshi 86, 815 (1966).

    CAS  Google Scholar 

  57. Kametani, T., K. Ogasawara, A. Kozuka, and M. Shio: Streptonigrin and Related Compounds. V. Syntheses of the Compounds having Streptonigrin-type Structure. Yakugaku Zasshi 87, 254 (1967).

    CAS  Google Scholar 

  58. Kametani, T., K. Ogasawara, M. Shio, and A. Kozuka: Streptonigrin and Related Compounds. VI. The NMR Spectra of 4-(2,3,4-Trimethoxyphenyl)-2,3-dimethylpyridine Derivatives. Yakugaku Zasshi 87, 260 (1967).

    CAS  Google Scholar 

  59. Kametani, T., K. Ogasawara, A. Kozuka, and K. Nyu: Streptonigrin and Related Compounds. VII. Synthesis of Streptonigrin Nucleus by the Formation of Pyridine Ring. Yakugaku Zasshi 87, 1189 (1967).

    CAS  Google Scholar 

  60. Kametani, T., K. Ogasawara, and A. Kozuka: Streptonigrin and Related Compounds. VIII. Hydrolysis and Hoffmann Reaction of Ethyl 3-Cyano-4-(3,4-dimethoxyphenyl)-6-methyl-2-quinolyl-5-pyridinecarboxylate. Yakugaku Zasshi 87, 1195 (1967).

    CAS  Google Scholar 

  61. Kametani, T., A. Kozuka, and S. Tanaka: Streptonigrin and Related Compounds. IX. Syntheses of 4-Phenyl-2,3-dimethylpyridone Derivatives. Yakugaku Zasshi 90, 1574 (1970).

    CAS  Google Scholar 

  62. Kametani, T., S. Tanaka, and A. Kozuka: Syntheses of Streptonigrin and Related Compounds. X. A Synthesis of Methyl 3-Acetamido-l,2-dihydro-4-(2,3,4-trimethoxyphenyl)-5-methyl-2-oxo-6-pyridinecarboxylate. Yakugaku Zasshi 91, 1068 (1971).

    CAS  Google Scholar 

  63. Liao, T. K., P. J. Wittek, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. II. Synthesis of the C-D Ring Portion of Streptonigrin. J. Heterocycl. Chem. 13, 1283 (1976).

    Article  CAS  Google Scholar 

  64. Wittek, P. J., T. K. Liao, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. 3. Synthesis of the C-D Ring of Streptonigrin by an Unsymmetrical Ullmann Reaction. J. Organ. Chem. (USA) 44, 870 (1979).

    Article  CAS  Google Scholar 

  65. Rao, K. V., and P. Venkateswarlu: Streptonigrin and Related Compounds. II. Synthesis of the C-Ring Precursors. J. Heterocycl. Chem. 12, 731 (1975).

    Article  CAS  Google Scholar 

  66. Rao, K. V., and H.-S. Kuo: Streptonigrin and Related Compounds. IV. Precursors for the A-Ring. J. Heterocycl. Chem. 16, 1241 (1979).

    Article  CAS  Google Scholar 

  67. Martin, J. C.: Synthesis of Pyridines from Dicyanopyrimidines. A Diels-Alder Approach to the C-Ring of Streptonigrin. J. Heterocycl. Chem. 17, 1111 (1980).

    Article  CAS  Google Scholar 

  68. Kim, D., and S. M. Weinreb: A Diels-Alder Approach to the Pyridine C-Ring of Streptonigrin. J. Organ. Chem. (USA) 43, 121 (1978).

    Article  CAS  Google Scholar 

  69. —— Elaboration of the Pyridine C-Ring Functionality in a Streptonigrin Precursor. J. Organ. Chem. (USA) 43, 125 (1978).

    Google Scholar 

  70. Basha, F. Z., S. Hibino, D. Kim, W. E. Pye, T.-T. Wu, and S. M. Weinreb: Total Synthesis of Streptonigrin. J. Amer. Chem. Soc. 102, 3962 (1980).

    Article  CAS  Google Scholar 

  71. Kende, A. S., D. P. Lorah, and R. J. Boatman: A New and Efficient Total Synthesis of Streptonigrin. J. Amer. Chem. Soc. 103, 1271 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gould, S.J., Weinreb, S.M. (1982). Streptonigrin. In: Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8656-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8656-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8658-9

  • Online ISBN: 978-3-7091-8656-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics