Advertisement

Abstract

A collaborative effort between researchers at Chas. Pfizer, Inc. and at the Sloan-Kettering Institute led to the discovery that a filtrate from cultures of Streptomyces flocculus had significant anticancer and antibiotic activity. The active agent was eventually isolated, named streptonigrin, and shown to have the structure depicted in (1). During the last twenty years streptonigrin has been the subject of intensive study regarding its use as an anticancer drug, its cytotoxic mechanism of action, its laboratory synthesis, and its biosynthesis.

Keywords

Total Synthesis Sodium Hydro Sulfite Antitumor Antibiotic Curtius Rearrangement Amino Substituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, K. V., and W. P. Cullen: Streptonigrin, An Antitumor Substance I. Isolation and Characterization. Antibiot. Annu. 950 (1959–1960).Google Scholar
  2. 2.
    Kudrina, E. S., O. L. Olkhovatova, L. I. Muraveva, and G. F. Gauze: Systematic Position and Variation of the Organism Producing Bruneomycin, an Antitumor Antibiotic. Antibiotiki 11, 400 (1966). BRAZHNIKOVA, M. G., V. I. PONOMARENKO, I. N. KOVSHAROVA, E. B. KRUGLYAK, and V. V. PROSHLYAKOVA: Study on Bruneomycin Produced by Act. albus var. Bruneomycini and its Identification with Streptonigrin. Antibiotiki 13, 99 (1968).Google Scholar
  3. 3.
    Société des usines chimiques Rhône-Poulenc, Brit. Pat. 872, 261, July 5, 1961; Chem. Abstr. 55, p25158a (1961).Google Scholar
  4. 4.
    Rao, K. V., K. Biemann, and R. B. Woodward: The Structure of Streptonigrin. J. Amer. Chem. Soc. 85, 2532 (1963).CrossRefGoogle Scholar
  5. 5.
    Gould, S. J.: Unpublished results.Google Scholar
  6. 6.
    Lown, J. W., and A. Begleiter: Studies Relating to Aziridine Antitumor Antibiotics. Part II. 13C and 1H Nuclear Magnetic Resonance Spectra of Mitomycin C and Structurally Related Streptonigrin. Canad. J. Chem. 52, 2331 (1974).CrossRefGoogle Scholar
  7. 7.
    Gould, S. J., and D. E. Cane: Unpublished results.Google Scholar
  8. 8.
    Chiu, Y.-Y., and W. N. Lipscomb: Molecular and Crystal Structure of Streptonigrin. J. Amer. Chem. Soc. 97, 2525 (1975).CrossRefGoogle Scholar
  9. 9.
    Doyle, T. W.: Unpublished results.Google Scholar
  10. 10.
    Kremer, W. B., and J. Laszlo: Comparison of Biochemical Effects of Isopropylidine Azastreptonigrin (NSC-62709) with Streptonigrin (NSC-45383). Cancer Chemother. Rep. 51, 19 (1967).Google Scholar
  11. 11.
    —— Biochemical Effects of the Methyl Ester of Streptonigrin. Biochem. Pharmacol. 15, 1111 (1966).Google Scholar
  12. 12.
    Rao, K. V.: Quinone Natural Products. Streptonigrin (NSC-45383) and Lapachol (NSC-11905) Structure-Activity Relationships. Cancer Chemother. Rep. part 4, 4, 11 (1974).Google Scholar
  13. 13.
    Cohen, M. M., M. W. Shaw, and A. P. Craig: The Effects of Streptonigrin on Cultured Human Leucocytes. Proc. Nat. Acad. Sci. (USA) 50, 16 (1963).CrossRefGoogle Scholar
  14. 14.
    Rosazza, J.: University of Iowa, private communication.Google Scholar
  15. 15.
    Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VII. Synthesis of Streptonigrin Analogs and Their Single Strand Scission of DNA. Canad. J. Chem. 54, 2563 (1976).CrossRefGoogle Scholar
  16. 16.
    Rao, K. V.: Streptonigrin and Related Compounds, I. Some 2-Phenyl- and 2,2-Pyridyiquinoline-5,8-diones. J. Heterocycl. Chem. 12, 725 (1975).Google Scholar
  17. 17.
    Kende, A. S., and P. C. Naegely: Total Synthesis of the Streptonigrin Quinone Carbon Framework. Tetrahedron Letters 4775 (1978).Google Scholar
  18. 18.
    Rao, K. V.: Streptonigrin and Related Compounds III. Synthesis and Microbiological Activity of Destrioxyphenylstreptonigrin and Analogs. J. Heterocycl. Chem. 14, 653 (1977).CrossRefGoogle Scholar
  19. 19.
    Kremer, W. B., and J. Laszlo: In: Antineoplastic and Immunosupressive Agents II, Handb. Exp. Pharm. 38/2, pp. 633–641, eds. A. C. Sartorelli and D. G. Johns. Berlin-Heidelberg-New York: Springer. 1975.Google Scholar
  20. 20.
    Mizuno, N. S., and D. P. Gilboe: Binding of Streptonigrin to DNA. Biochem. Biophys. Acta 224, 319 (1970).Google Scholar
  21. 21.
    Dudnik, Yu. V., G. G. Gauze, V. L. Karpov, L. I. Kozmyan, and E. Padron: Interaction in vitro of Bruneomycin (Streptonigrin) with DNA. Antibiotiki. 18, 968 (1973); Chem. Abstr. 80; 105000e.Google Scholar
  22. 22.
    White, H. L., and J. R. White: Lethal Action and Metabolic Effects of Streptonigrin in Escherichia coli. Mol. Pharmacol. 4, 549 (1968).Google Scholar
  23. 23.
    Rao, K. V.: Interaction of Streptonigrin with Metals and with DNA. J. Pharm. Sci. 68, 853 (1979).CrossRefGoogle Scholar
  24. 24.
    Cone, R., S. K. Hasan, J. W. Lown, and A. R. Morgan: The Mechanism of the Degradation of DNA by Streptonigrin. Canad. J. Biochem. 54, 219 (1976).CrossRefGoogle Scholar
  25. 25.
    White, J. R.: Streptonigrin-Transition Metal Complexes: Binding to DNA and Biological Activity. Biochem. Biophys. Res. Comm. 77, 387 (1977).CrossRefGoogle Scholar
  26. 26.
    Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VIII. Cleavage of DNA by Streptonigrin Analogs and the Relationship to Antineoplastic Activity. Canad. J. Biochem. 54, 446 (1976).CrossRefGoogle Scholar
  27. 27.
    Hajdu, J., and E. C. Armstrong: Interaction of Metal Ions with Streptonigrin. 1. Formation of Copper (II) and Zinc (II) Complexes of the Antitumor Antibiotic. J. Amer. Chem. Soc. 103, 232 (1981).CrossRefGoogle Scholar
  28. 28.
    Hajdu, J.: Private communication.Google Scholar
  29. 29.
    Liao, T. K., W. H. Nyberg, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. I. Synthesis of the A-B Ring Portion of Streptonigrin. J. Heterocycl. Chem. 13, 1063 (1976).Google Scholar
  30. 30.
    Ishizu, K., H. H. Dearman, M. T. Huang, and J. R. White: Electron Paramagnetic Resonance Observations on Biogenic Semiquinone and 5-Methyl Phenazinium Radicals. Biochem. Biophys. Acta 165, 283 (1968).CrossRefGoogle Scholar
  31. 31.
    White, J. R., and H. H. Dearman: Generation of Free Radicals from Phenazine Methosulfate, Streptonigrin, and Rubiflavin in Bacterial Suspensions. Proc. Nat. Acad. Sci. (USA) 54, 887 (1965).CrossRefGoogle Scholar
  32. 32.
    Lown, J. W., S.-K. Sim, and H.-H. Chen: Hydroxyl Radical Production by Free and DNA-Bound Aminoquinone Antibiotics and its Role in DNA Degradation. Electron-Spin Resonance Detection of Hydroxyl Radicals by Spin Trapping. Canad. J. Biochem. 56, 1042 (1978).CrossRefGoogle Scholar
  33. 33.
    Bachur, N. R., S. L. Gordon, M. V. Gee, and H. Kon: NADPH Cytochrome P-450 Reductase Activation of Quinone Anticancer Agents to Free Radicals. Proc. Nat. Acad. Sci. (USA) 76, 954 (1979).CrossRefGoogle Scholar
  34. 34.
    See reference 32, note 27.Google Scholar
  35. 35.
    Kuang, D. T., R. M. Whittington, H. H. Spenser, and M. E. Patno: Comparison of Chlorambucil and Streptonigrin (NSC 45383) in the Treatment of Chronic Lymphocytic Leukemia. Cancer 23, 597 (1969).CrossRefGoogle Scholar
  36. 36.
    Nissen, N. I., T. Pajak, O. Glidewell, H. Blom, M. Flaherty, D. Hayes, R. McIntyre, and J. F. Holland: Overview of Four Clinical Studies of Chemotherapy for Stage III and Stage IV Non-Hodgkin’s Lymphomas by the Cancer and Leukemia Group B. Cancer Treatment Reports 61, 1097 (1977).Google Scholar
  37. 37.
    Forcier, R. J., O. R. McIntyre, N. I. Nissen, T. F. Pajak, O. Glidewell, and J. F. Holland: Combination Chemotherapy of Non-Hodgkin Lymphoma. Med. and Pediatr. Oncol. 4, 351 (1978).Google Scholar
  38. 38.
    Banzet, P., C. Jacquillat, J. Civatte, A. Puissant, J. Maral, C. Chastang, L. Israel, S. Belaich, J. C. Jourdain, M. Weil, and G. Auclerc: Adjuvant Chemotherapy in the Management of Primary Malignant Melanoma. Cancer 41, 1240 (1978).CrossRefGoogle Scholar
  39. 39.
    Gout-Lemerle, M., C. Rodary, and D. Sarrazin: Arch. Fr. Pediatr. 33, 527 (1976).Google Scholar
  40. 40.
    Karpov, V. L., and L. G. Romanova: Carbon and Tritium-Labeled Bruneomycin Obtained by Biosynthetic Method. Antibiotiki 17, 419 (1972).Google Scholar
  41. 41.
    Gould, S. J., and C. C. Chang: Streptonigrin Biosynthesis. 3. Determination of the Primary Precursors to the 4-Phenylpicolinic Acid Portion. J. Amer. Chem. Soc. 102, 1702 (1980).CrossRefGoogle Scholar
  42. 42.
    Gould, S. J., C. C. Chang, D. S. Darling, J. D. Roberts, and M. Squillacote: Streptonigrin Biosynthesis. 4. Details of the Tryptophan Metabolism. J. Amer. Chem. Soc. 102, 1707 (1980).CrossRefGoogle Scholar
  43. 43.
    Doyle, T. W., and S. J. Gould: Unpublished results.Google Scholar
  44. 44.
    Gould, S. J., and C. C. Chang: Studies of Nitrogen Metabolism Using 13C NMR Spectroscopy. 1. Streptonigrin Biosynthesis. J. Amer. Chem. Soc. 100, 1624 (1978).CrossRefGoogle Scholar
  45. 45.
    Speedie, M. K.: University of Maryland, private communication.Google Scholar
  46. 46.
    Hornemann, U., L. H. Hurley, M. K. Speedie, and H. G. Floss: The Biosynthesis of Indolmycin. J. Amer. Chem. Soc. 93, 3028 (1971).CrossRefGoogle Scholar
  47. 47.
    This technique was first used to study the sesquiterpene antibiotic pentalenolactone: Cane, D E., T. rossi, and J. P. Pachlatko: The Biosynthesis of Pentalenolactone. Tetrahedron Letters, 3639 (1979).Google Scholar
  48. 48.
    Nadzan, A. M., and K. L. Rinehart, Jr.: Nybomycin. 8. Biosynthetic Origin of the Central Ring Carbons Studied by 13C-Labeled Substrates. J. Amer. Chem. Soc. 98, 5012 (1976).CrossRefGoogle Scholar
  49. 49.
    Zmijewski, M. J.: Biosynthesis of Antibiotic A23187. Incorporation of Precursors into A23187. J. Antibiotics 33, 447 (1980).Google Scholar
  50. 50.
    Kametani, T., and K. Ogasawara: Streptonigrin and Related Compounds. I. Syntheses of 5,6,8-Trimethoxy-7-dimethylaminoquinoline and 7-Amino-6-hydroxy-5,8-quinolinedione. Yakugaku Zasshi 85, 985 (1965).Google Scholar
  51. 51.
    —— Streptonigrin and Related Compounds II. Syntheses of 7-Aminoquinoline Derivatives from Hexachlorocyclohexane. Yakugaku Zasshi 86, 55 (1966).Google Scholar
  52. 52.
    Liao, T. K., W. H. Nybert, and C. C. Cheng: Synthesis of 7-Amino-6-methoxy- 5,8-quinolinedione. Angew. Chem. Int. Ed. 6, 82 (1967).Google Scholar
  53. 53.
    Lown, J. W., and S.-K. Sim: Studies Related to Antitumor Antibiotics. Part VII. Synthesis of Streptonigrin Analogues and Their Single Strand Scission of DNA. Canad. J. Chem. 54, 2563 (1976).CrossRefGoogle Scholar
  54. 54.
    Hibino, S., and S. M. Weinreb: Synthetic Approaches to the Quinolinequinone System of Streptonigrin. J. Organ. Chem. (USA) 42, 232 (1977).CrossRefGoogle Scholar
  55. 55.
    Kametani, T., K. Ogasawara, and M. Shio: Streptonigrin and Related Compounds. III. Syntheses of 4-Phenylpyridine Derivatives. Yakugaku Zasshi 86, 809 (1966).Google Scholar
  56. 56.
    Kametani, T., K. Ogasawara, and A. Kozuka: Streptonigrin and Related Com-pounds. IV. Syntheses of 4-(3,4-Methylenedioxyphenyl)- and 4-(3,4-Dimethoxyphenyl)-3-cyano-5-ethoxycarbonyl-6-methyl-2-quinolylpyridine. Yakugaku Zasshi 86, 815 (1966).Google Scholar
  57. 57.
    Kametani, T., K. Ogasawara, A. Kozuka, and M. Shio: Streptonigrin and Related Compounds. V. Syntheses of the Compounds having Streptonigrin-type Structure. Yakugaku Zasshi 87, 254 (1967).Google Scholar
  58. 58.
    Kametani, T., K. Ogasawara, M. Shio, and A. Kozuka: Streptonigrin and Related Compounds. VI. The NMR Spectra of 4-(2,3,4-Trimethoxyphenyl)-2,3-dimethylpyridine Derivatives. Yakugaku Zasshi 87, 260 (1967).Google Scholar
  59. 59.
    Kametani, T., K. Ogasawara, A. Kozuka, and K. Nyu: Streptonigrin and Related Compounds. VII. Synthesis of Streptonigrin Nucleus by the Formation of Pyridine Ring. Yakugaku Zasshi 87, 1189 (1967).Google Scholar
  60. 60.
    Kametani, T., K. Ogasawara, and A. Kozuka: Streptonigrin and Related Compounds. VIII. Hydrolysis and Hoffmann Reaction of Ethyl 3-Cyano-4-(3,4-dimethoxyphenyl)-6-methyl-2-quinolyl-5-pyridinecarboxylate. Yakugaku Zasshi 87, 1195 (1967).Google Scholar
  61. 61.
    Kametani, T., A. Kozuka, and S. Tanaka: Streptonigrin and Related Compounds. IX. Syntheses of 4-Phenyl-2,3-dimethylpyridone Derivatives. Yakugaku Zasshi 90, 1574 (1970).Google Scholar
  62. 62.
    Kametani, T., S. Tanaka, and A. Kozuka: Syntheses of Streptonigrin and Related Compounds. X. A Synthesis of Methyl 3-Acetamido-l,2-dihydro-4-(2,3,4-trimethoxyphenyl)-5-methyl-2-oxo-6-pyridinecarboxylate. Yakugaku Zasshi 91, 1068 (1971).Google Scholar
  63. 63.
    Liao, T. K., P. J. Wittek, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. II. Synthesis of the C-D Ring Portion of Streptonigrin. J. Heterocycl. Chem. 13, 1283 (1976).CrossRefGoogle Scholar
  64. 64.
    Wittek, P. J., T. K. Liao, and C. C. Cheng: Synthetic Studies of the Antitumor Antibiotic Streptonigrin. 3. Synthesis of the C-D Ring of Streptonigrin by an Unsymmetrical Ullmann Reaction. J. Organ. Chem. (USA) 44, 870 (1979).CrossRefGoogle Scholar
  65. 65.
    Rao, K. V., and P. Venkateswarlu: Streptonigrin and Related Compounds. II. Synthesis of the C-Ring Precursors. J. Heterocycl. Chem. 12, 731 (1975).CrossRefGoogle Scholar
  66. 66.
    Rao, K. V., and H.-S. Kuo: Streptonigrin and Related Compounds. IV. Precursors for the A-Ring. J. Heterocycl. Chem. 16, 1241 (1979).CrossRefGoogle Scholar
  67. 67.
    Martin, J. C.: Synthesis of Pyridines from Dicyanopyrimidines. A Diels-Alder Approach to the C-Ring of Streptonigrin. J. Heterocycl. Chem. 17, 1111 (1980).CrossRefGoogle Scholar
  68. 68.
    Kim, D., and S. M. Weinreb: A Diels-Alder Approach to the Pyridine C-Ring of Streptonigrin. J. Organ. Chem. (USA) 43, 121 (1978).CrossRefGoogle Scholar
  69. 69.
    —— Elaboration of the Pyridine C-Ring Functionality in a Streptonigrin Precursor. J. Organ. Chem. (USA) 43, 125 (1978).Google Scholar
  70. 70.
    Basha, F. Z., S. Hibino, D. Kim, W. E. Pye, T.-T. Wu, and S. M. Weinreb: Total Synthesis of Streptonigrin. J. Amer. Chem. Soc. 102, 3962 (1980).CrossRefGoogle Scholar
  71. 71.
    Kende, A. S., D. P. Lorah, and R. J. Boatman: A New and Efficient Total Synthesis of Streptonigrin. J. Amer. Chem. Soc. 103, 1271 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1982

Authors and Affiliations

  • St. J. Gould
    • 1
  • St. M. Weinreb
    • 2
  1. 1.School of PharmacyUniversity of ConnecticutStorrsUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations