Advertisement

The Direct Biomimetic Synthesis, Structure and Absolute Configuration of Angular and Linear Condensed Tannins

  • D. G. Roux
  • D. Ferreira
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 41)

Abstract

The chemistry of condensed tannins has hitherto represented a relatively unattractive and therefore neglected area of study; one in which the weight of research effort involved is invariably disproportionate to the results achieved, in which the participating schools generally confine their approach to specific molecular species, and in which as yet no consensus has been reached regarding likely precursors.

Keywords

Circular Dichroism Condensed Tannin Absolute Configuration Nucleophilic Centre High Magnetic Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Creasy, L. L., and T. Swain: Structure of condensed tannins. Nature 208, 151 (1965).CrossRefGoogle Scholar
  2. 2.
    Geissman, T. A., and N. N. Yoshimura: Synthetic proanthocyanidin. Tetrahedron Letters 1966, 2669.Google Scholar
  3. 3.
    Pelter, A., and P. I. Amenechi: Isoflavonoid and pterocarpinoid extractives of Lonchocarpus laxiflorus. J. Chem. Soc. (C) 1969, 887; Pelter, A., P. I. Amenechi, R. Warren and S. H. Harper: The structures of two proanthocyanidins from Julbernadia globiflora. J. Chem. Soc. (C) 1969, 2572.Google Scholar
  4. 4.
    Engel, D. W., M. Hattingh, H. K. L. Hundt, and D. G. Roux: X-ray structure, conformation, and absolute configuration of 8-bromotetra-0-methyl-(+)-catechin. J. Chem. Soc. Chem. Commun. 1978, 695.Google Scholar
  5. 5.
    Hundt, H. K. L., and D. G. Roux: Condensed tannins: Determination of the point of linkage in “terminal” (+)-catechin units and degradative bromination of 4-flavanylflavan-3,4-diols. J. Chem. Soc. Chem. Commun. 1978, 696.Google Scholar
  6. 6.
    Synthesis of condensed tannins. Part 3. Chemical shifts for determining the 6- and 8-bonding positions of “terminal” (+)-catechin units. J. Chem. Soc. Perkin I 1981, 1227.Google Scholar
  7. 7.
    Botha, J. J., D. Ferreira, and D. G. Roux: Condensed tannins: Circular dichroism method of assessing the absolute configuration at C-4 of 4-arylflavan-3-ols and stereochemistry of their formation from flavan-3,4-diols. J. Chem. Soc. Chem. Commun. 1978, 698.Google Scholar
  8. 8.
    Botha, J. J., D. A. Young, D. Ferreira, and D. G. Roux: Synthesis of condensed tannins. Part 1. Stereoselective and stereospecific syntheses of optically pure 4-arylflavan-3-ols, and assessment of their absolute stereochemistry at C-4 by means of circular dichroism. J. Chem. Soc. Perkin I 1981, 1213.Google Scholar
  9. 9.
    Van der Westhuizen, J. H., D. Ferreira, and D. G. Roux: Synthesis of condensed tannins. Part 2. Synthesis by photolytic rearrangement, stereochemistry and circular dichroism of the first 2,3-ds-4-arylflavan-3-ols. J. Chem. Soc. Perkin I 1981, 1220.Google Scholar
  10. 10.
    Thompson, R. S., D. Jacques, E. Haslam, and R. J. N. Tanner: Plant proanthocyanidins. Part 1. Introduction: The isolation, structure and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin I 1972, 1387.Google Scholar
  11. 11.
    Botha, J. J., D. Ferreira, and D. G. Roux: Condensed tannins: Direct synthesis, structure and absolute configuration of four biflavanoids from black wattle bark (“Mimosa”) extract. J. Chem. Soc. Chem. Commun. 1978, 700.Google Scholar
  12. 12.
    ——Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]-biflavanoids. J. Chem. Soc. Perkin I 1981, 1235.Google Scholar
  13. 13.
    Weinges, K., H. D. Marx, and K. Göritz: Die Rotationsbehinderung an der C(sp2)-C(sp3)-Bindung der 4-Arylsubstituierten Polymethoxyflavane. Chem. Ber. 103, 2336 (1970).CrossRefGoogle Scholar
  14. 14.
    Du Preez, I. C., A. C. Rowan, D. G. Roux, and J. Feeney: Hindered rotation about the sp2-sp3 hybridized C-C bond between flavanoid units in condensed tannins. J. Chem. Soc. Chem. Commun. 1971, 315.Google Scholar
  15. 15.
    Sykes, R. L., and D. G. Roux: Study of the affinity of black wattle extract constituents. Part IV. Relative affinity of polyphenols for swollen chemically modified collagen. J. Soc. Leather Trades Chem. 41, 14 (1957).Google Scholar
  16. 16.
    Botha, J. J., D. Ferreira, D. G. Roux, and W. E. Hull: Condensed tannins: Condensation mode and sequence during formation of synthetic and natural tri-flavanoids. J. Chem. Soc. Chem. Commun. 1979, 510.Google Scholar
  17. 17.
    Botha, J. J., P. M. Viviers, I. C. Du Preez, D. Ferreira, D. G. Roux, and W. E. Hull: Synthesis of condensed tannins. Part 5. The first angular [4,6:4,8]-triflavanoids and their natural analogues. J. Chem. Soc. Perkin I 1982 (in press).Google Scholar
  18. 18.
    Kessler, H.: Detection of hindered rotation and inversion by NMR spectroscopy. Angew. Chem. Internat. Edn. 9, 219 (1970).CrossRefGoogle Scholar
  19. 19.
    Botha, J. J., P. M. Viviers, D. Ferreira, and D. G. Roux: Condensed tannins: Competing nucleophilic centres in biomimetic condensation reactions. Phytochemistry 1982 (in press).Google Scholar
  20. 20.
    Viviers, P. M., D. A. Young, J. J. Botha, D. Ferreira, D. G. Roux, and W. E. Hull: Synthesis of condensed tannins. Part 6. The sequence of units, coupling positions and absolute configuration of the first linear [4,6:4,6]-triflavanoid with terminal 3,4-diol function. J. Chem. Soc. Perkin I 1982 (in press).Google Scholar
  21. 21.
    Viviers, P. M., J. J. Botha, D. Ferreira, D. G. Roux, and H. M. Saayman: Synthesis of condensed tannins. Part 7. [4,6:4,8]-Linked angular prorobinetinidin triflavanoids from black wattle (“Mimosa”) extract (submitted).Google Scholar
  22. 22.
    Viviers, P. M., J. J. Botha, D. Ferreira, and D. G. Roux: Synthesis of condensed tannins. Part 8. Oligomers of the Anacardiaceae: An enantiomeric electrophile (submitted).Google Scholar
  23. 23.
    Tindale, M. D., and D. G. Roux: An extended phytochemical survey of Australian species of Acacia: Chemotaxonomic and phylogenetic aspects. Phytochemistry 13, 829 (1974).CrossRefGoogle Scholar
  24. 24.
    Malan, E., and D. G. Roux: Flavonoids and tannins of Acacia species. Phytochemistry 14, 1835 (1975).CrossRefGoogle Scholar
  25. 25.
    Fourie, T. G., I. C. Du Preez, and D. G. Roux: 3′,4′,7,8-Tetrahydroxyflavonoids from the heartwood of Acacia nigrescens and their conversion products. Phytochemistry 11, 1763 (1972).CrossRefGoogle Scholar
  26. 26.
    Drewes, S. E., and D. G. Roux: A new flavan-3,4-diol from Acacia auriculiformis by paper ionophoresis. Biochem. J. 98, 493 (1966).Google Scholar
  27. 27.
    Hemingway, R. W., L. Y. Foo, and L. J. Porter: Polymeric proanthocyanidins: Interflavanoid linkage isomerism in (epicatechin-4)-(epicatechin-4)-catechin procyanidins. J. Chem. Soc. Chem. Commun. 1981, 320.Google Scholar

Copyright information

© Springer-Verlag/Wien 1982

Authors and Affiliations

  • D. G. Roux
    • 1
  • D. Ferreira
    • 1
  1. 1.Department of ChemistryUniversity of the Orange Free StateBloemfonteinSouth Africa

Personalised recommendations