Three classes of phenolic metabolite overwhelmingly predominate in the leaves of vascular plants (2). These are respectively:
  1. (i)

    proanthocyanidins — procyanidins (1, R = H) and prodelphinidins (1, R = OH) (25),

  2. (ii)

    glycosylated flavonols (principally those of kaempferol, quercetin and myricetin) (20), and

  3. (iii)

    esters, amides and glycosides of the hydroxycinnamic acids (principally those of p-coumaric, caffeic, ferulic and sinapic acids) (31).



Gallic Acid Oxidative Coupling Phenolic Glycoside Phenolic Metabolite Methyl Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage, R., G. S. Bayliss, J. G. Gramshaw, E. Haslam, R. D. Haworth, K. Jones, H. J. Rogers, and T. Searle: Gallotannins Part 3. The Constitution of Chinese, Turkish, Sumach and Tara Tannins. J. Chem. Soc. 1961, 1842.Google Scholar
  2. 2.
    Bate-Smith, E. C.: The phenolic constituents of plants and their taxonomic significance. 1. Dicotyledons. J. Linnaen Soc. (Bot.) 58, 95 (1962).Google Scholar
  3. 3.
    — Astringent tannins of Acer species. Phytochemistry 16, 1421 (1977).Google Scholar
  4. 4.
    Böhm, B. A., F. W. Collins, and C. K. Wilkins: Flavonol Glycoside gallates from Tellima grandiflora. Phytochemistry 14, 1099 (1975).CrossRefGoogle Scholar
  5. 5.
    Böhm, B. A.: Flavonoids of Tolmiea menziesii. Phytochemistry 18, 1079 (1979).CrossRefGoogle Scholar
  6. 6.
    Bradfield, A. E., and M. Penney: The Catechins of Green Tea. Part 2. J. Chem. Soc. 1948, 2239.Google Scholar
  7. 7.
    Britton, G., and E. Haslam: Gallotannins Part 12. Phenolic constituents of Arcto- staphylos uva-ursi L. Spreng. J. Chem. Soc. 1965, 7312.Google Scholar
  8. 8.
    Britton, G., P. W. Crabtree, J. E. Stangroom, and E. Haslam: Gallotannins Part 13. The Structure of Chinese Gallotannin: Evidence for a Polygalloyl Chain. J. Chem. Soc. (C) 1966, 783.Google Scholar
  9. 9.
    Conn, E. E., and T. Swain: Biosynthesis of Gallic acid in Higher Plants. Chem. and Ind. 1961, 592.Google Scholar
  10. 10.
    Cornthwaite, D. C, and E. Haslam: Gallotannins Part 9. The Biosynthesis of Gallic acid in Rhus typhina. J. Chem. Soc. 1965, 3008.Google Scholar
  11. 11.
    Coxon, D. T., A. Holmes, W. D. Ollis, V. C. Vora, M. S. Grant, and J. L. Tee: Flavonol Digallates in Green Tea Leaf. Tetrahedron 28, 2819 (1972).CrossRefGoogle Scholar
  12. 12.
    Dewick, P. M., and E. Haslam: Phenol Biosynthesis in Higher Plants — Gallic Acid. Biochem. J. 113, 537 (1969).Google Scholar
  13. 13.
    Fischer, E., and M. Bergmann: Über das Tannin und die Synthese ähnlicher Stoffe V. Ber. Deutsche Chem. Ges. 51, 1760 (1918).CrossRefGoogle Scholar
  14. 14.
    Fischer, E.: Untersuchungen über Depside und Gerbstoffe. Berlin: J. Springer. 1919.Google Scholar
  15. 15.
    Gilson, E. R.: Sur deux nouveaux glucotannoides. Compt. Rend. Acad. Sci. 136, 385 (1903).Google Scholar
  16. 16.
    Gonzalez, A. G., C. G. Francisco, R. Friere, R. Hernandez, J. Salazar, and E. Suarez: Lindleyin, a new Phenolic gallyl glucoside from Aconium lindleyi. Phytochemistry 15, 344 (1976).CrossRefGoogle Scholar
  17. 17.
    Gross, S. R.: Recent Advances in the Chemistry and Biochemistry of Lignin in Recent Advances in Phytochemistry, Vol. 12 — Biochemistry of Plant Phenolics — Swain, Harborne and Van Sumere, p. 177. London and New York: Plenum Press. 1978.Google Scholar
  18. 18.
    Gupta, R. K., S. Al-Shafi, and E. Haslam: Unpublished Observations, 1980.Google Scholar
  19. 19.
    Haddock, E. A., and E. Haslam: Unpublished Observations, 1980.Google Scholar
  20. 20.
    Harborne, J. B.: Comparative Biochemistry of the Flavonoids. London: Academic Press. 1967.Google Scholar
  21. 21.
    Haslam, E., and J. E. Stangroom: The Esterase and Depsidase Activities of Tannase. Biochem. J. 99, 28 (1966).Google Scholar
  22. 22.
    Haslam, E.: Gallotannins Part 14. Structure of the Gallotannins. J. Chem. Soc. (C) 1967, 1734.Google Scholar
  23. 23.
    — (+)-Catechin-3-o-gallate and a Polymeric Procyanidin from Bergenia sp. J. Chem. Soc. (C) 1969, 1825.Google Scholar
  24. 24.
    — Polyphenol-Protein Interactions. Biochem. J. 139, 285 (1974).Google Scholar
  25. 25.
    — Symmetry and Promiscuity in Procyanidin Biochemistry, Phytochemistry 16, 1625 (1977).Google Scholar
  26. 26.
    Haslam, E., and R. K. Gupta: Unpublished Observations, 1980.Google Scholar
  27. 27.
    Haworth, R. D., and L. B. da Silva: Chebulinic Acid. J. Chem. Soc. 1951, 3511.Google Scholar
  28. 28.
    ——Chebulinic Acid Part 2. J. Chem. Soc. 1954, 2611.Google Scholar
  29. 29.
    Haworth, R. D.: Some Problems in the Chemistry of the Gallotannins, Pedler Lecture. Proc. Chem. Soc. 1961, 401.Google Scholar
  30. 30.
    Hay, J. E., and L. J. Haynes: Bergenin, a-C-glycopyranosyl derivate of 4-o-Methylgallic Acid. J. Chem. Soc. 1958, 2231.Google Scholar
  31. 31.
    Herrman, K.: Hydroxyzimtsäuren und Hydroxybenzoesäuren enthaltende Naturstoffe in Pflanzen. Fortschr. Chem. Org. Naturst. 35, 73 (1978).Google Scholar
  32. 32.
    Hillis, W. E., and M. Siekel: Hydrolysable tannins of Eucalyptus delegatensis wood. Phytochemistry 9, 1115 (1970).CrossRefGoogle Scholar
  33. 33.
    Ikeya, Y., H. Taguchi, I. Yosioka, and H. Kobayashi: The constituents of Schizandra chinensis Baile. Isolation and Structure Determination of five new lignans, Gomisin A, B, C, F and G and the Absolute Structure of Schizandrin. Chem. Pharm. Bull. 27, 1383 (1979).CrossRefGoogle Scholar
  34. 34.
    Jochims, J. C., G. Taigel, and O. Th. Schmidt: Protonenresonanz — Spektrum und Konformationsbestimmung einiger natürlicher Gerbstoffe. Liebigs Annalen 717, 169 (1968).CrossRefGoogle Scholar
  35. 35.
    Keen, P. C., R. D. Haworth, and E. Haslam: Gallotannins Part 7. Tara Gallotannin. J. Chem. Soc. 1962, 3814.Google Scholar
  36. 36.
    Knowles, P. F., R. D. Haworth, and E. Haslam: Gallotannins Part 4. The Biosynthesis of Gallic Acid. J. Chem. Soc. 1961, 1854.Google Scholar
  37. 37.
    Magnolato, D.: Private Communication.Google Scholar
  38. 38.
    Mayer, W.: Dehydro-digallusäure. Liebigs Annalen 578, 34 (1954).Google Scholar
  39. 39.
    Mayer, W., R. Fikentscher, J. Schmidt, and O. Th. Schmidt: Über eine ungewöhnliche Spaltung von Diaryl-äthern. Chem. Ber. 93, 2761 (1960).CrossRefGoogle Scholar
  40. 40.
    Mayer, W., N. Kunz, and F. Loebich: Die Struktur Hamamelitannins. Liebigs Annalen 688, 232 (1965).CrossRefGoogle Scholar
  41. 41.
    Mayer, W., A. Einwiller, and J. C. Jochims: Die Struktur des Castalins. Liebigs Annalen 707, 182 (1967).CrossRefGoogle Scholar
  42. 42.
    Mayer, W., H. Switz, and J. C. Jochims: Die Struktur des Castalagins. Liebigs Annalen 721, 186 (1969).CrossRefGoogle Scholar
  43. 43.
    Mayer, W., F. Kullman, and G. Schilling: Die Struktur des Vescalins. Liebigs Annalen 747, 51 (1971).CrossRefGoogle Scholar
  44. 44.
    Mayer, W., H. Scitz, J. C. Jochims, K. Schauerte, and G. Schilling: Struktur des Vescalagins. Liebigs Annalen 751, 60 (1971).CrossRefGoogle Scholar
  45. 45.
    Mayer, W., B. Bilzer, and K. Schauerte: Isolierung von Castalagin und Vescalagin aus Valoneagerbstoffen. Liebigs Annalen 754, 149 (1971).Google Scholar
  46. 46.
    Mayer, W.: Otto Theodor Schmidt. Liebigs Annalen 1973, 1759.Google Scholar
  47. 47.
    Mayer, W., G. Schultz, S. Wrede, and G. Schilling: 2-o-Cinnamoyl-1-o-galloyl-ß-D-glucopyranose aus Rhizoma rhei. Liebigs Annalen 1975, 946.Google Scholar
  48. 48.
    Mayer, W., W. Bilzer, and G. Schilling: Castavaloninsäure, Isolierung und Strukturmittelung. Liebigs Annalen 1976, 876.Google Scholar
  49. 49.
    Mayer, W., A. Günther, H. Busath, W. Bilzer, and G. Schilling: Valolaginsäure. Liebigs Annalen 1976, 987.Google Scholar
  50. 50.
    Mayer, W., H. Schick, and G. Schilling: Trillosäure, eine neue Phenolcarbonsäure aus Valoneagerbstoffen. Liebigs Annalen 1976, 2178.Google Scholar
  51. 51.
    Mayer, W., H. Busath, and H. Schick: Isovalolaginsäure. Liebigs Annalen 1976, 2169.Google Scholar
  52. 52.
    Mayer, W., A. Gorner, and K. Andra: Punicalagin und Punicalin, zwei Gerbstoffe aus den Schalen der Granatäpfel. Liebigs Annalen 1977, 1976.Google Scholar
  53. 53.
    McManus, J., T. H. Lilley, and E. Haslam: The Association of Phenols with Proteins. J. Chem. Soc. Chem. Communications 1981, 309Google Scholar
  54. 54.
    Mislow, K., M. A. W. Glass, R. E. O’Brien, P. Rutkin, D. H. Steinberg, J. Weiss, and C. Djerassi: Configuration, Conformation and Rotary Dispersion of Optically- Active Biphenyls. J. Amer. Chem. Soc. 84, 1455 (1962).CrossRefGoogle Scholar
  55. 55.
    Neish, A. C., G. H. N. Towers, D. Chen, S. Z. El-Basyouni, and R. K. Ibrahim: The Biosynthesis of Hydroxybenzoic Acids in Higher Plants. Phytochemistry 3, 485 (1964).CrossRefGoogle Scholar
  56. 56.
    Nielsen, B. J., N. F. Lacour, S. R. Jensen, and K. Bock: The Structure of Acer Tannin. Phytochemistry 19, 2033 (1980).CrossRefGoogle Scholar
  57. 57.
    Nishira, H., and M. A. Joslyn: The Galloyl Glucose Compounds in Green Carob Pods (Ceratonia Siliqua). Phytochemistry 7, 2147 (1968).CrossRefGoogle Scholar
  58. 58.
    Okuda, T., H. Nayeshiro, and T. Yoshida: Constituents of Geranium thunbergii Zieb et Zucc. 4. Ellagitannins (2) Structure of Geraniin. Chem. Pharm. Bull. 25, 1862 (1977).CrossRefGoogle Scholar
  59. 59.
    Okuda, R., H. Nayeshiro, and K. Seno: Structure of Geraniin in the Equilibrium State. Tetrahedron Letters 1977, 4421.Google Scholar
  60. 60.
    Okuda, T., and K. Seno: Mallotusinic Acid and Mallotinic Acid, new hydrolysable tannins from Mallotus japonicus. Tetrahedron Letters 1978, 139.Google Scholar
  61. 61.
    Okuda, T., K. Mori, and T. Hatano: The Distribution of Geraniin and Mallotusinic Acid in the order Geraniales. Phytochemistry 19, 547 (1980).CrossRefGoogle Scholar
  62. 62.
    Okuda, T., Y. Yoshida, and T. Hatano: Equilibrated Stereostructure of hydrated Geraniin and Mallotusinic Acid. Tetrahedron Letters 1980, 2561.Google Scholar
  63. 63.
    Ozawa, T., D. Kobayashi, and Y. Takino: Structure of the New Phenolic glycosides MP-2 and MP-10 from Chestnut galls. Agr. Biol. Chem. 41, 1257 (1977).CrossRefGoogle Scholar
  64. 64.
    Ozawa, T., K. Haga, N. Arai, and Y. Takino: Structure of a New Phenolic glycoside from Chestnut galls. Agr. Biol. Chem. 42, 1511 (1978).CrossRefGoogle Scholar
  65. 65.
    Ozawa, T., N. Arai, and Y. Takino: Structure of a New Phenolic Glycoside Chesnatin from Chestnut galls. Agr. Biol. Chem. 42, 1907 (1978).CrossRefGoogle Scholar
  66. 66.
    Ozawa, T., Y. Odaira, H. Imagawa, and Y. Takino: A new Phenolic glycoside Acetylcretanin and flavonoids from Chestnut galls. Agr. Biol. Chem. 44, 581 (1980).CrossRefGoogle Scholar
  67. 67.
    Perkin, A. G., and Y. Uyeda: Occurrence of a Crystalline tannin in the leaves of the Acer ginnala. J. Chem. Soc. 1922, 66.Google Scholar
  68. 68.
    Reddy, K. K., S. Rajadurai, S. K. N. Sastry, and Y. Nayudamma: Studies of the Dhava tannins 1. The Isolation and Constitution of a Gallotannin from Dhava (Anogeissus latifolia). Aust. J. Chem. 17, 238 (1964).Google Scholar
  69. 69.
    Roberts, E. A. H., and M. J. Myers: Theogallin, a polyphenol occurring in Tea. II. Identification as a Galloyl quinic Acid. J. Sci. Food Agrie. 9, 701 (1958).CrossRefGoogle Scholar
  70. 70.
    Schmidt, O. Th., and A. Schach: Synthese der 3-Galloyl-glucose, 6-Galloyl-glucose und 3,6-Digalloyl-glucose. Liebigs Annalen 571, 29 (1951).CrossRefGoogle Scholar
  71. 71.
    Schmidt, O. Th., and R. Lademann: Corilagin, ein weiterer kristallisierter Gerbstoff aus Divi-Divi. Liebigs Annalen 571, 232 (1951).CrossRefGoogle Scholar
  72. 72.
    Schmidt, O. Th., and K. Demmler: Optisch aktive 2,3,4,2′,3′,4′-Hexamethoxydiphenyl-carbonsäure-6,6′. Liebigs Annalen 576, 85 (1952).CrossRefGoogle Scholar
  73. 73.
    Schmidt, O. Th., F. Blinn, and R. Lademan: Über der Bindung der Ellagsäure in Corilagin und Chebulagsäure. Liebigs Annalen 576, 75 (1952).CrossRefGoogle Scholar
  74. 74.
    Schmidt, O. Th., and D. M. Schmidt: Über das Vorkommen von Corilagin in Myrabolanen. Liebigs Annalen 578, 31 (1953).Google Scholar
  75. 75.
    Schmidt, O. Th.: Ellagengerbstoffe. Leder 5, 129 (1954).Google Scholar
  76. 76.
    Schmidt, O. Th., and K. Demmler: Racemische und optisch aktive 2,3,4,2′,3′,4′-Hexaoxydiphenyl-carbonsäure-6,6′. Liebigs Annalen 585, 179 (1954).Google Scholar
  77. 77.
    Schmidt, O. Th., D. M. Schmidt, and J. Herok: Die Konstitution und Konfiguration des Corilagins. Liebigs Annalen 587, 67 (1954).CrossRefGoogle Scholar
  78. 78.
    Schmidt, O. Th.: Natürliche Gerbstoffe, in: Moderne Methoden der Pflanzenanalyse, Vol. 3: Paech and Tracey, p. 517. Berlin-Göttingen-Heidelberg: Springer. 1955.CrossRefGoogle Scholar
  79. 79.
    Schmidt, O. Th., and E. Komarek: Valoneasäure. Liebigs Annalen 591, 156 (1955).CrossRefGoogle Scholar
  80. 80.
    Schmidt, O. Th.: Gallotannine und Ellagen-Gerbstoff. Fortschritte der Chemie organischer Naturstoffe, Bd. XIII, p. 570. Wien: Springer. 1956.Google Scholar
  81. 81.
    Schmidt, O. Th., and W. Mayer: Natürliche Gerbstoffe. Angew. Chem. 68, 103 (1956).CrossRefGoogle Scholar
  82. 82.
    Schmidt, O. Th.: Über Chebulagsäure und Chebulinsäure. Leder 8, 106 (1957).Google Scholar
  83. 83.
    Schmidt, O. Th., and G. Klinger: Synthese der 1,3,6-Trigalloyl-glucose. Liebigs Annalen 609, 199 (1957).CrossRefGoogle Scholar
  84. 84.
    Schmidt, O. Th., and H. Reuss: 2-[-p-Hydroxy-benzoyl]-glucose und 2-Galloyl-glucose. Liebigs Annalen 649, 137 (1961).CrossRefGoogle Scholar
  85. 85.
    Schmidt, O. Th., and H. Schmadel: Synthesen des a-Glucogallins und neue Synthesen des β-Glucogallins. Liebigs Annalen 649, 149 (1961).CrossRefGoogle Scholar
  86. 86.
    Schmidt, O. Th., R. Schanz, R. Eckert, and R. Wurmb: Brevilagin 1. Liebigs Annalen 706, 131 (1967).CrossRefGoogle Scholar
  87. 87.
    Schmidt, O. Th., R. Schanz, R. Wurmb, and W. Groebke: Brevilagin 2. Liebigs Annalen 706, 154 (1967).Google Scholar
  88. 88.
    Schmidt, O. Th., J. Schulz, and R. Wurmb: Terchebin. Liebigs Annalen 706, 169 (1967).CrossRefGoogle Scholar
  89. 89.
    Schmidt, O. Th., R. Wurmb, and J. Schulz: Hexahydroxydiphensäure (Ellagsäure), Brevilfolin-carbonsäure und Chebulsäure aus Umwandlungsprodukten der Brevilagine und des Terchebins. Liebigs Annalen 76, 180 (1967).Google Scholar
  90. 90.
    Schmidt, O. Th., J. Schulz, and H. Feisser: Die Gerbstoffe der Myrabolanen. Liebigs Annalen 706, 187 (1967).CrossRefGoogle Scholar
  91. 91.
    Schmidt, O. Th., W. Ebert, and M. Kopp: 1,3,4,6-Tetragalloyl-ß-D-glucose aus Algarobilla. Liebigs Annalen 729, 251 (1969).CrossRefGoogle Scholar
  92. 92.
    Schmidt, O. Th., and H. Kottenhahn: (—)-Chebulsäure aus Algarobilla. Liebigs Annalen 729, 249 (1969).CrossRefGoogle Scholar
  93. 93.
    Shipchandler, M. T., C. A. Peters, and C. D. Hurd: Syntheses of Gallic Acid and Pyrogallol. J. Chem. Soc. (Perkin 1) 1975, 1400.Google Scholar
  94. 94.
    Stothers, J. B.: Carbon-13 NMR Spectroscopy. London and New York: Academic Press. 1972, 197.Google Scholar
  95. 95.
    Uddin, M., and E. Haslam: Gallotannins Part 15. Some Observations on the Structure of Chebulinic Acid and its Derivatives. J. Chem. Soc. (C) 1967, 2381.Google Scholar
  96. 96.
    Wagner, H., M. A. Iyengar, O. Seligman, H. I. El-Sissi, N. A. M. Saleh, and S. I. El-Negoumy: Prunin-o-6″-gallate aus Acacia farnesiana. Phytochemistry 13, 2843 (1974).CrossRefGoogle Scholar
  97. 97.
    White, T.: Tannins their Occurrence and Significance. J. Sci. Food Agric. 8, 377 (1957).CrossRefGoogle Scholar
  98. 98.
    Wilkins, C. K., and B. A. Böhm: Ellagitannins from Tellima grandiflora. Phytochemistry 15, 211 (1976).CrossRefGoogle Scholar
  99. 99.
    Zenk, M. H.: Zur Frage der Biosynthese von Gallusäure. Z. Naturforsch. 19 B, 83 (1964).Google Scholar
  100. 100.
    — Recent Work on Cinnamyl COA derivatives, Biochemistry of Plant Phenolics, Recent Advances in Phytochemistry, Vol. 12: Swain, Harborne and Van Sumere, p. 139. New York and London: Plenum Press. 1978.Google Scholar
  101. 101.
    Nahrstedt, A., K. Dumkow, B. Janistyn, and R. Pohl: Quercetin-Galactosid-Gallate in Euphorbiaceen. Tetrahedron Letters 1974, 559.Google Scholar
  102. 102.
    Schmidt, O. Th., L. Wurtele, and A. Harreus: Pedunculagin, eine 2,3:4,6-Di-[(—)-hexahydroxydiphenoylj-glucose aus Knoppern. Liebigs Annalen 690, 150 (1965).CrossRefGoogle Scholar
  103. 103.
    Scopes, M., and E. Haslam: Unpublished Observations, 1980.Google Scholar
  104. 104.
    Jurd, L.: Plant Polyphenols III. The Isolation of a New Ellagitannin from the Pellicle of the Walnut. J. Amer. Chem. Soc. 80, 2249 (1958).CrossRefGoogle Scholar
  105. 105.
    Ferrier, R. J., and P. M. Collins: Monosaccharide Chemistry, p. 40. London: Penguin. 1972.Google Scholar
  106. 106.
    Haslam, E.: Galloyl esters in the Aceraceae. Phytochemistry 4, 495 (1965).CrossRefGoogle Scholar
  107. 107.
    Mathieson, A. McL.: The Preferred Conformation of the Ester Group in Relation to Saturated Ring Systems. Tetrahedron Letters 1965, 4137.Google Scholar
  108. 108.
    Culvenor, C. J.: The Conformation of Esters and the “Acylation Shift” NMR Evidence from Pyrrolizidine Alkaloids. Tetrahedron Letters 1966, 1091.Google Scholar
  109. 109.
    Haslam, E.: Chemistry of Vegetable Tannins. London and New York: Academic Press. 1966.Google Scholar
  110. 110.
    Schmidt, O. Th., E. Komarek, and H. Rentel: Synthese der Octamethylvaloneasäure. Liebigs Annalen 602, 50 (1957).CrossRefGoogle Scholar
  111. 111.
    Schmidt, O. Th., and K. Bernauer: Brevifolin und Bervifolincarbonsäure. Liebigs Annalen 588, 211 (1954).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1982

Authors and Affiliations

  • E. Haslam
    • 1
  1. 1.Department of ChemistryUniversity of SheffieldSheffieldUK

Personalised recommendations