Scattering in Quantum Field Theory: The M.P.S.A. Approach in Complex Momentum Space

Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)


In this course, we intend to show how “Many-Particle Structure Analysis” (M.P.S.A.) can be worked out in the standard field-theoretical framework, by using integral relations in complex, momentum space involving “l-particle irreducible kernels”. The ultimate purpose of this approach is to obtain the best possible knowledge of the singularities (location, nature, type of ramification) and of the ambient holomorphy (or meromorphy) domains of the n-point Green functions and scattering amplitudes, and at the same time to derive analytic structural equations for them which display the global organization of these singularities.


Green Function Mass Shell Asymptotic Completeness Unphysical Sheet Landau Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Symanzik, J. Math. Phys. 1 (1960) 249MathSciNetADSCrossRefGoogle Scholar
  2. 1.a
    “Symposium on Theoretical Physics”, 3 (1967) 121, New York, Plenum Press.Google Scholar
  3. 2.a)
    J. Bros in “Analytic Methods in Mathematical Physics”, p. 85, Gordon and Breach, New York (1970).Google Scholar
  4. b).
    J. Bros, M. Lasalle in “Structural Analysis of Collision Amplitudes”, p. 97, North-Holland, Amsterdam (1976).Google Scholar
  5. c).
    J. Bros, in “Mathematical Problems in Theoretical Physics”, Lecture Notes in Physics 116 (1979) 166, Springer Verlag, Berlin, Heidelberg, New York.MathSciNetADSCrossRefGoogle Scholar
  6. 3.a)
    M. Lasalle, Comm. Math. Phys. 36 (1974) 185.MathSciNetADSCrossRefGoogle Scholar
  7. b).
    J. Bros, M. Lassalle, Comm. Math. Phys. 43 (1975) 279.MathSciNetADSCrossRefGoogle Scholar
  8. c).
    J. Bros, M. Lassalle, Comm. Math. Phys. 54 (1977) 33.MathSciNetADSMATHCrossRefGoogle Scholar
  9. 3d)J. Bros, M. Lassalle, Ann. Inst. H. Poincaré 27 279.Google Scholar
  10. 4.
    H. Epstein, V. Glaser, R. Stora in “Structural Analysis of Collision Amplitudes” p. 7, North Holland, Amsterdam (1976), and references quoted therein.Google Scholar
  11. 5.a)
    R. Omnes in “Relations de dispersion et particules élémentaires”, Hermann, Paris (1960), and references quoted therein.Google Scholar
  12. b).
    J. Bros, H. Epstein, V. Glaser, Comm. Math. Phys. 1 (1965) 240.MathSciNetADSCrossRefGoogle Scholar
  13. c).
    J. Bros, H. Epstein, V. Glaser, Helv. Phys. Acta 45 (1972) 149.Google Scholar
  14. 6.a)
    D. lagolnitzer, “The S-Matrix”, North-Holland, Amsterdam (1978), and references quoted therein, b) D. lagolnitzer, in this volume.Google Scholar
  15. 7.a)
    L.D. Landau, Nucl. Phys. 13 (1959) 181.MATHCrossRefGoogle Scholar
  16. b).
    R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkingnorne, “The analytic S-matrix”, Cambridge Univ. Press (1966), and references quoted therein.Google Scholar
  17. 8.
    D. Fotiadi, M. Froissart, J. Lascoux, F. Pham, Topology (Gr. Brit.) 4 (1965) 159.MathSciNetMATHGoogle Scholar
  18. 8a.
    F. Pham, “Introduction à 1’étude topologique des singularites de Landau”, Gauthier-Villars, Mémorial des Sc. Math. 164 (1967).Google Scholar
  19. 9.
    G. Ponzano, T. Regge, E.R. Speer, M.J. Westwater, Comm. Math. Phys. 15 (1969) 83.MathSciNetADSMATHCrossRefGoogle Scholar
  20. 10.a)
    M. Kashiwara, T. Kawai, T. Oshima, Comm. Math. Phys. 60 (1978) 97, and references quoted therein.MathSciNetADSMATHCrossRefGoogle Scholar
  21. b).
    A. Van den Essen in “Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory”, Lecture Notes in Physics 126 (1979) 117, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  22. 11.
    D. lagolnitzer, H.P. Stapp, Comm. Math. Phys. 14 (1969) 15.MathSciNetADSCrossRefGoogle Scholar
  23. 12.
    G.F. Chew, “The Analytic S-matrix”, W.A. Benjamin, New York (1966), and references quoted therein.Google Scholar
  24. 13.
    H.P. Stapp and R. White in “Structural Analysis of Collision Amplitudes” p. 275 and p. 431, North-Holland, Amsterdam (1976).Google Scholar
  25. 14.a)
    T. Spencer, F. Zirlili, Comm. Math. Phys. 49 (1976) 1.MathSciNetADSCrossRefGoogle Scholar
  26. b).
    M. Combescure, F. Dunlop, “n-particle irreducible functions in euclidean Q.F.T.” Preprint IHES, Buressur-Yvette (1978).Google Scholar
  27. c).
    H. Koch, Thesis, Genéve Univ. (1979).Google Scholar
  28. 15.
    J. Leray, Bull. Soc. Math, de France 87 (1959) 81.MathSciNetMATHGoogle Scholar
  29. 16.a)
    J. Bros, D. Pesenti, J. Math. Pures et appl. 58 (1980) 375.MathSciNetGoogle Scholar
  30. b)J. Bros, D. Pesenti, “Fredholm resolvent in complex space: the non-holonomic case”, in preparation.Google Scholar
  31. c)J. Bros, D. lagolnitzer, “Non-holonomic singularities of the S-matrix and Green functions”, to be published in Comm. Math. Phys.Google Scholar
  32. 17.
    H. Epstein, V. Glaser, D. lagolnitzer, to be published in Comm. Math. Phys..Google Scholar
  33. 18.a)
    R.F. Streater and A.S. Wightman, “PCT, Spin & Statistics and All That”, Benjamin, New York, 1964.MATHGoogle Scholar
  34. b). R. Jost, “The General Theory of Quantized Fields”, Am. Math. Soc., Providence, 1965.Google Scholar
  35. 19.a)
    H. Araki,“Einführung in die Axiomatische Quantenfeldtheorie”; E.T.H. Zürich (1961–1962).Google Scholar
  36. b).
    R. Haag and B. Schroer, J. Math. Phys. 3 (1962) 248.MathSciNetADSMATHCrossRefGoogle Scholar
  37. 20.
    K. Hepp in “Axiomatic Field Theory”, p. 137, Brandeis University, M. Chretien and S. Deser Editors (1965).Google Scholar
  38. 21.a)
    V. Glaser, H. Lehmann, W. Zimmermann, Nuovo Cimento 6 (1957) 1122.MathSciNetMATHCrossRefGoogle Scholar
  39. b).
    O. Steinmann, Comm. Math. Phys. 10 (1968) 245.MathSciNetADSMATHCrossRefGoogle Scholar
  40. 22.
    J. Bros, M. Manolessou-Grammaticou, Comm. Math. Phys. 72 (1980) 175 and 207.Google Scholar
  41. 23.
    R. Jost, H. Lehmann, Nuovo Cimento 5 (1957) 1598.MathSciNetMATHCrossRefGoogle Scholar
  42. F.J. Dyson, Phys. Rev. 110 (1958) 1460.MathSciNetADSMATHCrossRefGoogle Scholar
  43. J. Bros, A. Messiah, R. Stora, J. Math. Phys. 2 (1961) 639.MathSciNetADSMATHCrossRefGoogle Scholar
  44. 24.
    A. Katz,“Sur les formules de discontinuité en théorie quantique axiomatique des champs”. Thèse de 3ème cycle, Orsay (1979).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. Bros
    • 1
  1. 1.SaclayCENGif-sur-YvetteFrance

Personalised recommendations