Advertisement

Analyticity Properties of the S-Matrix: Historical Survey and Recent Results in S-Matrix Theory and Axiomatic Field Theory

  • D. Iagolnitzer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)

Abstract

An introduction to recent works, in S-matrix theory and axiomatic field theory, on the analysis and derivation of momentum-space analyticity properties of the multi– particle S-matrix is presented. It includes an historical survey, which outlines the successes but also the basic difficulties encountered in the sixties in both theories, and the evolution of the subject in the seventies.

Keywords

Physical Region Internal Line Feynman Integral Unitarity Equation Essential Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. lagolnitzer. The S-matrix, North-Holland, Amsterdam (1978).Google Scholar
  2. 2.
    D. lagolnitzer. Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics 126, Springer-Verlag, Heidelberg (1980), p. 263.Google Scholar
  3. 3.
    H.P. Stapp, Structural Analysis of Collision Amplitudes, Ed. by R. Balian and D. lagolnitzer, North-Holland, Amsterdam (1976) p. 275.Google Scholar
  4. 4.
    A.R. White, Structural Analysis of Collision Amplitudes, Ed. by R. Balian and D. lagolnitzer, North-Holland, Amsterdam (1976) p. 431.Google Scholar
  5. 5.
    G.F. Chew and V. Poenaru, Phys. Rev. Lett. 45 (1980)29.ADSCrossRefGoogle Scholar
  6. V. Poenaru, Univ. d’Orsay, Dept. de Mathématique, preprint no. 81T06 (1981), and references therein.Google Scholar
  7. 6.
    G.F. Chew, The Analytic S matrix, W.A. Benjamin, New-York (1966). and references therein.Google Scholar
  8. 7.
    R.J. Eden, P.V. Landshoff, D.I. Olive, and J.C. Polkinghorne, The Analytic S matrix, Cambridge Univ. Press (1966), and references therein.MATHGoogle Scholar
  9. 8.
    M.I.W. Bloxham, D.I. Olive, and J.C. Polkinghorne, J. Math. Phys. 10 (1969) 494;MathSciNetADSMATHCrossRefGoogle Scholar
  10. M.I.W. Bloxham, D.I. Olive, and J.C. Polkinghorne, J. Math. Phys. 10 (1969) 555;ADSGoogle Scholar
  11. M.I.W. Bloxham, D.I. Olive, and J.C. Polkinghorne, J. Math. Phys. 10 (1969) 553.MathSciNetADSCrossRefGoogle Scholar
  12. 9.
    H.P. Stapp, J. Math. Phys. 9 (1968) 1548.MathSciNetADSMATHCrossRefGoogle Scholar
  13. J. Coster and H.P. Stapp, J. Math. Phys. 10 (1969) 371;MathSciNetADSCrossRefGoogle Scholar
  14. J. Coster and H.P. Stapp, J. Math. Phys. 11 (1970) 2743.MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    D. lagolnitzer, J. Math. Phys. 6 (1965) 1576, Thesis, Paris (1967), andADSCrossRefGoogle Scholar
  16. D. lagolnitzer, J. Math. Phys. 10 (1969) 1249.Google Scholar
  17. 11.
    S. Coleman and R. Norton, Nuovo Cim. 38 (1965) 438.CrossRefGoogle Scholar
  18. 12.
    E.H. Wichmann, and J.H. Crichton, Phys. Rev. 132 (1963) 2788;MathSciNetADSCrossRefGoogle Scholar
  19. R.J. Taylor, Phys. Rev. 142 (1966) 1236.MathSciNetADSCrossRefGoogle Scholar
  20. 13.
    G. Wanders, Helv. Phys. Acta 38 (1965) 142.Google Scholar
  21. 14.
    K. Hepp, Helv. Phys. Acta 37 (1964) 659MathSciNetGoogle Scholar
  22. K. Hepp, and J. Math. Phys. 6 (1965) 2762.Google Scholar
  23. 15.
    R. Omnes, Phys. Rev. 146 (1966) 1123.ADSCrossRefGoogle Scholar
  24. 16.
    C. Chandler and H.P. Stapp, J. Math. Phys. 90 (1969) 826.MathSciNetADSCrossRefGoogle Scholar
  25. 17.
    F. Pham, Ann. Inst. Poincaré, Vol. VI, no. 2 (1967) 89.MathSciNetGoogle Scholar
  26. 18.
    D. lagolnitzer and H.P. Stapp, Comm. Math. Phys. 14 (1969) 15.MathSciNetADSCrossRefGoogle Scholar
  27. 19.
    D. lagolnitzer. Lectures in Theoretical Physics, Vol. 11D, ed. by K.T. Mahanthappa and W. E. Brittin, Gordon and Breach, New-York (1969) p. 221.Google Scholar
  28. 20.
    G. Wanders, Nuov. Cim. 14 (1959)168.MathSciNetMATHCrossRefGoogle Scholar
  29. 21.
    D. lagolnitzer. Introduction to S-matrix theory, ADT, Paris (1973), and references 1,2.Google Scholar
  30. 22.
    F. Pham, Hyperfunctions and theoretical physics. Lecture Notes in Mathematics 449, Springer-Verlag, Heidelberg (1975) p. 83.Google Scholar
  31. 23.
    T. Kawai, H.P. Stapp, Pubi. R.I.M.S., Kyoto Univ. 12, Suppl. (1977) p. 155.Google Scholar
  32. 24.
    D. lagolnitzer. Structural Analysis of Collision Amplitudes, ed. by D. lagolnitzer, North-Holland, Amsterdam (1976) p. 295.Google Scholar
  33. 25.
    D. lagolnitzer. Comm. Math. Phys. 63 (1978) 49.MathSciNetADSCrossRefGoogle Scholar
  34. 26.
    D. lagolnitzer, Seminaire Goulaouic-Schwartz, Ecole Polytechnique, Paris 1978–79, p.1Google Scholar
  35. D. lagolnitzer, and Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics 126, Springer Verlag, Heidelberg (1980) 1.Google Scholar
  36. 27.
    M. Sato, T. Kawai, M. Kashiwara, Hyperfunctions and Pseudodifferential Equations, Lecture Notes in Mathematics 287, Springer Verlag, Heidelberg (1973), p. 265.Google Scholar
  37. 28.
    M. Kashiwara, T. Kawai, Comm. Math. Phys. 54 (1977) 129,and references therein to previous works by M. Sato and coworkers.MathSciNetADSCrossRefGoogle Scholar
  38. 29.
    M. Kashiwara, and T. Kawai, Tech. Report R.I.M.S. 293, Kyoto Univ. (1979), andGoogle Scholar
  39. M. Kashiwara, and T. Kawai Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics 126, Springer Verlag, Heidelberg (1980),p.5.Google Scholar
  40. 30.
    D. lagolnitzer. Comm. Math. Phys. 41 (1975) 39.MathSciNetADSCrossRefGoogle Scholar
  41. 31.
    H.P. Stapp, Structural Analysis of Collision Amplitudes, ed. by R. Balian and D. lagolnitzer, North-Holland, Amsterdam (1976),p.191.Google Scholar
  42. 32.
    D. lagolnitzer, Ch. 111 of Ref. 1.Google Scholar
  43. 33.
    M. Kashiwara, T. Kawai, and H.P. Stapp, Comm. Math. Phys. 66 (1979) 95.MathSciNetADSMATHCrossRefGoogle Scholar
  44. 34.
    T. Kawai and H.P. Stapp, in preparation.Google Scholar
  45. 35.
    D. lagolnitzer, H.P. Stapp, Comm. Math. Phys. 57 (1977) 1.MathSciNetADSCrossRefGoogle Scholar
  46. 36.
    D. lagolnitzer. Comm. Math. Phys. 77 (1980) 251.MathSciNetADSCrossRefGoogle Scholar
  47. 37.
    J. Bros, H. Epstein, and V. Glaser, Helv. Phys. Acta 45 (1972) 149.Google Scholar
  48. 38.
    H. Epstein, V. Glaser and D. lagolnitzer, to be published in Comm. Math. Phys. (1981).Google Scholar
  49. 39.
    J. Bros, in this volume.Google Scholar
  50. 40.
    M. Sato, Recent developments in Hyperfunction Theory and its Applications to Physics, Lecture Notes in Physics 39, Springer Verlag, Heidelberg (1975), p. 13.Google Scholar
  51. 41.
    J. Bros, D. lagolnitzer, and D. Pesenti, Dph-T-Saclay preprint no. 81/8 (1981).Google Scholar
  52. 42.
    J. Bros, M. Epstein, and V. Glaser, Nuovo Cim. 31 (1964) 1265.MathSciNetMATHCrossRefGoogle Scholar
  53. 43.
    W. Zimmermann, Nuovo Cim. 21 (1961) 249.MATHCrossRefGoogle Scholar
  54. W. Zimmermann, R. Oehme, Phys. Rev. 121 (1961) 1840.MathSciNetCrossRefGoogle Scholar
  55. 44.
    A. Martin, Scattering Theory: Unitarity, Analyticity and Crossing, Springer Verlag, Heidelberg (1970).Google Scholar
  56. 45.
    J. Bros, Analytic Methods in Mathematical Physics, Gordon and Breach, New York (1970), p.85.Google Scholar
  57. 46.
    D. lagolnitzer, Phys. Rev. D18 (1978) 1275ADSGoogle Scholar
  58. D. lagolnitzer, and Phys. Lett. 76B (1978) 207.ADSGoogle Scholar
  59. 47.
    R.J. Taylor, op. cit in Ref. 12.Google Scholar
  60. 48.
    D. Ruelle, Helv. Phys. Acta. 35 (1962) 147.MathSciNetMATHGoogle Scholar
  61. 49.
    H.P. Stapp, op. cit in Ref. 9.Google Scholar
  62. 50.
    M. Froissart and R.J. Taylor, Phys. Rev. 153 (1967) 1636.ADSMATHCrossRefGoogle Scholar
  63. 51.
    D.I. Olive, Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics 449, Springer Verlag, Heidelberg (1975), p.133.Google Scholar
  64. 52.
    M. Kashiwara, T. Kawai, Pubi. R.I.M.S., Kyoto Univ., 12 Suppl. (1977) 131Google Scholar
  65. M. Kashiwara, T. Kawai, Adv. in Math. 34 (1979) 163, and Ref. 29.MathSciNetMATHCrossRefGoogle Scholar
  66. 53.
    J. Bros and M. Lasalle, Comm. Math. Phys. 43 (1975) 279.MathSciNetADSCrossRefGoogle Scholar
  67. 54.
    F. Pham, Introduction à 1’Etude Topologique des Singularites de Landau, Memorial des Sciences mathematiques, no. 164, Gauthier-Villars, Paris (1967)Google Scholar
  68. 55.
    J.M. Bony, Seminaire Goualouic-Schwartz, Ecole Polytechnique, Paris 1976–77.Google Scholar
  69. 56.
    L. Hörmander, Acta Math. 127 (1972) 79.CrossRefGoogle Scholar
  70. 57.
    M. Kashiwara, P. Schapira, Univ. of Paris-Nord, preprint.Google Scholar
  71. 58.
    J.M. Bony and Y. Laurent, in preparation.Google Scholar
  72. 59.
    M. Kashiwara, T. Kawai, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics 126, Springer Verlag, Heidelberg (1980), p.21.Google Scholar
  73. Y. Laurent, id. p. 77.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. Iagolnitzer
    • 1
  1. 1.DPh-TCEN SaclayGif-sur-YvetteFrance

Personalised recommendations