Geometric Methods in Scattering Theory

Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)


We give an introductory outline of some of the main ideas, concepts, and techniques which are relevant in the geometric, time dependent approach to spectral and scattering theory of Hamiltonian operators in nonrelativistic quantum mechanics. For further details and references we refer to the lecture notes [7] of the Erice summer school 1980, which contain a discussion of various alternative routes, omitted here, and to [4,2,3,10,11,13,19,21].


Scattering Theory Spectral Projection Asymptotic Completeness Stationary Phase Method Spectral Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.O. Amrein, V. Georgescu, Helv. Phys. Acta 46 (1973) 635–658.MathSciNetGoogle Scholar
  2. 2.
    W.O. Amrein, D.B. Pearson, M. Wollenberg, Evanescence of States and Asymptotic Completeness, preprint Univ. of Geneve UGVA-DPT 1980/05–242, 1980.Google Scholar
  3. 3.
    E.B. Davies, Duke Math. J. 47 (1980) 171–185.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    V. Enss, Commun. Math. Phys. 61 (1978) 285–291.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    V. Enss, Ann. Phys. (N.Y.) 119. (1979) 117–132,and.MathSciNetADSMATHCrossRefGoogle Scholar
  6. V. Enss, Addendum, preprint Univ. Bielefeld BI-TP 79/26, 1979, unpublished.Google Scholar
  7. 6.
    V. Enss, Commun. Math. Phys. 65 (1979) 151–165.MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    V. Enss, Geometric Methods in Spectral and Scattering Theory of Schrödinger Operators, to appear in Rigorous Atomic and Molecular Physics, G. Velo and A.S. Wightman eds. Plenum, New York, ca. 1981.Google Scholar
  9. 8.
    V. Enss, Asymptotic Observables on Scattering States, in preparation.Google Scholar
  10. 9.
    V. Enss, B. Simon, Phys. Rev. Lett. 44 (1980) 319–322MathSciNetADSCrossRefGoogle Scholar
  11. and V. Enss, B. Simon, 764; Commun. Math. Phys. 76 (1980) 177–209;MathSciNetADSMATHCrossRefGoogle Scholar
  12. V. Enss, B. Simon, Total Cross Sections in Non-Relativistic Scattering Theory, to appear in Classical, Semiclassical, and Quantum Mechanical Problems in Mathematics, Chemistry, and Physics, K. Gustavson and W.P. Reinhardt eds.. Plenum, New York ca. 1981.Google Scholar
  13. 10.
    J. Ginibre, La Méthode “Dependant du Temps” dans le Problème de la Complêtude Asymptotique, preprint Univ. Paris-Sud, LP TH E 80/10, 1980.Google Scholar
  14. 11.
    E. Mourre, Commun. Math. Phys. 68 (1979) 91–94.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 12.
    D.B. Pearson, Commun. Math. Phys. 40 (1975) 125–146;ADSCrossRefGoogle Scholar
  16. D.B. Pearson, Commun. Math. Phys. 60 (1978) 13–36;ADSMATHCrossRefGoogle Scholar
  17. D.B. Pearson, Contribution in Rigorous Atomic and Molecular Physics, G. Velo and A.S. Wightman eds.. Plenum, New York, ca. 1981.Google Scholar
  18. 13.
    P.A. Perry, Duke Math. J. 47 (1980) 187–193.MathSciNetMATHCrossRefGoogle Scholar
  19. 14.
    P.A. Perry, Propagation of States in Dilation Analytic Potentials and Asymptotic Completeness, preprint Caltech 1980.Google Scholar
  20. 15.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, I. Functional Analysis, Academic Press, New York 1972.MATHGoogle Scholar
  21. 16.
    M. Reed, B. Simon, II. Fourier Analysis, Self-Adjointness. Academic Press, New York 1975.MATHGoogle Scholar
  22. 17.
    M. Reed, B. Simon, III. Scattering Theory, Academic Press, New York 1979.MATHGoogle Scholar
  23. 18.
    D. Ruelle, Nuovo Cimento 61A (1969) 655–662.MathSciNetADSGoogle Scholar
  24. 19.
    B. Simon, Duke Math. J. 46 (1979) 119–168.MathSciNetMATHCrossRefGoogle Scholar
  25. 20.
    K.B. Sinha, Ann. Inst. Henri Poincaré 26 (1977) 263–277.Google Scholar
  26. 21.
    D.R. Yafaev, On the Proof of Enss of Asymptotic Completeness in Potential Scattering Theory, preprint LOMI E-2–79, 1979.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • V. Enss
    • 1
  1. 1.Inst. f. MathematikRuhr-Universität BochumBochum 1Deutschland

Personalised recommendations