Advertisement

Extended Kaluza-Klein Unified Gauge Theories

  • J. W. Moffat
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)

Abstract

Much progress has been made in unifying strong, weak and electromagnetic interactions using gauge theories [1–4]. However the unification of these interactions with space-time still remains to be understood. One difficulty has been the ongoing problem of how to satisfactorily combine gravity and quantum theory to produce a finite perturbation theory of gravitational interactions. A complete unification of all the fields of nature should occur at the Planck energy \(\rm (\bar{h} c^5/G)^{1/2}\approx 10^{19} \, GeV\), where gravitation becomes as important at short distances as the other forces of nature.

Keywords

Complete Unification Planck Energy Local Gauge Symmetry Unify Gauge Vector Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Salam, in Proceedings of the Eighth Nobel Symposium on Elementary Particle Theory, Relativistic Groups, and Analyticity, Stockholm, Sweden, 1968, edited by N. Svartholm (Almquist and Wiksell, Stockholm, 1968).Google Scholar
  2. 2.
    S. Weinberg, Phys. Lett. 19 (1967) 1264.CrossRefGoogle Scholar
  3. 3.
    H. Georgi and S. Glashow, Phys. Rev. Lett. 32 (1974) 438.ADSCrossRefGoogle Scholar
  4. 4.
    H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93 (1975) 193.MathSciNetADSCrossRefGoogle Scholar
  5. H. Georgi, in Particles and Fields, G.E. Carlson (ed.) (AIP-N.Y. 1975).Google Scholar
  6. H. Georgi and D.V. Nanopoulos, Phys. Lett. B155 (1979) 392Google Scholar
  7. H. Georgi and D.V. Nanopoulos Nucl. Phys. B155 (1979) 52.ADSCrossRefGoogle Scholar
  8. 5.
    Th. Kaluza, Sitzungsber. Press. Akad. Wiss. Berlin, Math.-Phys. K1., (1921) 966.Google Scholar
  9. O. Klein, Z. Phys. 37 (1926) 895ADSCrossRefGoogle Scholar
  10. O. Klein Arkiv. Mat. Astron. Fysik B 34A (1946)Google Scholar
  11. O. Klein Helv. Phys. Acta Suppl. IV (1956) 58.Google Scholar
  12. 6.
    Y.M. Cho and P.G.O. Freund, Phys. Rev. D12 (1975) 1711.MathSciNetADSGoogle Scholar
  13. 7.
    J. Scherk and J.H. Schwarz, Nucl. Phys. B135 (1979) 61.MathSciNetADSCrossRefGoogle Scholar
  14. 8.
    E. Cremmer and B. Julia, Phys. Lett. 57B (1975) 463.CrossRefGoogle Scholar
  15. 9.
    E. Witten, University of Princeton Report (1981).Google Scholar
  16. 10.
    J.W. Moffat, University of Toronto Reports, May 1981.Google Scholar
  17. 11.
    J.W. Moffat, Ann. Inst. Henri Poincaré 34 (1981) 85.MathSciNetADSGoogle Scholar
  18. 12.
    J.W. Moffat, Phys. Rev. D19 (1979) 3554MathSciNetADSMATHGoogle Scholar
  19. J.W. Moffat Phys. Rev D19 (1979) 3562.MathSciNetADSGoogle Scholar
  20. 13.
    J.W. Moffat, J. Math. Phys. 21 (1980) 1798.ADSMATHCrossRefGoogle Scholar
  21. 14.
    J.W. Moffat, Can. J. Phys. 59 (1981) 283.MathSciNetADSMATHCrossRefGoogle Scholar
  22. 15.
    B. Mann, J.W. Moffat and J.G. Taylor, Phys. Lett.97B (1980) 73.CrossRefGoogle Scholar
  23. 16.
    G. Kunstatter and R. Yates, J. Phys. A, Math. Gen. 14 (1981) 847.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. W. Moffat
    • 1
  1. 1.Dept. of PhysicsUniv. of TorontoTorontoCanada

Personalised recommendations