Geometric Aspects of Quantized Gauge Theories

  • M. E. Mayer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)


These notes represent the second two lectures delivered at the school. If they differ somewhat from the preliminary notes handed out before the lectures and from the material presented in the lectures themselves, this is the result of constructive feedback I have received during the lectures from several participants, to whom I express my indebtedness here. The lectures covered essentially two major topics: the geometric aspects of canonical quantization with indefinite metric, in particular, the meaning of gauge-fixing and the relation of “ghosts” to geometry, and quantization in terms of holonomy operators, an outgrowth of Mandelstam’s formulation of gauge theory without potentials, but involving path-ordered integrals.


Gauge Theory Gauge Transformation Principal Bundle Holonomy Group Lattice Gauge Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Feynman, Acta Physica Polonica 24 (1963) 697.MathSciNetADSGoogle Scholar
  2. 2.
    S. Mandelstam, Ann. Phys. (NY) 19 (1962) 1, 25Google Scholar
  3. S. Mandelstam, Phys. Rev. 175 (1968) 1580,1604.ADSGoogle Scholar
  4. 3.
    I. Biaγynicki-Birula, Bull. Acad. Polon. Sci. (Phys. Astr.) 11 (1963) 135.Google Scholar
  5. 4.
    B.S. DeWitt, Phys. Rev. 160 (1967) 1113ADSMATHCrossRefGoogle Scholar
  6. B.S. DeWitt, Phys. Rev. 162 (1967) 1195, 1239.ADSGoogle Scholar
  7. 5.
    L.D. Faddeev and V.S. Popov, Phys. Lett. 25B (1967) 29, and ITP Preprint Kiev, 1967.ADSGoogle Scholar
  8. 6.
    F. Strocchi and A.S. Wightman, J. Math. Phys. 15 (1974) 2198; F. Strocchi, numerous preprints and articles.MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    E. Abers and B.W. Lee, Phys. Reports 9 (1974) 1;ADSCrossRefGoogle Scholar
  10. G. ‘t Hooft and M. Veltman, Diagrammar, CERN Report 73–9, Geneva, 1973.Google Scholar
  11. 8.
    A.A. Slavnov and L.D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei (Introduction to the quantum theory of gauge fields), “Nauka”, Moscow, 1978; English Transl. Addison-Wesley, 1980.Google Scholar
  12. 9.
    C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys. 42 (1975) 127MathSciNetADSCrossRefGoogle Scholar
  13. C. Becchi, A. Rouet, and R. Stora, Ann. Phys. (NY) 98 (1976) 287; lectures in “Renormalization Theory”MathSciNetADSCrossRefGoogle Scholar
  14. G. Velo and A.S. Wightman, Eds. (Erice, 1975), Reidel, Amsterdam-Boston, 1976.Google Scholar
  15. 10.
    J. Thierry-Mieg, These de Doctorat, Orsay, 1978;Google Scholar
  16. J. Thierry-Mieg, J. Math. Phys. 21 (1980) 2834MathSciNetADSCrossRefGoogle Scholar
  17. Y. Ne’eman and J. Thierry-Mieg, Ann. Phys. (NY) 123 (1979) 247MathSciNetADSMATHCrossRefGoogle Scholar
  18. Y. Ne’eman and J. Thierry-Mieg, Ann. Isr. Phys. Soc. vol. 3, 1979.Google Scholar
  19. 11.
    F. Strocchi, Proc. of Nijmegen Group Theory Conference, Springer Lect. Notes in Physics, 1977Google Scholar
  20. F. Strocchi, Commun. Math. Phys. 56 (1977) 57MathSciNetADSMATHCrossRefGoogle Scholar
  21. F. Strocchi, Phys. Lett. 62B (1976) 60MathSciNetADSGoogle Scholar
  22. F. Strocchi, Phys. Rev. D17 (1978) 2010.MathSciNetADSGoogle Scholar
  23. 12.
    R. Jackiw, Rev. Mod. Phys. 52 (1980) 661.MathSciNetADSCrossRefGoogle Scholar
  24. 13.
    T. Kugo and I. Ojima, Suppl. Prog. Theor. Phys. 66 1979, contains a complete bibliography to their previous work, as well as the papers of Nakanishi, Lautrup, Ferrari, Picasso and Strocchi (and many others) relevant to this section.Google Scholar
  25. 14.
    I. Ojima, Z. Physik C5 (1980) 227.MathSciNetADSGoogle Scholar
  26. S. Mandelstam, 1968 papers, Ref.[2].Google Scholar
  27. 15.
    M.E. Mayer, in Lect. Notes in Mathematics, vol. 570, Springer Verlag, 1977.Google Scholar
  28. 16.
    K. Wilson, Phys. Rev. D10 (1974) 2445ADSGoogle Scholar
  29. K. Osterwalder and E. Seiler, Ann. Phys. (NY) 110 (1978) 440.MathSciNetADSCrossRefGoogle Scholar
  30. J. Fröhlich (with D. Brydges and E. Seiler), Lectures on Gauge Theory, IHES Preprint, 1979.Google Scholar
  31. See also J. Kogut, Rev. Mod. Phys. 51 (1979) 659, with an extensive bibliography on lattice gauge theory at a more “physical” level.MathSciNetADSCrossRefGoogle Scholar
  32. 17.
    J. Gervais and A. Neveu, Phys. Lett. 88B (1979) 255.MathSciNetADSGoogle Scholar
  33. J. Gervais and A. Neveu, Nucl. Phys. B153 (1979) 445ADSCrossRefGoogle Scholar
  34. E. Corrigan and B. Hasslacher, Phys. Lett. 81B (1979) 181 (and private communication by E. Corrigan).ADSGoogle Scholar
  35. Y. Nambu, Phys. Lett. 33 (1979) 372.MathSciNetGoogle Scholar
  36. C.N. Yang, Phys. Rev. Lett. 33 (1974) 445.MathSciNetADSCrossRefGoogle Scholar
  37. A.M. Polyakov, Aspen Preprint 1979 (Nucl. Phys. 1980), Phys. Lett. 82B.Google Scholar
  38. A.A. Migdal, Ann. Phys. 126 (1980) 279.MathSciNetADSCrossRefGoogle Scholar
  39. I. Ya Aref’eva, Lett. Math. Phys. 3 (1979) 241MathSciNetCrossRefGoogle Scholar
  40. I. Ya Aref’eva, Theor. Math. Phys. 43 (1980) 111.MATHGoogle Scholar
  41. Yu. M. Makeenko and A.A. Migdal, Yad. Fiz. 32 (1980) (Sov. J. Nucl. Phys. 32 (1981).Google Scholar
  42. 18.
    Reviews by Fröhlich and Kogut, Ref.[16].Google Scholar
  43. 19.
    D. Buchholz, Lecture at Lausanne Conf. 1979, Lect. Notes in Physics, vol. 116, 1979Google Scholar
  44. D. Buchholz and K. Fredenhagen, Nucl. Phys. B154 (1979) 226–238.ADSCrossRefGoogle Scholar
  45. Oral accounts of Buchholz’ results by R. Haag (1979) and D. Kastler (1988/81).Google Scholar
  46. 20.
    B. Lautrup, Mat. Fys. Medd. Dan. Vid. Sels Jc. 35 (1967) 11.Google Scholar
  47. N. Nakanishi, Prog. Theor. Phys. 35 (1966) 1111.ADSCrossRefGoogle Scholar
  48. N. Nakanishi, Prog. Theor. Phys. 49 (1973) 640. Suppl. no. 51 (1972).ADSCrossRefGoogle Scholar
  49. 21.
    C. Cronström, Quantization of Nonabelian Gauge Theory I, Gauge Invariant Hamiltonian Formulation, Preprint HUTFT 81–1, Helsinki, January, 1981.Google Scholar
  50. 22.
    F. Berezin, Metod vtorichnogo kvantovaniya, Nauka, Moscow 1965 (The Method of Second Quantization, Academic Press, NY, 1968). Integration over Grassmann variables has been discussed a long time ago by Schwinger.Google Scholar
  51. 23.
    H. Loos, J. Math. Phys. 8 (1967) 2114ADSMATHCrossRefGoogle Scholar
  52. H. Loos, J. Math. Phys. Rev. 188 (1969) 2342.MathSciNetADSCrossRefGoogle Scholar
  53. 24.
    J. D. Dollard and C. N. Friedman, Product Integration, see also Appendix II by P. Masani; Encyclopedia of Mathematics, vol. 10, Addison-Wesley, Reading, MA, 1979.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • M. E. Mayer
    • 1
  1. 1.Dept. of PhysicsUniv. of CaliforniaIrvineUSA

Personalised recommendations