Advertisement

The Geometry of Symmetry Breaking in Gauge Theories

  • M. E. Mayer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)

Abstract

This together with Sections 3 and 6 of the joint contribution with A. Trautman (this volume, pp. 433 to be referred to as Mayer-Trautman) constitutes a summary of the first two lectures. Much of the material is available elsewhere [1], so only results and some open questions are discussed. The subject matter of the second two lectures is treated in the following contribution (pp. 491).

Keywords

Gauge Theory Higgs Boson Symmetry Breaking Base Space Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Mayer, in Proc. of the Workshop on Gauge Theories, Mexico City, 1980, Hadronic J. 4 (1981) 108–152.MathSciNetMATHGoogle Scholar
  2. 2.
    L. O’Raifeartaigh, Hidden Gauge Symmetry, Rep. Prog. Phys. 42 (1979) 159–223.ADSCrossRefGoogle Scholar
  3. 3.
    L. Michel and L. Radicati, Ann. Phys. NY 66 (1971) 758MathSciNetADSCrossRefGoogle Scholar
  4. L. Michel and L. Radicati, Ann. Inst. H. Poincare 18 (1973) 185, and further references there.MathSciNetMATHGoogle Scholar
  5. 4.
    E Witten, Search for a Realistic Kaluza-Klein Theory, Princeton Preprint, 1981.Google Scholar
  6. 5.
    C.W. Misner, Phys. Rev. D18 (1978) 4510.MathSciNetADSGoogle Scholar
  7. 6.
    M.E. Mayer, Ann. Israel Phys. Soc. 3 (1979) 80–99.Google Scholar
  8. 7.
    E. Witten, Phys. Rev. Lett. 38 (1977) 121.ADSCrossRefGoogle Scholar
  9. 8.
    N. Manton, Nucl. Phys. B158 (1979) 141–153MathSciNetADSCrossRefGoogle Scholar
  10. W. Mecklenburg, J. Phys. G6 (1980) 1049.ADSGoogle Scholar
  11. 9.
    M.E. Mayer, in Math. Probl. Theor. Phys. (Lausanne 1979), Lect. Notes Phys. Springer, vol. 116 (1980) p. 291.ADSCrossRefGoogle Scholar
  12. 10.
    I. Ya Aref’eva and A.A. Slavnov, Theor. Mathem. Phys. 44 (1980) 3–16 (Engl. Transl. 1981).Google Scholar
  13. 11.
    J. Eells Jr. and M. Lemaire, A Report on Harmonic Maps, Bull. London Math. Soc. 10 (1978) 1, and references to earlier work there.MathSciNetMATHCrossRefGoogle Scholar
  14. D.D. Bleecker, Gauge Theories and Variational Principles, Addison-Wesley, to be published.Google Scholar

Additional references on invariant connections

  1. P.G. Bergmann and E. Flaherty, J. Math. Phys. 19 (1 978) 212.ADSCrossRefGoogle Scholar
  2. P. Forgács and N.S. Manton, Commun. Math. Phys. 72 (1980) 15.ADSCrossRefGoogle Scholar
  3. J. Harnad, S. Shnider and L. Vinet, J. Math. Phys. 21 (1980) 2719.MathSciNetADSMATHCrossRefGoogle Scholar
  4. R. Jackiw and N.S. Manton, Ann. Phys. (NY), to appear.Google Scholar
  5. R. Jackiw, 1980 Schladming Lectures (Acta Phys. Austriaca, Suppl. XXII)Google Scholar
  6. J. Madore, Commun. Math. Phys.56 (1977) 115.MathSciNetADSMATHCrossRefGoogle Scholar
  7. A.S. Schwarz, Commun. Math. Phys. 56 (1977) 79–86.ADSMATHCrossRefGoogle Scholar
  8. A. Trautman, Bull. Acad. Polon. Sci. Ser. Phys. Astron 27 (1979) 7, and this volume.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • M. E. Mayer
    • 1
  1. 1.Department of PhysicsUniv. of CaliforniaIrvineUSA

Personalised recommendations