Advertisement

Geometrical Aspects of Gauge Configurations

  • A. Trautman
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 23/1981)

Summary

These notes contain an informal description of the geometrical foundations of gauge theories. The theory of gravitation is compared to theories of the Yang-Mills type. Space-time symmetries of gauge configurations are defined in terms of automorphisms of principal bundles. Symmetry breaking is related to restricting the structure group of the bundle. The Liénard-Wiechert solution of the Yang-Mills equations is discussed in some detail. An approximate solution of the Yang-Mills equations is shown to allow for the phenomenon of radiation of the colour charge by a classical gluon field.

Keywords

Gauge Theory Gravitational Wave Principal Bundle Linear Connection Lens Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.T. Wu and C.N. Yang, Phys. Rev. D12 (1975) 3845.MathSciNetADSGoogle Scholar
  2. 2.
    A. Trautman, Rep. Math. Phys. (Toruń) 1 (1970) 29MathSciNetADSMATHCrossRefGoogle Scholar
  3. A. Trautman, Rep. Math. Phys. (Toruń) 10 (1976) 297.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 3.
    W. Drechsler and M.E. Mayer, “Fiber Bundle Techniques in Gauge Theories”, Lecture Notes in Physics No. 67, Springer-Verlag, Berlin (1977).Google Scholar
  5. 4.
    M.F. Atiyah, Geometrical Aspects of Gauge Theories, Proc. Intern. Congress Math., vol.11, pp. 881–885, Helsinki (1978).Google Scholar
  6. 5.
    A. Jaffe, Introduction to Gauge Theories, ibid, pp. 905–916.Google Scholar
  7. 6.
    R. Hermann, “Yang-Mills, Kaluza-Klein and the Einstein Program”, Math. Sci. Press, Brookline, Massachussetts (1978).MATHGoogle Scholar
  8. 7.
    M. Daniel and C.M. Viallet, Rev. Mod. Phys. 52 (1980) 175.MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    G.H. Thomas, Rev. Nuovo Cimento 3:4 (1980) 1–119.CrossRefGoogle Scholar
  10. 9.
    A. Trautman, Fiber Bundles, Gauge Fields, and Gravitation, in “General Relativity and Gravitation”, vol. 1, pp.287–308, ed. by A. Held, Plenum Press, New York (1980).Google Scholar
  11. 10.
    W. Thirring, “A Course in Mathematical Physics”, vol. II, Springer-Verlag, Wien-New York (1979).MATHGoogle Scholar
  12. B.S. DeWitt in “Relativité, Groupes et Topologie”, p.725, edited by C. DeWitt and B.S. DeWitt, Gordon and Breach, New York (1964).Google Scholar
  13. 12.
    R. Kerner, Ann. Inst. Henri Poincaré 9 (1968) 143.MathSciNetGoogle Scholar
  14. 13.
    Y.M. Cho, J. Math. Phys. 16 (1975) 2029ADSCrossRefGoogle Scholar
  15. Y.M. Cho and P.G.O. Freund, Phys. Rev. D120 (1975) 1711.MathSciNetADSGoogle Scholar
  16. 14.
    W. Kopczyński, Acta Phys. Polon. B10 (1979) 365Google Scholar
  17. W. Kopczyński, in “Differential Geometric Methods in Mathematical Physics” p. 462, ed. by P. Garcia et al.. Lecture Notes in Mathematics No. 836, Springer-Verlag, Berlin (1980).Google Scholar
  18. 15.
    A. Trautman, Lecture at Convegno di Relativita, Rome, 1980, to be published by the Accademia dei Lincei.Google Scholar
  19. 16.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol.1, Interscience-Wiley, New York (1963).MATHGoogle Scholar
  20. 17.
    A. Trautman, in “Geometrical and Topological Methods in Gauge Theories”, edited by J. Harnad and S. Shnider, Lecture Notes in Physics No. 129, Springer-Verlag, Berlin (1980).Google Scholar
  21. 18.
    J. Madore, Commun. Math. Phys. 56 (1977) 115.MathSciNetADSMATHCrossRefGoogle Scholar
  22. 19.
    A. Trautman, Intern. J. Theor. Phys. 16 (1977) 561.CrossRefGoogle Scholar
  23. 20.
    S. Coleman, Phys. Lett. B70 (1977) 59.ADSGoogle Scholar
  24. 21.
    A. Trautman, Bull. Acad. Polon. Sci., Ser. Sci. Phys. et Astron. 27 (1979) 7.MathSciNetMATHGoogle Scholar
  25. 22.
    J.P. Harnad et al., Phys. Lett. B76 (1978) 589.MathSciNetADSGoogle Scholar
  26. J.P. Harnad et al., J. Math. Phys. 20 (1979) 931.MathSciNetADSMATHCrossRefGoogle Scholar
  27. 23.
    W. Thirring, Acta Phys. Austriaca, Suppl. XIX (1978) 439.ADSGoogle Scholar
  28. 24.
    R.P. Wallner, Notes on Gauge Theory and Gravitation, UW Th Ph-81–3 preprint.Google Scholar
  29. 25.
    A. Trautman, J. Phys. An A13 (1980) L1.MathSciNetADSCrossRefGoogle Scholar
  30. 26.
    I. Robinson and A. Trautman, Phys. Rev. Lett. 4 (1960) 431.ADSMATHCrossRefGoogle Scholar
  31. 27.
    H. Arodź, Phys. Lett. 78B (1978) 129.ADSGoogle Scholar
  32. 28.
    R. Roskies, Phys. Rev. D15 (1977) 722.ADSGoogle Scholar
  33. 29.
    P. Von Freud, Ann. Math. 40 (1939) 417.MathSciNetCrossRefGoogle Scholar
  34. 30.
    A. Held, E.T. Newman and R. Posadas, J. Math. Phys. 11 (1970) 3145.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Trautman
    • 1
  1. 1.Inst, of Theoretical PhysicsWarsaw Univ.WarsawPoland

Personalised recommendations