Microchemical Characterization of Aerosols

  • Tihomir Novakov


This paper outlines a methodology to quantitatively differentiate classes of ambient particulate carbon. The analysis of results provides an assessment of the amounts of primary and secondary carbonaceous material, as well as the amounts of total carbon, organic carbon, and black or graphitic carbon. Two experimental approaches have been used in this study. The first involves a systematic comparison of average ambient black carbon and total carbon ratios with those of sources. The second approach relies on the evolved gas (CO2) thermal analysis method as a means for “fingerprinting” the organic and black carbon components of source and ambient particles.


Black Carbon Total Carbon Ozone Concentration Carbonaceous Aerosol Thermal Analysis Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a.
    H. Rosen, A.D.A. Hansen, L. Gundel, and T. Novakov, “Identification of the optically absorbing component of urban aerosols”, Appl. Opt. 17, 3859 (1978).CrossRefGoogle Scholar
  2. b.
    Z. Yasa, N. Amer, H. Rosen, A.D.A. Hansen, and T. Novakov, “Photo-acoustic investigation of urban aerosol particles”, Appl. Opt. 18, 2528 (1978).CrossRefGoogle Scholar
  3. 2.
    P.K. Mueller, R.W. Mosley, and L.B. Pierce, “Carbonate and noncarbonated carbon in atmospheric particulates”, in Proceedings, Second International Clean Air Congress (New York, Academic, 1971).Google Scholar
  4. 3 a.
    R. Weiss et al., “Application of directly measured aerosol radiative roperties to climate models”. Proceedings, Symposium on Radiation in the Atmosphere, Garmisch-Partenkirchen, FRG, p. 469 (1976).Google Scholar
  5. b.
    R.E. Weiss, A.P. Waggoner, R. Charlson, D.L. Thorsell, J.S. Hall, and L.A. Riley, “Studies of the optical, physical, and chemical properties of light absorbing aerosols”, Proceedings, Conference on Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Laborator Report LBL-9037, p. 257 (1979).Google Scholar
  6. 4.
    A.D.A. Hansen et al., Lawrence Berkeley Laboratory, unpublished results.Google Scholar
  7. 5.
    H. Malissa, H. Puxbaum, and E. Pell, “Zur simultanen relativkondukto-metrischen Kohlenstoff- und Schwefelbestimmung in Stäuben”, Z. anal. Chem. 282, 109 (1976).CrossRefGoogle Scholar
  8. 6.
    R.L. Dod, H. Rosen, and T. Novakov, “Optico-thermal analysis of the car bonaceous fraction of aerosol particles”. Atmospheric Aerosol Researc Annual Report 1977–1978, Lawrence Berkeley Laboratory Report LBL-8696, p. 2 (1979).Google Scholar
  9. 7.
    H. Rosen, A.D.A. Hansen, R.L. Dod, and T. Novakov, “Soot in urban atmos pheres: Determination by an optical absorption technique”. Science 208, 741 (1980).CrossRefGoogle Scholar
  10. 8.
    L. Gundel et al., “Application of selective solvent extraction and thermal analysis to ambient and source-enriched aerosols”. Atmospheric Aerosol Research Annual Report 1979, Lawrence Berkeley Laboratory Report LBL-10735, p. 8 (1980)Google Scholar
  11. 9. a.
    B.R. Appel, E.M. Hoffer, M. Haik, S.M. Wall, E.L. Kothny, R.L. Knights, and J.J. Wesolowski, Characterization of Organic Particulate Matter, Final Report to California Air Resources Board, Contract No. ARB 5–682 (1977).Google Scholar
  12. b.
    B.R. Appel, E.M. Hoffer, E.L. Kothny, S.M. Wall, M. Haik, and R.L. Knights, “Analysis of carbonaceous material in southern California atmospheric aerosols”. Environ. Sci. Technol. 13, 98 (1979).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • Tihomir Novakov
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations