Advertisement

Microchemical Reactions in Nerve Impulse Transmission

  • Eberhard Neumann
Conference paper

Abstract

The electrical signals in biological cells are generated in micro-reaction spaces of the cell membranes. The bioelectric signals and other bioelectric potential changes of nerve and muscle cells are caused by cross-membrane ion flows; and the most extensively studied ion flow gating system is the acetylcholine system. Basic features of elemental bioelectric signals are shown to be understandable in terms of recent relaxation kinetic data on isolated acetylcholine receptor and acetylcholinesterase. The conclusions from electrophysiological and physical chemical investigations can be summarized in a flow scheme for an essentially sequential processing of acetylcholine by receptor and esterase. The data of the acetylcholine system reveal striking similarities to basic features of the Na+ ion gating system of axonal membranes of nerve and muscle cells. For example, the conducting conformation of both the acetylcholine receptor-channel and the Na+-channel are of transient nature, they are intrinsically metastable compared to the thermodynamically stable inactivated (desensitized) states.

Keywords

Bimolecular Reaction Equilibrium Dissociation Constant Excitable Membrane Reaction Space Association Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Neumann, In Balaban, M. (Ed.) Molecular Mechanisms of Biological Recognition. Elsevier, Amsterdam, 1979, pp. 449–63.Google Scholar
  2. 2.
    P.L. Dorogi and E. Neumann. Proc. Natl. Acad. USA, 77.Google Scholar
  3. 3.
    D. Nachmansohn. Chemical and Molecular Basis of Nerve Activity. Academic Press, New York, 1959, pp. 235.Google Scholar
  4. 4.
    E. Neumann, T.L. Rosenberry, and H.W. Chang, In A. Karlin, V.M. Tennyson, and H.J. Vogel. (Eds.) Neuronal Information Transfer. Academic Press, New York, 1978, pp. 183–210.Google Scholar
  5. 5.
    P.W. Gage. Physiol. Rev., 56, 177–247 (1976).Google Scholar
  6. 6.
    P.W. Gage and R.N. McBurney. J. Physiol., Lond., 244, 385–407 (1975).Google Scholar
  7. 7.
    Ch.F. Stevens. Cold Spring Harbor Symp. Quant. Biol., 40, 169–173 (1976).Google Scholar
  8. 8.
    T.L. Rosenberry. Biophys. J., 26, 263–289 (1979).CrossRefGoogle Scholar
  9. 9.
    R.Z. Sheridan and H.A. Lester. J. Gen. Physiol., 70, 187–219 (1977).Google Scholar
  10. 10.
    E. Neumann and J. Bernhardt. Ann. Rev. Biochem., 46, 117–41 (1977).CrossRefGoogle Scholar
  11. 11.
    B. Katz and R. Miledi. J. Physiol., Lond., 231, 549–74 (1973).Google Scholar
  12. 12.
    E. Neher and B. Sakmann. Proc. Natl. Acad. Sci. 72, 2140–45 (1975).CrossRefGoogle Scholar
  13. 13.
    Ch.F. Stevens. Ann. Rev. Physiol., 42, 643–53 (1980).CrossRefGoogle Scholar
  14. 14.
    B. Katz and S. Thesleff. J. Physiol., Lond., 138, 63–80 (1957).Google Scholar
  15. 15.
    H.P. Rang and J.M. Ritter. Mol. Pharmacol., 6, 357–382 (1970).Google Scholar
  16. 16.
    G.E. DeMotta and J. del Castillo. Nature, 270, 178–180 (1977).CrossRefGoogle Scholar
  17. 17.
    A. Takeuchi and N. Takeuchi. Adv. in Biophys., 3, 45–95 (1972).Google Scholar
  18. 18.
    P.W. Gage and D. van Helden. J. Physiol., Lond., 288, 509–28 (1979).Google Scholar
  19. 19.
    K.L. Magleby and M.M. Weinstock. J. Physiol. Lond., 299, 203–18 (1980).Google Scholar
  20. 20.
    W.L. Nastuk and R.L. Parsons. J. Gen. Physiol., 56, 218–49 (1970).CrossRefGoogle Scholar
  21. 21.
    A.A. Manthey. J. Membrane Biol., 9, 319–40 (1972).CrossRefGoogle Scholar
  22. 22.
    J.F. Fiekers, P.M. Spannbauer, B. Scubon-Mulieri and R.L. Parsons. J. Gen. Physiol., 75, 511–529 (1980).CrossRefGoogle Scholar
  23. 23.
    M. Eigen. Nobel Symp., 5, 333–367 (1967).Google Scholar
  24. 24.
    E. Neumann and H.W. Chang. Proc. Natl. Acad. Sci. USA, 73, 3994–98 (1976).CrossRefGoogle Scholar
  25. 25.
    T.L. Rosenberry and E. Neumann. Biochemistry, 16, 3870–78 (1977). 77CrossRefGoogle Scholar
  26. 26.
    H.-J. Nolte, T.L. Rosenberry and E. Neumann. Biochemistry, 19, 3705–11, (1980).CrossRefGoogle Scholar
  27. 27.
    K.S. Pitzer. Acc. Chem. Res. 10, 371–77 (1977).CrossRefGoogle Scholar
  28. 28.
    H.-W. Chang and E. Bock. Biochemistry 16, 4513–20 (1977).CrossRefGoogle Scholar
  29. 29.
    B.A. Suarez-Isla and F. Hucho. FEBS Lett., 75, 65–69 (1977).CrossRefGoogle Scholar
  30. 30.
    S.L. Hamilton, M. McLaughlin and A. Karlin. Biochemistry 18, 155–163 (1979).CrossRefGoogle Scholar
  31. 31.
    S.L. Hamilton, M. McLaughlin and A. Karlin. Biochem. Biophys. Res. Commun., 79, 692; (1977).CrossRefGoogle Scholar
  32. 32.
    H.-W. Chang and E. Bock. Biochemistry, 18, 172–79 (1979).CrossRefGoogle Scholar
  33. 33.
    M.E. Eldefrawi, A.T. Eldefrawi, L.A. Penfield, R.D. O’Brien and E.van Campen. Life Sciences, 16, 925–36 (1975).CrossRefGoogle Scholar
  34. 34.
    H.-W. Chang and E. Neumann. Proc. Natl. Acad. Sci. USA, 73, 3364–68 (1976).CrossRefGoogle Scholar
  35. 35.
    H. Rübsamen, G.P. Hess, A.T. Eldefrawi and M.E. Eldefrawi. Biochem. Biophys. Res. Commun., 68, 56–63 (1976).CrossRefGoogle Scholar
  36. 36.
    M.A. Raftery, R.L. Vandlen, K.L. Reed and T. Lee. Cold Spring Harbor Symp. Quant. Biol., 40, 193–202 (1976).Google Scholar
  37. 37.
    F.J. Barrantes. J. Mol. Biol., 124, 1–26 (1978).CrossRefGoogle Scholar
  38. 38.
    R. JUrss, H. Prinz and A. Maelicke. Proc. Natl. Acad. Sci. USA, 76, 1064–68 (1979).CrossRefGoogle Scholar
  39. 39.
    A. Karlin, C.L. Weill, M.G. McNamee and R. Valderrama. Cold Spring Harbor Symp. Quant. Biol., 40, 203–210 (1976).Google Scholar
  40. 40.
    E. Neumann, A. Katchalsky and D. Nachmansohn. Proc. Natl. Acad. Sci., USA, 70, 727–31 (1973).CrossRefGoogle Scholar
  41. 41.
    H. Sugiyama and J.-P. Changeux. Eur. J. Biochem., 55, 505–15 (1975).CrossRefGoogle Scholar
  42. 42.
    J. Bernhardt and E. Neumann. Proc. Natl. Acad. Sci. USA, 75, 3756–60 (1978).CrossRefGoogle Scholar
  43. 43.
    J.E. Bulger and G.P. Hess. Biochem. Biophys. Res. Commun., 54, 677–84 (1973).CrossRefGoogle Scholar
  44. 44.
    J.E. Bulger, J.L. Fu, E.F. Hindy, R.L. Silberstein and G.P. Hess. Biochemistry, 16, 684–692 (1977).CrossRefGoogle Scholar
  45. 45.
    V.N. Damle, M. McLaughlin and A. Karlin. Biochem. Biophys. Res. Commun. 84, 845–51 (1978).CrossRefGoogle Scholar
  46. 46.
    A.M. Delegeane and M.G. McNamee, Biochemistry, 19, 890–95 (1980).CrossRefGoogle Scholar
  47. 47.
    H.P. Zingsheim, D.-Ch. Neugebauer, F.J. Barrantes and J. Frank. Proc. Natl. Acad. Sci. USA, 77, 952–56 (1980).CrossRefGoogle Scholar
  48. 48.
    J.A. Reynolds and A. Karlin. Biochemistry. 17, 2035–38 (1978).CrossRefGoogle Scholar
  49. 49.
    L.P. Wennogle and J.P. Changeux. Eur. J. Biochem., 106, 381–93 (1980).CrossRefGoogle Scholar
  50. 50.
    D. Nachmansohn and E. Neumann. Chemical and Molecular Basis of Nerve Activity. Rev. Academic Press, New York, 1975, pp. 403.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • Eberhard Neumann
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations