Microscale Analysis of Biomolecules by Time Resolved Laser Spectroscopy

  • Rudolf Rigler
Conference paper


Principles and applications of techniques for the study of dynamic properties of biomolecules in the time range 10−12 — l02 sec are presented. They are based on the spectroscopic properties of laser radiation permitting extreme time and spectral resolution as well as sensitivity of detection. In this context instruments were developed in our laboratory for the measurement of fluorescence anisotropy decay, fluorescence correlations, fluorescence photobleaching recovery as well as dynamic laser light scattering. From the analysis of these spectroscopic properties information about the dynamics of the molecular architecture and the solution structure of biomolecules as well as on their interactions can be obtained.


Autocorrelation Function Rotational Diffusion Fluorescence Correlation Spectroscopy Translational Diffusion Autocorrelation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.J. Chuang and K.B. Eisenthal. (1972) J. Chem. Phys. 57, 5094.CrossRefGoogle Scholar
  2. 2.
    G.G. Belford, R.L. Belford and G. Weber. (1972) Proc. Natl. Acad. Sci.USA 59, 1392.CrossRefGoogle Scholar
  3. 3.
    M. Ehrenberg and R. Rigler. (1972) Chem. Phys. Lett. 14, 539.CrossRefGoogle Scholar
  4. 4.
    R. Rigler and M. Ehrenberg. (1973) Quart. Rev. Biophys. 6, 139.CrossRefGoogle Scholar
  5. 5.
    Ph. Wahl. (1975) Chem. Phys. 7, 220.CrossRefGoogle Scholar
  6. 6.
    S.C. Harvey. (1979) Biopolymers 18, 1081.CrossRefGoogle Scholar
  7. 7.
    W.A. Wegener, R.M. Dowben and V.J. Koester. (1980) J.Chem.Phys. 73, 4086.CrossRefGoogle Scholar
  8. 8.
    J. Yguerabide, H.F. Epstein and L. Stryer. (1970) J. Mol. Biol. 51, 573.CrossRefGoogle Scholar
  9. 9.
    I. Munro, I. Pecht and L. Stryer. (1979) Proc. Natl. Acad. Sci.USA 56, 76.Google Scholar
  10. 10.
    P.P. Millar, R.J. Robbins and A.H. Zewail. (1980) Proc. Natl.Acad. Sci. USA, in press.Google Scholar
  11. 11.
    Ph. Wahl, M. Kasai and J.P. Changeux. (1971) Eur. J. Biochem. 18, 332.CrossRefGoogle Scholar
  12. 12.
    S. Highsmith, R.A. Mendelson and M.F. Morales. (1976) Proc. Natl. Acad. Sci. USA 73, 133.CrossRefGoogle Scholar
  13. 13.
    R. Rigler, M. Ehrenberg and M. Wintermeyer. (1977) Mol.Biol.Bioehem. and Biophys., vol. 24, pp. 219, Springer-Verlag.CrossRefGoogle Scholar
  14. 14.
    M. Ehrenberg, R. Rigler and W. Wintermeyer. (1979) Biochemistry 18, 4588.CrossRefGoogle Scholar
  15. 15.
    R. Rigler and M. Ehrenberg. (1976) Quart.Rev.Biophys. 9, 1.CrossRefGoogle Scholar
  16. 16.
    E.P. Ippen and C.V. Shank. (1975) Applied Physics Letters 27, 488.CrossRefGoogle Scholar
  17. 17.
    G.R. Fleming and G.S. Beddard. (1978) Optics and Laser Technology (Oct.) pp. 257.Google Scholar
  18. 18.
    J.A. McCammon, P.G. Wolynes and M. Karplus. (1979) Biochemistry 18, 927.CrossRefGoogle Scholar
  19. 19.
    E.L. Elson and D. Magde. (1974) Biopolymers 13, 1.CrossRefGoogle Scholar
  20. 20.
    D. Magde, E.L. Elson and W.W. Webb. (1974) Biopolymers 13, 29.CrossRefGoogle Scholar
  21. 21.
    M. Ehrenberg and R. Rigler. (1976) Quart.Rev.Biophys. 9, 69.CrossRefGoogle Scholar
  22. 22.
    M. Weissman, H. Schindler and G. Feher. (1976) Proc. Natl. Acad. Sci. USA 73, 2776.CrossRefGoogle Scholar
  23. 23.
    R. Rigler, P. Grasselli and M. Ehrenberg. (1979) Physica Scripta 19, 486.CrossRefGoogle Scholar
  24. 24.
    J.A. Plumbridge, H.G. Baumert, M. Ehrenberg and R. Rigler (1980) Nucleic Acids Research 8, 827.Google Scholar
  25. 25.
    D. Axelrod, D.E. Koppel, I. Schlessinger, E.L. Elson and W.W. Webb. (1976) Biophys. J. 16, 1055.CrossRefGoogle Scholar
  26. 26.
    R. Peters, J. Peters, K.H. Teur and W. Bahr. (1974) Biophys.Biochem.Acta 367, 282.CrossRefGoogle Scholar
  27. 27.
    K. Jacobson, Z. Derzko, E.S. Wu, Y. Hou and G. Poste. (1976) J. Supramol. Structure 5, 565.CrossRefGoogle Scholar
  28. 28.
    D.E. Wolf, J. Schlessinger, E.L. Elson, W.W. Watt, R. Blumenthal and P. Heukart (1977) Biochemistry 16, 3476.CrossRefGoogle Scholar
  29. 29.
    I. Schlessinger, L.S. Barak, G.G. Hammes, K.M. Yamada, I. Pastan, W.W. Webb and E.L. Elson. (1977) Proc.Natl.Acad.Sci. USA 74, 2909.Google Scholar
  30. 30.
    R. Rigler and P. Grasselli. (1980) in Lasers in Biology and Medicine (C. Sacchi, ed.). Plenum Press, in press.Google Scholar
  31. 31.
    P.H. Richter and M. Eigen. (1974) Biophys. Chem. 2, 255.CrossRefGoogle Scholar
  32. 32.
    S. Forsblom, R. Rigler, M. Ehrenberg, U. Pettersson and L. Philipson. (1976) Nucleic acids research 3, 3255.Google Scholar
  33. 33.
    R. Rigler and S. Forsblom. (1979) in FEBS 12th Meeting Dresden 1978, vol. 51, Gene Functions, S. Rosenthal et al.Google Scholar
  34. 34.
    H.Z. Cummins. (1977) in Photon Correlation Spectroscopy and Velocimetry, H.Z. Cummins and E.R. Pike (ed.). Nato Advanced Study Institutes Series — Series B: Physics, pp. 200. Plenum Press, New York 1977.Google Scholar
  35. 35.
    G. Matsumoto, H. Shimizu, J. Shimada and A. Wada. (1977) Optics Communications 22, 369.CrossRefGoogle Scholar
  36. 36.
    M. Eigen and L. DeMaeyer. (1963) in Technique of Organic Chemistry (S.L. Friess, E.S. Lewis and A. Weissberger, eds.) vol.8, part II, pp. 895, J. Wiley, NY.Google Scholar
  37. 37.
    I. Pecht and R. Rigler. (1977) Chemical Relaxation in Molecular Biology, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  38. 38.
    G.W. Flynn and N. Sutin. (1974) in Chemical and Biochemical Application of Lasers (C.G. Moore, ed.). Academic Press, New York.Google Scholar
  39. 39.
    I. Giannini and P. Grasselli. (1976) Biochem. Biophys. Acta 445, 420.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • Rudolf Rigler
    • 1
  1. 1.Department of Medical BiophysicsKarolinska InstitutetStockholm 60Sweden

Personalised recommendations