The Muscle Satellite Cell and Its Role in Muscle Transplantation (A Short Review)


Successful free autologous muscle transplantation is highly dependent on the regenerative capacity of skeletal muscle. Because of transient ischemia, only a thin superficial layer of muscle fibres vias found to survive free muscle transplantation, as shown by the Vienna group (Holle et al., 1974; Lischka et al.y 1977) and in more detail by Carlson and Gutmann (1975 a, b), Schiaffino et al. (1975), and Hansen-Smith and Carlson (1979). Even after prior denervation of the transplanted muscle, as first recommended by Thompson (1971), the number of surviving superficial muscle fibres is only moderately increased (Carlson, 1978). Thus, a process of degeneration and regeneration governs the events resulting in the structural and functional recovery of the transplanted muscle. Of course, modern research in muscle transplantation aims to avoid ischemic necrosis as far as possible by immediate reconstitution of the muscle’s vascular supply (Harii et al., 1976), but still under such favorable conditions damage to the transplant will not be avoidable, and a good result will still be dependent on the regenerative capacity of striated muscle.


Skeletal Muscle Satellite Cell Basal Lamina Muscle Spindle Muscle Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allbrook, D. B., Han, M. F., Hellmuth, A. E.: Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3, 233–243 (1971).Google Scholar
  2. Aloisi, M., Mussini, L, Schiaffino, S.: Activation of muscle nuclei in denervation and hypertrophy. In: Basic Research in Myology (Kakulas, B. A., ed.). Amsterdam: Excerpta Medica I.C.S. No. 294. 1973.Google Scholar
  3. Bischoff, R.: Enzymatic liberation of myogenic cells from adult rat muscle. Anat. Rec. 180, 645–662 (1974).PubMedCrossRefGoogle Scholar
  4. Bischoff, R.: Regeneration of single muscle fibers in vitro. Anat. Rec. 182, 215–236 (1975).PubMedCrossRefGoogle Scholar
  5. Burgener, J., Mayr, R.: Guinea pig stapedius muscle. A histochemical, light and electron microscopic study. Anat. Embryol. 161, 65–81 (1980).PubMedCrossRefGoogle Scholar
  6. Cardasis, C. A., Cooper, G. W.: An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell muscle fiber growth unit. J. exp. Zool. 191, 347–356 (1975).PubMedCrossRefGoogle Scholar
  7. Carlson, B. M.: The regeneration of skeletal muscle-A review. Am. J. Anat. 137, 119–150 (1973).PubMedCrossRefGoogle Scholar
  8. Carlson, B. M.: A review of muscle transplantation in mammals. Physiol. Bohemoslov. 27, 387–400 (1978).PubMedGoogle Scholar
  9. Carlson, B. M., Gutmann, E.: Regeneration in free grafts of normal and denervated muscles in the rat.-Morphology and histochemistry. Anat. Rec. 183, 47–61 (1975a).PubMedCrossRefGoogle Scholar
  10. Carlson, B. M., Gutmann, E.: Regeneration in grafts of normal and denervated rat muscles.-Contractile properties. Pflügers Arch. ges. Physiol. 353, 215–225 (1975b).Google Scholar
  11. Castillo de Maruenda, E., Franzini-Armstrong, C.: Satellite and invasive cells in frog Sartorius muscle. Tissue Cell 10, 749–772 (1978).PubMedCrossRefGoogle Scholar
  12. Church, J. C. T.: Satellite cells and myogenesis; a study in the fruit-bat web. J. Anat. 105, 419–438 (1969).PubMedGoogle Scholar
  13. Church, J. C. T.: Cell quantitation in regenerating bat web muscle. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq, S. A., Milhorat, A. T., eds.), pp. 101–117. Amsterdam: Excerpta Medica. 1970a.Google Scholar
  14. Church, J. C. T.: A model for myogenesis using the concept of the satellite cell segment. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq, S. A., Milhorat, A. T., eds.), pp. 118–121. Amsterdam: Excerpta Medica. 1970b.Google Scholar
  15. Church, J. C. T., Noronha, R. F. X., Allbrook, D. B.: Satellite cells and skeletal muscle regeneration. Brit. J. Surg. 53, 638–642 (1966).CrossRefGoogle Scholar
  16. Conen, P. E., Bell, C. D.: Study of satellite cells in mature and fetal human muscle and rhabdomyosacroma. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq S. A., Milhorat, A. T., eds.), pp. 194–211. Amsterdam: Excerpta Medica. 1970.Google Scholar
  17. Elyakova, G. V.: Electron microscopic investigation of the formation of myoblasts in regenerating muscular tissue (Russian). Doklady Akad. Nauk SSSR 202, 1196–1198 (1972).Google Scholar
  18. Flood, L.: The three-dimensional structure and frequency of myosatellite cells in trunk muscle of the Axolotl (Siredon mexicanus). J. Ultrastruct. Res. 36, 523–524 (1971).Google Scholar
  19. Hansen-Smith, F. M., Carlson, B. M.: Cellular responses to free grafting of the extensor digitorum longus muscle of the rat. J. Neurol. Sci. 41, 149–173 (1979).PubMedCrossRefGoogle Scholar
  20. Hanzlikova, V., Mackova, E. V., Hnik, P.: Satel Hte cells of the rat soleus muscle in the process of compensatory hypertrophy combined with denervation. Cell Tissue Res. 160, 411–421 (1975).PubMedCrossRefGoogle Scholar
  21. Harii, K., Ohmori, K., Torii, S.: Free gracilis muscle transplantation with microneurovascular anastomosis for the treatment of facial paralysis. Plast. Reconstr. Surg. 57, 133–143 (1976).PubMedCrossRefGoogle Scholar
  22. Hess, A., Rosner, S.: The satellite cell bud and myoblast in denervated mammalian muscle fibers. Am. J. Anat. 129, 21–40 (1970).PubMedCrossRefGoogle Scholar
  23. Holle, J.J., Freilinger, G., Gruber, H., Lischka, A., Mayr, R.: Tierexperimentelle Untersuchungen zur freien autologen Muskeltransplantation. Langenbecks Arch. Chir., Suppl. Chir. Forum 1974, 235–239.Google Scholar
  24. Ishikawa, H.: Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. 2. Anat. Entw. Gesch. 125, 43–63 (1966).CrossRefGoogle Scholar
  25. Kahn, E. B., Simpson, S. B., Jr.: Satellite cells in mature uninjured skeletal muscles of the lizard tail. Develop. Biol. 37, 219–233 (1974).PubMedCrossRefGoogle Scholar
  26. Karlsson, U., Andersson-Cedergren, E., Ottoson, D.: Cellular organization of the frog muscle spindle as revealed by serial sections for electron microscopy. J. Ultrastruct. Res. 14, 1–35 (1966).CrossRefGoogle Scholar
  27. Katz, F. R. S.: The termination of the afferent nerve fibre in the muscle spindle of the frog. Phil. Trans. R. Soc. (London) B243, 221–240 (1961).Google Scholar
  28. Kelly, A. M.: Satellite cells and myofiber growth in the rat soleus and extensor digitorum longus muscles. Develop. Biol. 65, 1–10 (1978a)PubMedCrossRefGoogle Scholar
  29. Kelly, A. M.: Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat. Ree. 190, 891–904 (1978 b).CrossRefGoogle Scholar
  30. Kelly, A. M., O’Donoghue, J. L.: “Wandering” satellite cells in skeletal muscle. J. Cell Biol. 63, 164a (1974).Google Scholar
  31. Königsberg, U. R., Lipton, B. H., Königsberg, 1. R.: The regenerative response of single mature muscle fibers isolated in vitro. Develop. Biol. 45, 260–275 (1975).PubMedCrossRefGoogle Scholar
  32. Kryvi, H.: The structure of the myosatellite cells in axial muscles of the shark Galeus melastomus. Anat. Embryol. 143, 35–44 (1975).Google Scholar
  33. Lipton, B. H., Schultz, E.: Developmental fate of skeletal muscle satellite cells. Science 205, 1292–1294 (1979).PubMedCrossRefGoogle Scholar
  34. Lischka, A., Holle, J., Freilinger, G.: Lichtmikroskopische Untersuchungen der morphologischen Veränderungen bei autologer Muskeltransplantation, Acta anat. (Basel) 97, 450–458 (1977).CrossRefGoogle Scholar
  35. Mastaglia, F. L., Dawkins, R. L., Papadimitriou, J. M.: Morphological changes in skeletal muscle after transplantation. A light- and elecxron-microscopic study of the initial phases of degeneration and regeneration. J. neurol. Sci. 25, 227–247 (1975).PubMedCrossRefGoogle Scholar
  36. Mauro, A.: Satellite cell of skeletal muscle fibers. J. biochem. biophys. Cytol. 9, 493–495 (1961).CrossRefGoogle Scholar
  37. Mauro, A. (ed.): Muscle Regeneration. New York: Raven Press. 1979.Google Scholar
  38. Mauro, A., Shafiq, S. A., Milhorat, A. T. (eds.): Regeneration of Striated Muscle and Myogenesis. Amsterdam: Excerpta Medica. 1970.Google Scholar
  39. Maynard, J. A., Cooper, R. R.: Two unusual satellite cell-intrafusal muscle fiber relationships. Z. Anat. Entw. Gesch. 140, 1–9 (1973).CrossRefGoogle Scholar
  40. Milburn, A.: The effect of the local anaesthetic bupivacaine on the muscle spindle of rat. J. Neurocytol. 5, 425–446 (1976).PubMedCrossRefGoogle Scholar
  41. Moss, F. P., Leblond, C. P.: Nature of dividing nuclei in skeletal muscle of growing rats. J. Cell. Biol. 44, 459–462 (1970).PubMedCrossRefGoogle Scholar
  42. Moss, F. P., Leblond, C. P.: Satellite cells as the source of nuclei in muscles of growing rats. Anat. Ree. 170, 421–436 (1971).CrossRefGoogle Scholar
  43. Muir, A. R., Kanji, A. H. M., Allbrook, D.: The structure of the satellite cells in skeletal muscle. J. Anat. (London) 99, 435–444 (1965).Google Scholar
  44. Ontell, M.: Muscle satellite cells: a validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat. Ree. 178, 211–228 (1974).CrossRefGoogle Scholar
  45. Ontell, M.: Evidence for myoblastic potential of satellite cells in denervated muscle. Cell Tiss. Res. 160, 345–353 (1975).CrossRefGoogle Scholar
  46. Pullman, W. E., Yeoh, G. C. T.: The role of myonuclei in muscle regeneration: An in vitro study. J. Cell Physiol. 96, 245–252 (1978).PubMedCrossRefGoogle Scholar
  47. Reger, J. F., Craig, A. S.: Studies on the fine structure of muscle fibers and associated satellite cells in hypertrophic human deltoid muscles. Anat. Ree. 162, 483–500 (1968).CrossRefGoogle Scholar
  48. Reznik, M.: Origin of myoblasts during skeletal muscle regeneration. Lab. Invest. 20, 353–363 (1969).PubMedGoogle Scholar
  49. Reznik, M.: Satellite cells, myoblasts and skeletal muscle regeneration. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq, S. A., Milhorat, A. T., eds.), pp. 133–156. Amsterdam: Excerpta Medica. 1970.Google Scholar
  50. Rumpelt, H.-J., Schmalbruch, H.: Zur Morphologie der Bauelemente von Muskelspindeln bei Mensch und Ratte. Z. Zellforsch. 102, 601–630 (1969).PubMedCrossRefGoogle Scholar
  51. Schiaffino, S., Bormioli, S. P., Aloisi, M.: Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophy. Virchows Arch. B. Cell Path. 11, 268–273 (1972).Google Scholar
  52. Schiaffino, S., Bormioli, S. P., Aloisi, M.: The fate of newly formed satellite cells during compensatory hypertrophy. Virchows Arch. B. Cell Path. 21, 113–118 (1976).Google Scholar
  53. Schiaffino, S., Sjöström, M., Thornell, L. E., Nystrom, B., Hakelius, L.: The process of survival of denervated and freely autotransplanted skeletal muscle. Experientia (Basel) 31, 1328–1330 (1975)CrossRefGoogle Scholar
  54. Schmalbruch, H.: Satellite cells of rat muscles as studied by freeze-fracturing. Anat. Rec. 191, 371–376 (1978).PubMedCrossRefGoogle Scholar
  55. Schmalbruch, H., Hellhammer, U.: The number of satellite cells in normal human muscle. Anat. Rec. 185, 279–287 (1976).PubMedCrossRefGoogle Scholar
  56. Schmalbruch, H., Hellhammer, U.: The number of nuclei in adult rat muscles with special reference to satellite cells. Anat. Rec. 189, 169–175 (1977).PubMedCrossRefGoogle Scholar
  57. Schultz, E.: A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat. Rec. 180, 589–596 (1974).PubMedCrossRefGoogle Scholar
  58. Schultz, E.: Fine structure of satellite cells in growing skeletal muscle. Am. J. Anat. 147, 49–69 (1976)PubMedCrossRefGoogle Scholar
  59. Schultz, E.: Changes in the satellite cells of growing muscle following denervation. Anat. Rec. 190, 299–312 (1978).PubMedCrossRefGoogle Scholar
  60. Schultz, E., Gibson, M. C., Champion, T.: Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J. exp. Zool. 206, 451–456 (1978).PubMedCrossRefGoogle Scholar
  61. Shafiq, S. A.: Satellite cells and fiber nuclei in muscle regeneration. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq, S. A., Milhorat A. T., eds.), pp. 122–132. Amsterdam: Excerpta Medica. 1970.Google Scholar
  62. Shafiq, S. A., Gorycki, M. A., Milhorat, A. T.: An electron microscopic study of regeneration and satellite cells in human muscle. Neurology 17, 567–575 (1967).PubMedGoogle Scholar
  63. Shafiq, S. A., Gorycki, M. A., Mauro, A.: Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J. Anat. 103, 135–141 (1968).PubMedGoogle Scholar
  64. Snow, M. H.: The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tiss. Res. 185, 399–408 (1977a).CrossRefGoogle Scholar
  65. Snow, M. H.: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat. Rec. 188, 181–199 (1977b).PubMedCrossRefGoogle Scholar
  66. Snow, M. H.: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat. Rec. 188, 200–218 (1977c).Google Scholar
  67. Snow, M. H.: An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tiss. Res. 186, 535–540 (1978).CrossRefGoogle Scholar
  68. Teräväinen, H.: Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibers. Z. Zellforsch. 103, 320–327 (1970).PubMedCrossRefGoogle Scholar
  69. Thompson, N.: Autogenous free grafts of skeletal muscle. Plast. Reconstr. Surg. 48, 11–27 (1971).PubMedCrossRefGoogle Scholar
  70. Trupin, G. L.: The satellite cells of normal anuran skeletal muscle. Develop. Biol. 50, 517–524 (1976).PubMedCrossRefGoogle Scholar
  71. Venable, J. H.: Morphology of the cells of normal, testosterone-deprived and testosterone-stimulated levator ani muscles. J. Anat. 119, 271–302 (1966).CrossRefGoogle Scholar
  72. Venable, J. H., Lorenz, M. D.: Trial analysis of the cytokinetics of a rapidly growing skeletal muscle. In: Regeneration of Striated Muscle and Myogenesis (Mauro, A., Shafiq, S. A., Milhorat, A. T., eds.), pp. 271–278. Amsterdam: Excerpta Medica. 1970.Google Scholar
  73. Verma, V.: Satellite cells in denervated muscles. Experientia (Basel) 35, 40–42 (1978).CrossRefGoogle Scholar
  74. Walker, B. E.: Skeletal muscle regeneration in young rats. Am. J. Anat. 133, 369–378 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • R. Mayr
    • 1
    • 2
  1. 1.Institut für Anatomie (2)Universität WienWienAustria
  2. 2.Department of Anatomy 2University of ViennaAustria

Personalised recommendations