Stimulation of Striated Muscles for Biological Energy Supply


In striving for an energy supply of artificial organs independent from external energy sources, the chronic stimulated, cross-striated muscle is of special interest as an internal generator. Especially in the field of artificial heart replacement (1, 2) it is necessary to have an implantable, external energy source at one’s disposal or to make an internal energy source accessible. The whole system “Artificial lieart” consists of the energy source, the transfer of energy, the drive, the control with probes, and the blood pump. Whereas the blood pump is nearly always implanted intracorporeally, there exist only a few solutions to the problem of how to implant the transfer of energy and the drive (3). The additional implantation of both, i. e. the source of energy and the control, was only achieved in some cases. The main problem concerns the source of energy, which up to now was only achieved by a disintegration of radioactive material (4). Because of the high costs and the growing hesitations about the use of atomic power, the search for internal energy production is placed in the foreground. Man is able to produce a mechanical muscle power of about 300 Watts for a short time and of about 50 Watts for a longer period. Compared with the power output of the heart of about 3 Watts, there can be no doubt that this energy can be produced by muscular activity. The muscle should work automatically by means of chronic stimulation using an electric stimulation-generator similar to a pace-maker.


Electrode Stimulation Functional Electric Stimulation Psoas Muscle Muscle Nerve Blood Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thoma, H.: Assisted Circulation, p. 429. Berlin-Heidelberg-New York: Springer. 1979.CrossRefGoogle Scholar
  2. 2.
    Wolner, E., Thoma, H., Deutsch, M., Eckersberger, F., Fasching, W., Horcher, E., Losert, U., Stellwag, F., Stöhr, H., Unger, F., Weisskirchner, R., Polzer, K.: Das Forschungsprojekt, künstliches Herz” an der IL Chirurgischen Universitätsklinik Wien. Wien. klin. Wschr. 91, 74–81 (1979).PubMedGoogle Scholar
  3. 3.
    Stöhr, H., Horcher, E., Losert, U., Thoma, H., Wolner, E.: Implantierbare automatische Steuerung für künstliche Kreislaufpumpen. Kongr. Ber. öst. Ges. Biomed. Techn. S. 65–68 (1980).Google Scholar
  4. 4.
    Whalen, R. L., Molokhia, F. A., Jeffery, D. L. Huffmann, F. M., Norman, J. C,: Current studies with simulated nuclear powered left ventricular assist devices. Trans. ASAIO. 18, 146 (1972).CrossRefGoogle Scholar
  5. 5.
    Guizzi, G. L., Ugolini, F.: Proposal for a total, orthotopic, muscle-powered artificial heart system for live application. Digest of the combined meeting: XII. Internat. Conf. on Med. and Biolog. Engineering, V. Internat. Conf. on Med. Physics. I, 8.1 (1978).Google Scholar
  6. 6.
    Thoma, H., Benzer, H., Holle, J., Moritz, E., Pauser, G.: Methodik und klinische Anwendung der funktionellen Elektrostimulation. Biomed, Techn. 24, 4–10 (1979).CrossRefGoogle Scholar
  7. 7.
    Thoma, H., Holle, J., Moritz, E., Navratil, J.: Prinzip und Anwendung der Karusselstimulation. Biomed. Techn. 21, 109–110 (1976).Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • M. Frey
    • 1
    • 2
  1. 1.Department for Plastic and Reconstructive SurgerySecond Surgical University Clinic of ViennaAustria
  2. 2.Abteilung für Plastische und WiederherstellungschirurgieII. Chirurgische UniversitätsklinikWienAustria

Personalised recommendations