Skip to main content

Molecular Mechanisms of Enzyme-Catalyzed Dioxygenation (An Interdisciplinary Review)

  • Chapter

Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed),volume 40)

Abstract

Enzymes which catalyze the introduction of one or both atoms of a molecule of oxygen into an organic substrate are termed oxygenases. Further classification into mono- and dioxygenases in based on whether the enzyme causes transfer of just one atom to the substrate (S) (eq. 1) or whether the whole molecule is incorporated into a single substrate (eq. 2a) or is shared by a pair of substrates (S, S′) (eq. 2b) (1, 2)1.

Keywords

  • Molecular Oxygen
  • Singlet Oxygen
  • High Occupied Molecular Orbital
  • Acyl Migration
  • Phenoxy Radical

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-8611-4_5
  • Chapter length: 75 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-7091-8611-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayaishi, O.: In “Molecular Mechanisms of Oxygen Activation” ( O. HAYAISHI, ed.), pp. 1–28. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  2. Hayaishi, O., M. Nozaki, and M. T. Abbott: In “The Enzymes”, Vol. 12 ( P. D. Boyer, ed.), pp. 119–189. New York-London: Academic Press, Inc. 1975.

    Google Scholar 

  3. George, P.: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 3–36. New York-London: J. Wiley & Sons, Inc. 1965.

    Google Scholar 

  4. Hamilton, G. A.: In “Progress in Bioorganic Chemistry”, Vol. 1 ( E. T. Kaiser and F. J. Kézdy, eds.), pp. 83–157. New York-London-Toronto: Wiley-Interscience. 1971.

    Google Scholar 

  5. Hamilton, G. A.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 405–451. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  6. Henrici-Olivé, G., and S. Olivé: Activation of Molecular Oxygen. Angew. Chem. Int. Edn (Engl.) 13, 29 (1974).

    Google Scholar 

  7. Martell, A. E., and M. M. Taqui Khan: In “Inorganic Biochemistry”, Vol. 2 ( G. L. Eichhorn, ed.), p. 645. Amsterdam: Elsevier. 1973.

    Google Scholar 

  8. Boyd, G. S.: In: “Biological Hydroxylation Mechanisms” ( G. S. Boyd and R. M. S. Smellie, eds.), pp. 1–9. London-New York: Academic Press, Inc. 1972.

    Google Scholar 

  9. Lyons, J. E.: In “Aspects of Homogeneous Catalysis”, Vol. 3 ( R. UGO, ed.), pp. 1–136. Dortrecht: Reidel. 1977.

    Google Scholar 

  10. Jones, R. D., D. A. Summer Ville, and F. Basolo: Synthetic Oxygen Carriers Related to Biological Systems. Chem. Rev. 79, 139 (1979).

    CAS  Google Scholar 

  11. Matsuura, T.: Biomimetic Oxygenation. Tetrahedron 33, 2869 (1977).

    CAS  Google Scholar 

  12. Bayer, E., P. Krauss, A. Röder, and P. Schretzmann: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 227–263. Maryland: University Park Press. 1973.

    Google Scholar 

  13. Criegee, R.: Versuche zur Darstellung von Tetramethyl-cyclobutadien. Angew. Chem. 74, 703 (1962).

    CAS  Google Scholar 

  14. Turro, N. J., V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper: Reaction of Strained Acetylenes with Molecular Oxygen. J. Amer. Chem. Soc. 98, 6758 (1976).

    CAS  Google Scholar 

  15. Howard, J. A.: In “Free Radicals”, Vol. 2 ( J. K. Kochi, ed.), pp. 3–62. London: Wiley-Interscience. 1973.

    Google Scholar 

  16. Lloyd, W. G.: In “Methods in Free-Radical Chemistry”, Vol. 4 ( E. S. Huyser, ed.), pp. 2–131. New York: Marcel Dekker, Inc. 1973.

    Google Scholar 

  17. Denny, R. W., and A. Nickon: Sensitized Photooxygenation of Olefins. Org. Reactions 20, 133 (1973).

    CAS  Google Scholar 

  18. Gollnick, K.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 111–134. Chichester: Wiley-Interscience. 1978.

    Google Scholar 

  19. Schmitt, R. J., V. M. Bierbaum, and C. H. Depuy: Gas-Phase Reactions of Carbanions with Triplet and Singlet Molecular Oxygen. J. Amer. Chem. Soc. 101, 6443 (1979).

    CAS  Google Scholar 

  20. Jensen, W. B.: The Lewis Acid-Base Definitions: A Status Report. Chem. Rev. 78, 1 (1978).

    CAS  Google Scholar 

  21. Nishinaga, A., T. Shimizu, and T. Matsuura: Reaction of Potassium Superoxide with Phenoxy Radicals. On the Mechanism of Base-Catalyzed Oxygenation of Phenols. Chem. Letts 1977, 547.

    Google Scholar 

  22. Goto, K., H. Tamura, and M. Nagayama: The Mechanism of Oxygenation of Ferrous Ion in Neutral Solution. Inorgan. Chem. 9, 963 (1970).

    CAS  Google Scholar 

  23. Ishida, H., H. Takahashi, H. Sato, and H. Tsubomura: The Interaction of Oxygen with Organic Molecules. J. Amer. Chem. Soc. 92, 275 (1970).

    CAS  Google Scholar 

  24. Heidt, L. J., and A. M. Johnson: Optical Study of the Hydrates of Molecular Oxygen in Water. J. Amer. Chem. Soc. 79, 5587 (1957).

    CAS  Google Scholar 

  25. Gray, H. B., and H. J. Schugar: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eichhorn, ed.), pp. 102–319. Amsterdam: Elsevier. 1973.

    Google Scholar 

  26. Reed, C. A., and S. K. Cheung: On the Bonding of Fe02 in Hemoglobin and Related Dioxygen Complexes. Proc. Ntl. Acad. Sci. U.S.A. 74, 1780 (1977).

    CAS  Google Scholar 

  27. Vaska, L.: Dioxygen-Metal Complexes: Towards a Unified View. Acc. Chem. Res. 9, 175 (1976).

    CAS  Google Scholar 

  28. Basolo, F., B. M. Hoffman, and J. A. Ibers: Synthetic Oxygen Carriers of Biological Interest. Acc. Chem. Res. 8, 384 (1975).

    CAS  Google Scholar 

  29. Hammond, G. S., and C.-H. S. Wu: Oxidation of Iron(II) Chloride in Nonaqueous Solvents. Adv. in Chem. 77, 186 (1968).

    Google Scholar 

  30. Carter, M. J., D. P. Riliema, and F. Basolo: Oxygen Carrier and Redox Properties of Some Neutral Cobalt Chelates. Axial and In-plane Ligand Effects. J. Amer. Chem. Soc. 96, 392 (1974).

    CAS  Google Scholar 

  31. Dawson, J. H., R. H. Holm, J. R. Trudell, G. Barth, R. E. Linder, E. Bunnen-Berg, C. Djerassi, and S. C. Tang: Oxidized Cytochrome P-450. Magnetic Circular Dichroism Evidence for Thiolate Ligation in the Substrate-Bound Form. J. Amer. Chem. Soc. 98, 3707 (1976).

    CAS  Google Scholar 

  32. Valentine, J. S.: The Dioxygen Ligand in Mononuclear Group VIII Transition Metal Complexes. Chem. Rev. 73, 235 (1973).

    CAS  Google Scholar 

  33. Sen, A., and J. Halpern: Role of Transition Metal-Dioxygen Complexes in Catalytic Oxidation. J. Amer. Chem. Soc. 99, 8337 (1977).

    CAS  Google Scholar 

  34. Schmidt, D. D., and J. T. Yoke: Autoxidation of a Coordinated Trialkylphosphine. J. Amer. Chem. Soc. 93, 637 (1971).

    Google Scholar 

  35. Hanzlik, R. P., and D. Williamson: Oxygen Activation by Transition Metal Complexes. 2. J. Amer. Chem. Soc. 98, 6570 (1976).

    CAS  Google Scholar 

  36. Sutin, N., and J. K. Yandell: Autoxidation Reactions Catalyzed by Iron (III) and Iron (IV) Dithiolate Complexes. J. Amer. Chem. Soc. 95, 4847 (1973).

    CAS  Google Scholar 

  37. Holland, D., and D. J. Milner: Liquid Phase Metal-Centred Autoxidation of Cyclo-octene Promoted by Rhodium Species. J. Chem. Soc. (London) Dalton Trans. 1975, 2440.

    Google Scholar 

  38. Read, G., and P. J. C. Walker: Oxygenation Studies. Part 2. Rhodium(l)-catalyzed Autoxidation of Oct-l-ene at Ambient Temperature and Pressure. J. Chem. Soc. ( London) Dalton Trans. 1977, 883.

    Google Scholar 

  39. Mimoun, H., M. M. P. Marchirant, and I. S. De Roch: Activation of Molecular Oxygen: Rhodium-catalyzed Oxidation of Olefins. J. Amer. Chem. Soc. 100, 5437 (1978).

    Google Scholar 

  40. Takao, K., H. Azuma, Y. Fujiwara, T. Imanaka, and S. Teranishi: Oxidation by Transition Metal Complexes. V. Oxidation of Vinyl Esters Catalyzed by Rhodium Complex. Bull. Chem. Soc. Japan 45, 2003 (1972).

    Google Scholar 

  41. Bartlett, P. D., and J. S. Mckennis: Catalyzed Decomposition of Tetramethyl- 1,2-Dioxetane by Rhodium and Iridium Complexes. J. Amer. Chem. Soc. 99, 5334 (1977).

    CAS  Google Scholar 

  42. Tsuji, J., and H. Takayanagi: Organic Synthesis by Means of Metal Complexes. XIII. J. Amer. Chem. Soc. 96, 7349 (1974).

    CAS  Google Scholar 

  43. Rogió, M. M., T. R. Demmin, and W. B. Hammond: Cleavage of Carbon-Carbon Bonds. Copper (Il)-Induced Oxygenolysis of o-Quinones, Catechols and Phenols. J. Amer. Chem. Soc. 98, 7441 (1976).

    Google Scholar 

  44. Rogió, M. M., and T. R. Demmin: Cleavage of Carbon-Carbon Bonds. Copper(II)- Induced Oxygenolysis of o-Benzoquinones, Catechols and Phenols. On the Question of Nonenzymic Oxidation of Aromatics and Activation of Molecular Oxygen. J. Amer. Chem. Soc. 100, 5472 (1978).

    Google Scholar 

  45. Tsuji, J., and H. Takayanagi: Oxidative Cleavage Reaction of Catechol and Phenol to Monoester of ds,ds-Muconic Acid with the Oxidizing Systems of 02CuCl, KOHQ1CI2 and K02CUC12 in a Mixture of Pyridine and Alcohol. Tetrahedron 34, 641 (1978).

    CAS  Google Scholar 

  46. Tsuji, J., and H. Takayanagi: Oxidative Reaction of 3-Methylindole Catalyzed by CuCl-Pyridine Complex under Oxygen. Chem. Letts 1980, 65–66.

    Google Scholar 

  47. Brown, D. G., L. Beckmann, C. H. Ashby, G. C. Vogel, and J. T. Reinprecht: Tetrahedron Letts 1977, 1363. Oxygen-Dependent Ring Cleavage in a Copper Coordinated Catechol.

    Google Scholar 

  48. Grinstead, R. R.: Metal-catalyzed Oxidation of 3,5-di-Butyl Pyrocatechol, and its Significance in the Mechanism of Pyrocatechase Action. Biochemistry 3, 1308 (1964).

    CAS  Google Scholar 

  49. Kramer, C. E., G. Da Vies, R. B. Davis, and R. W. Slaven: Characterization of a Novel Low Oxidation State Transition Metal Peroxide from the Reaction of Copper(I) Chloride with Oxygen in Pyridine. Chem. Commun. 1975, 606.

    Google Scholar 

  50. Tyson, C. A., and A. E. Martell: Kinetics and Mechanism of the Metal Chelate Catalyzed Oxidation of Pyrocatechols. J. Amer. Chem. Soc. 94, 939 (1972).

    CAS  Google Scholar 

  51. Buffle, J., and A. E. Martell: Metal Ion Catalyzed Oxidation of o-Dihydroxy Aromatic Compounds by Oxygen. 1. Inorgan. Chem. 16, 2221 (1977).

    CAS  Google Scholar 

  52. Wüthrich, K., and S. Fallab: Reaktivität von Koordinationsverbindungen. XI. Mechanismus der Kupfer (Il)-katalysierten Autoxydation von o-Phenylendiamin. Helv. Chim. Acta 47, 1440 (1964).

    Google Scholar 

  53. Ohkatsu, Y., and O. Tetsuo: The Liquid-Phase Oxidation of Aldehydes with Metal Tetra(7-tolyl)porphyrins. Bull. Chem. Soc. Japan 50, 2945 (1977).

    CAS  Google Scholar 

  54. Ohkatsu, Y., and T. Tsuruta: Autoxidation Reactions of Hydrocarbons Catalyzed by Co (II) Tetra (7-tolyl) porphyrin. Bull. Chem. Soc. Japan 51, 188 (1978).

    CAS  Google Scholar 

  55. Abel, W. E., J. M. Pratt, R. Whelan, and P. J. Wilkinson: Reduction of Coordinated 02 by Organic Substrates. J. Amer. Chem. Soc. 96, 7119 (1974).

    CAS  Google Scholar 

  56. Nishinaga, A., T. Tojo, and T. Matsuura: A Model Catalytic Oxygenation for the Reaction of Quercetinase. Chem. Commun. 1974, 896.

    Google Scholar 

  57. Nishinaga, A., K. Watanabe, and T. Matsuura: Oxygenation of 2,6-Di-i-Butyl- 4-alkylphenols Catalyzed by Cobalt(II) SchifT’s Base Complexes. Tetrahedron Letts 1974, 1291.

    Google Scholar 

  58. Vogt, L. H. JR., J. G. Wirth, and H. L. Finkbeiner: Selective Autoxidation of some Phenols Using Bis(salicylaldehyde)ethylenediiminecobalt Catalysts. J. Org. Chem. 34, 273 (1969).

    CAS  Google Scholar 

  59. Dance, I. G., R. C. Conrad, and J. E. Cline: Mechanism of Cobalt Dithiolene Complex Catalysis of Thiol Autoxidation in Acidic Acetonitrile Solution. Chem. Commun. 1974, 13.

    Google Scholar 

  60. Vogt, L. H. JR.: Reversible Oxygen-Carrying Chelates. Chem. Rev. 63, 269 (1963).

    CAS  Google Scholar 

  61. Nishinaga, A., K. Nishizawa, H. Tomita, and T. Matsuura: Novel Peroxycobalt(III) Complexes Derived from 4-Aryl-2,6-di-írí-butylphenols. J. Amer. Chem. Soc. 99, 1287 (1977).

    CAS  Google Scholar 

  62. Nishinaga, A., H. Tomita, and T. Matsuura: Selective Formation of Peroxyquinolato Co(III) Complexes in the Oxygenation of 4-Alkyl-2,6-di-i-butylphenols with Co(II)-Schiff’s Base Complexes. Tetrahedron Letts 1979, 2893.

    Google Scholar 

  63. Kamiya, Y.: The Autoxidation of a-Methylstyrene Catalyzed by Copper Phthalo- cyanine. Tetrahedron Letts 1968, 4965.

    Google Scholar 

  64. Kamiya, Y.: Catalysis by Metal Acetylacetonates in the Autoxidation of Hydrocarbons. J. Catalysis 24, 69 (1972).

    CAS  Google Scholar 

  65. Mcneal, R. J., and G. R. Cook: Photoionization of 02 in the Metastable *Ag State. J. Chem. Phys. 45, 3469 (1966).

    CAS  Google Scholar 

  66. Bartlett, N., and D. H. Lohmann: Dioxygenyl Hexafluoroplatinate(V). Proc. Chem. Soc. ( London ) 1962, 115.

    Google Scholar 

  67. D’orazio, L. A., and R. H. Wood: Thermodynamics of the Higher Oxides. 1. The Heats of Formation and Lattice Energies of the Superoxides of Potassium, Rubidium and Cesium. J. Phys. Chem. 69, 2550 (1965).

    Google Scholar 

  68. Lee-Ruff, E.: The Organic Chemistry of Superoxide. J. Chem. Soc. (London) Rev. 6, 195 (1977).

    CAS  Google Scholar 

  69. Sawyer, D. T., M. J. Gibian, M. M. Morrison, and E. T. Seo: On the Reactivity of Superoxide Ion. J. Amer. Chem. Soc. 100, 627 (1978).

    CAS  Google Scholar 

  70. Danen, W. C., and R. J. Warner: The Remarkable Nucleophlicity of Superoxide Anion Radical. Rate Constants for Reaction of Superoxide Ion with Aliphatic Bromides. Tetrahedron Letts 1977, 989.

    Google Scholar 

  71. Wilshire, J., and D. T. Sawyer: Redox Chemistry of Dioxygen Species. Acc. Chem. Res. 12, 105 (1979).

    CAS  Google Scholar 

  72. Mayer, R., J. Widom, and L. Que, JR.: Involvement of Superoxide in the Reactions of Catechol Dioxygenases. Biochem. Biophys. Res. Commun. 92, 285 (1980).

    CAS  Google Scholar 

  73. Myllylà, R., L. M. Schubotz, U. Weser, and K. I. Kivirikko: Involvement of Superoxide in the Prolyl and Lysyl Hydroxylase Reactions. Biochem. Biophys. Res. Commun. 89, 98 (1979).

    Google Scholar 

  74. Bhagwat, A. S., and P. V. Sane: Evidence for the Involvement of Superoxide Anions in the Oxygenase Reaction of Ribulose-l,2-diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 84, 865 (1978).

    CAS  Google Scholar 

  75. Kido, T., K. Soda, and K. Asada: Properties of 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 253, 226 (1978).

    CAS  Google Scholar 

  76. Hamilton, G. A., P. K. Adolf, J. Dejersey, G. C. Dubois, G. R. Dyrkacz, and R. D. Libby: Trivalent Copper, Superoxide, and Galactose Oxidase. J. Amer. Chem. Soc. 100, 1899 (1978).

    CAS  Google Scholar 

  77. Bellus, D.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 61–110. Chichester: Wiley-Interscience. 1978.

    Google Scholar 

  78. Turro, N. J., M. F. Chow, and Y. Ito: Autoxidation of Ketenes, Diradicaloid and Zwitterionic Mechanisms of Reactions of Triplet Molecular Oxygen and Ketenes. J. Amer. Chem. Soc. 100, 5580 (1978).

    CAS  Google Scholar 

  79. Siegel, B., and J. Lanphear: Iron-catalyzed Oxidative Decarboxylation of Benzoyl- formic Acid. J. Amer. Chem. Soc. 101, 2221 (1979).

    CAS  Google Scholar 

  80. Siegel, B., and J. Lanphear: Kinetics and Mechanism for the Acid-catalyzed Oxidative Decarboxylation of Benzoylformic Acid. J. Org. Chem. 44, 942 (1979).

    CAS  Google Scholar 

  81. Kochi, J. K. In “Free Radicals”, Vol. 1 (J. K. Kochi, ed.), pp. 529–683. London: Wiley-Interscience. 1973.

    Google Scholar 

  82. Jones, M. M., and J. E. Hix, JR.: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eich-Horn, ed.), pp. 361. Amsterdam: Elsevier. 1973.

    Google Scholar 

  83. Nozaki, M.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 135–165. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  84. White, G. A., and R. M. Krupka: Ascorbic Acid Oxidase and Ascorbic Acid Oxygenase of Myrothecium verrucaria. Arch. Biochem. Biophys. 110, 448 (1965).

    CAS  Google Scholar 

  85. Gaunt, J. K., and W. C. Evans: Metabolism of 4-Chloro-2-methylphenoxyacetate by a Soil Pseudomonad. Biochem. J. 122, 533 (1971).

    CAS  Google Scholar 

  86. Fujioka, M., and H. Wada: The Bacterial Oxidation of Indole. Biochim. Biophys. Acta 158, 70 (1968).

    CAS  Google Scholar 

  87. Sharma, H. K., and C. S. Vaidyanathan: A New Mode of Ring Cleavage of 2,3- Dihydroxybenzoic Acid in Tecoma starts (L.). European J. Biochem. 56, 163 (1975).

    CAS  Google Scholar 

  88. Seidman, M. M., A. Toms, and J. M. Wood: Influence of Side-Chain Substituents on the Position of Cleavage of the Benezene Ring by Pseudomonas fluorescens. J. Bacteriol. 97, 1192 (1969).

    CAS  Google Scholar 

  89. Tack, B. F., P. J. Chapman, and S. Dagely: Metabolism of Gallic Acid and Syringic Acid by Pseudomonas putida. J. Biological Chem. 247, 6438 (1972).

    CAS  Google Scholar 

  90. Que, L., JR., J. D. Lipscomb, R. Zimmermann, E. Munck, N. R. Orme-Johnson, and W. H. Orme-Johnson: Mossbauer and E. P. R. Spectroscopy of Protocate- chuate 3,4-Dioxygenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 452, 320 (1976).

    CAS  Google Scholar 

  91. Que, L., JR., J. D. Lipscomb, E. Munck, and J. M. Wood: Protocatechuate 3,4- Dioxygenase Inhibitor Studies and Mechanistic Implications. Biochim. Biophys. Acta 485, 60 (1977).

    Google Scholar 

  92. Que, L., JR.: Non-Heme Iron Dioxygenases. Structure and Bonding 40, 40 (1980).

    Google Scholar 

  93. Keyes, W. E., T. M. Loehr, and M. L. Taylor: Raman Spectral Evidence for Tyrosine Coordination of Iron in Protocatechuate 3,4-Dioxygenase. Biochem. Biophys. Res. Commun. 83, 941 (1978).

    CAS  Google Scholar 

  94. Tatsuno, Y., Y. Saeki, M. Iwaki, T. Yagi, M. Nozaki, T. Kitagawa, and S. Otsuka: Resonance Raman Spectra of Protocatechuate 3,4-Dioxygenase. Evidence for Coordination of Tyrosine Residue to Ferric Iron. J. Amer. Chem. Soc. 100, 4614 (1978).

    CAS  Google Scholar 

  95. Felton, R. H., L. D. Cheung, R. S. Phillips, and S. W. May: A Resonance Raman Study of Substrate and Inhibitor Binding to Protocatechuate-3,4-dioxygenase. Biochem. Biophys. Res. Commun. 85, 844 (1978).

    CAS  Google Scholar 

  96. May, S. W., and R. S. Phillips: Protocatechuate 3,4-Dioxygenase: Implications of Ionization Effects on Binding and Dissociation of Halohydroxybenzoates and on Catalytic Turnover. Biochemistry 18, 5933 (1979).

    CAS  Google Scholar 

  97. Que, L., JR., and R. H. Heistand II: Resonance Raman Studies on Pyrocatechase. J. Amer. Chem. Soc. 101, 2219 (1979).

    CAS  Google Scholar 

  98. May, S. W., R. S. Phillips, and C. D. Oldham: Interaction of Protocatechuate with Substituted Hydroxybenzoic Acids and Related Compounds. Biochemistry 17, 1853 (1978).

    CAS  Google Scholar 

  99. Nakata, H., T. Yamauchi, and H. Fujisawa: Studies on the Reaction Intermediate of Protocatechuate 3,4-Dioxygenase. Biochim. Biophys. Acta 527, 171 (1978).

    CAS  Google Scholar 

  100. Hayaishi, O., M. Katagiri, and S. Rothberg: Mechanism of the Pyrocatechase Reaction. J. Amer. Chem. Soc. 77, 5450 (1955).

    CAS  Google Scholar 

  101. Sawaki, Y., and Y. Ogata: Acyl Migration in the Acid-catalyzed Decomposition of oc-Hydroperoxy Ketones. J. Amer. Chem. Soc. 100, 856 (1978).

    CAS  Google Scholar 

  102. Sawaki, Y., and Y. Ogata: Chemiluminescence from the Base-Catalyzed Decomposition of a-Hydro- peroxy Ketones. Competitive Cyclic and Acyclic Reactions. J. Amer. Chem. Soc. 99, 5412 (1977).

    CAS  Google Scholar 

  103. Smith, P. A. S.: In “Molecular Rearrangements”, Vol. 1 ( P. De Mayo, ed.), pp. 457–491. New York-London: Wiley-Interscience. 1963.

    Google Scholar 

  104. Sawaki, Y., and C. S. Foote: Acyclic Mechanism in the Cleavage of Benzils with Alkaline Hydrogen Peroxide. J. Amer. Chem. Soc. 101, 6292 (1979).

    CAS  Google Scholar 

  105. Jefford, C. W., W. Knopfel, and P. A. Cadby: Oxygenation of 3-Aryl-2-hydroxy- acrylic Acids. The Question of Linear Fragmentation vs. Cyclization and Cleavage of Intermediates. J. Amer. Chem. Soc. 100, 6432 (1978).

    CAS  Google Scholar 

  106. Hassall, C. H.: The Baeyer-Villiger Oxidation of Aldehydes and Ketones. Org. Reactions 9, 73 (1957).

    Google Scholar 

  107. Phillips, R. S., and C. D. Oldham: Fluorohydroxy Benzoic Acids as Active Site Spectral Probes for Protocatechuate 3,4-Dioxygenase. Fed. Proc., Fed. Amer. Soc. Exper. Biol. 37, 1720 (1978).

    Google Scholar 

  108. Nishinaga, A., T. Itahara, T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of eríbutylated Phenols. I. Regioselectivity in the Base-catalyzed Oxygenation of terí-Butylphenols. J. Amer. Chem. Soc. 100, 1820 (1978).

    CAS  Google Scholar 

  109. Nishinaga, A., T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of tert- Butylated Phenols 3. Base-catalyzed Reaction of Peroxyquinols Derived from Oxygenation of 2,6-Di-íerí-butylphenols and Mechanism of Regioselective Formation of Epoxy- o-quinol from 2,4,6-Tri-terí-butylphenol. J. Org. Chem. 44, 2983 (1979).

    CAS  Google Scholar 

  110. Sawaki, Y., and Y. Ogata: p Scission of Acyl Radicals in the Radical Decomposition of Various a-Hydroperoxy Ketones. J. Org. Chem. 41, 2340 (1976).

    CAS  Google Scholar 

  111. Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi: Extradiol Cleavage of 3-Substituted Catechols by an Intradiol Dioxygenase, Pyrocatechase, from a Pseudomonad. J. Biol. Chem. 250, 4848 (1975).

    CAS  Google Scholar 

  112. Ribbons, D. W., and P. J. SENIOR: 2,3-Dihydroxybenzoate 3,4-Oxygenase from Pseudomonas fluorescens. Arch. Biochem. Biophys. 138, 557 (1970).

    CAS  Google Scholar 

  113. Gauthier, J. J., and S. C. Rittenberg: The Metabolism of Nicotinic Acid. J. Biol. Chem. 246, 3737 (1971).

    CAS  Google Scholar 

  114. Crandall, D. I., R. C. Krueger, F. Anan, K. Yasunobu, and H. S. Mason: Oxygen Transfer by the Homogentisate Oxidase of Rat Liver. J. Biol. Chem. 235, 3011 (1960).

    CAS  Google Scholar 

  115. Mehler, A. H.: In “Oxygenases” ( O. Hayaishi, ed.), p. 100. New York: Academic Press, Inc. 1960.

    Google Scholar 

  116. Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi: Metapyro- catechase. J. Biol. Chem. 243, 2682 (1968).

    CAS  Google Scholar 

  117. Lipscomb, J. D., B. H. Huynh, and E. Münck: Nitric Oxide Derivatives of Fe2+- EDTA and Protocatechuate Dioxygenases. Fed. Am. Soc. Exp. Biol. 63rd Ann. Meet. 1979, 2659.

    Google Scholar 

  118. Omo-Kamimoto, M., and S. Senoh: Studies on 3,4-Dihydroxyphenylacetate-2,3-dioxy- genase. J. Biochem. (Tokyo) 75, 321 (1974).

    Google Scholar 

  119. Dagley, S., and P. J. Geary: The Time Sequence of Interactions of a Dioxygenase with its Substrates. Biochim. Biophys. Acta 167, 459 (1968).

    CAS  Google Scholar 

  120. Tai, H. H., and C. J. Sih: 3,4-Dihydroxy-9,10-secoandrost-l,3,5(10)-triene-9,17-dione- 4,5-Dioxygenase from Norcardiarestrictus. J. Biol. Chem. 245, 5062 (1970).

    CAS  Google Scholar 

  121. Crawford, R. L., S. W. Hutton, and P. J. Chapman: Purification and Properties of Gentisate 1,2-Dioxygenase from Moraxella osloensis. J. Bacteriol. 121, 794 (1975).

    CAS  Google Scholar 

  122. Tokuyama, K.: Homogentisicase. I. II. III. J. Biochem. (Tokyo) 46, 1379 (1959).

    CAS  Google Scholar 

  123. Crandall, D. I.: Molecular Oxygenation by Fe-Activated Enzymes in Mammalian Metabolism. Oxidases Related Redox Systems, Proc. Symp., Amherst, Mass. 1, 263 (1964).

    Google Scholar 

  124. Koontz, W. A., and R. Shiman: Beef Kidney 3-Hydroxyanthranilic Acid Oxygenase. J. Biol. Chem. 251, 368 (1976).

    CAS  Google Scholar 

  125. Cain, R. B., C. Houghton, and K. A. Wright: Microbial Metabolism of the Pyridine Ring. Biochem. J. 140, 293 (1974).

    CAS  Google Scholar 

  126. Frydman, R. B., M. L. Tomaro, and B. Frydman: Pyrrolooxygenases. Biochim. Biophys. Acta 284, 63 (1972).

    CAS  Google Scholar 

  127. Fiegelson, P., and F. O. Brady: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 87–133. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  128. Makino, R., and Y. Ishimura: Negligible Amount of Copper in Hepatic L-Tryptophan 2,3-Dioxygenase. J. Biol. Chem. 251, 7722 (1976).

    CAS  Google Scholar 

  129. Hirata, F., T. Ohnishi, and O. Hayaishi: Indoleamine 2,3-Dioxygenase. J. Biol. Chem. 252, 4637 (1977).

    CAS  Google Scholar 

  130. Taniguchi, T., M. Sono, F. Hirata, O. Hayaishi, M. Tamura, K. Hayashi, T. Iitzuka, and Y. Ishimura: Indoleamine 2,3-Dioxygenase: Kinetic Studies on the Binding of Superoxide Anion and Molecular Oxygen to Enzyme. J. Biol. Chem. 254, 3288 (1979).

    CAS  Google Scholar 

  131. Tsuda, H.: 5-Hydroxytryptophan Metabolism in Rat Brain. L. 5-Hydroxytryptophan Pyrrolase. Wakayama Igaku 25, 1 (1974).

    CAS  Google Scholar 

  132. Vanneste, W. H., and A. Zuberbuhler: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 398–399. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  133. Brown, S. B., and R. F. G. J. King: The Mechanism of Haem Catabolism. Biochem. J. 170, 297 (1978).

    CAS  Google Scholar 

  134. Jackson, A. H., M. G. Lee, R. T. Jenkins, S. B. Brown, and B. D. Chaney: Oxidative Ring Opening of Octaethylchlorohaemin and its meso-Hydroxy Derivative to Octaethylbiliverdin. Tetrahedron Letts 1978, 5135.

    Google Scholar 

  135. O’Carra, P.: In “Porphyrins and Metalloporphyrins” ( K. M. Smith, ed.), p. 123. Amsterdam: Elsevier. 1975.

    Google Scholar 

  136. Brown, S. B., and R. F. G. J. King: An lsO Double-Labelling Study of Haemoglobin Catabolism in the Rat. Biochem. J. 150, 565 (1975).

    CAS  Google Scholar 

  137. Chaney, B. D., and S. B. Brown: The Mechanism of Coupled Oxidation of Octaethylhaem to Octaethylbiliverdin. Biochem. Soc. Trans. 6, 419 (1978).

    CAS  Google Scholar 

  138. Brown, S. B., and R. F. G. J. King: 180 Studies of Haem Catabolism. Biochem. Soc. Trans. 4, 197 (1976).

    CAS  Google Scholar 

  139. Ho, T.-L.: The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem. Rev. 75, 1 (1975).

    CAS  Google Scholar 

  140. Hastings, J. W., and T. Wilson: Bioluminescence and Chemiluminescence. Photo- chem. and Photobiol. 23, 461 (1976).

    CAS  Google Scholar 

  141. Deluca, M. A., : Bioluminescence and Chemilumenescence. In “Methods in Enzymology”, Vol. 57. New York: Academic Press, Inc. 1978.

    Google Scholar 

  142. Mcelroy, W. D., and M. Deluca: In Chemiluminescence and Bioluminescence,, ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 285–311. New York: Plenum Press. 1973.

    Google Scholar 

  143. Deluca, M.: Firefly Luciferase. Adv. in Enzymol. 44, 37 (1976).

    Google Scholar 

  144. Wannlund, J., M. Deluca, K. Stempel, and P. D. Boyer: Use of 14C-Carboxyl- Luciferin in Determining the Mechanism of the Firefly Luciferase Catalyzed Reac-tions. Biochem. Biophys. Res. Commun. 81, 987 (1978).

    CAS  Google Scholar 

  145. Shimomura, O., T. Goto, and F. H. Johnson: Source of Oxygen in the C02 Produced in the Bioluminescent Oxidation of Firefly Luciferin. Proc. Natl. Acad. Sci. U.S.A. 74, 2799 (1977).

    CAS  Google Scholar 

  146. Koo, J.-Y., S. P. Schmidt, and G. B. Schuster: Bioluminescence of the Firefly: Key Steps in the Formation of the Electronically Excited State for Model Systems. Proc. Natl Acad. Sci. U.S.A. 75, 30 (1978).

    CAS  Google Scholar 

  147. Schuster, G. B.: Chemiluminescence of Organic Peroxides. Conversion of Ground- State Reactants to Excited-State Products by the Chemically Initiated Electron- Exchange Luminescence Mechanism. Acc. Chem. Res. 12, 366 (1979).

    CAS  Google Scholar 

  148. Inoue, S., H. Kakoi, M. Murata, T. Goto, and O. Shimomura: Complete Structure of Renilla Luciferin and Luciferyl Sulfate. Tetrahedron Letts 1977, 2685.

    Google Scholar 

  149. Inoue, S., H. Kakoi, and T. Goto: Oplophorus Luciferin, Bioluminescent Substance of the Decapod Shrimps, Oplophorus spinosus and Heterocarpus laevigatus. Chem. Commun. 1976, 1056.

    Google Scholar 

  150. Shimomura, O., T. Masugi, F. H. Johnson, and Y. Haneda: Properties and Reaction Mechanism of the Bioluminescent System of the Deep-Sea Shrimp Oplophorus gracilorostris. Biochemistry 17, 994 (1978).

    CAS  Google Scholar 

  151. Inoue, S., K. Okada, H. Kakoi, and T. Goto: Fish Bioluminescence I. Isolation of a Luminescent Substance from a Myctophina Fish, Neoscopelus microchir, and Identification of it as Oplophorus Luciferin. Chem. Letts 1977, 257.

    Google Scholar 

  152. Kishi, Y., T. Goto, Y. Hirata, O. Shimomura, and F. H. Johnson: Cypridina Bioluminescence I. Structure of Cypridina Luciferin. Tetrahedron Letts 1966, 3427.

    Google Scholar 

  153. 153.Cormier, M. J., J. Lee, and J. E. Wampler: Bioluminescence: Recent Advances. Ann. Rev. Biochem. 44, 255 (1975).

    Google Scholar 

  154. Shimomura, O., and F. H. Johnson: Exchange of Oxygen Between Solvent H20 and CO2 Produced in Cypridina Bioluminescence. Biochem. Biophys. Res. Commun. 51, 558 (1973).

    CAS  Google Scholar 

  155. Hart, R. C., K. E. Stempel, P. D. Boyer, and M. J. Cormier: The Mechanism of the Enzyme-Catalyzed Bioluminescent Oxidation of Coelenterate-type Luciferin. Biochem. Biophys. Res. Commun. 81, 980 (1978).

    CAS  Google Scholar 

  156. Goto, T., I. Kobuta, N. Suzuki, and Y. Kishi: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 325–335. New York: Plenum Press. 1973.

    Google Scholar 

  157. Shimomura, O., and F. H. Johnson: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 337–344. New York: Plenum Press. 1973.

    Google Scholar 

  158. Kemal, C., T. W. Chan, and T. C. Bruice: Reaction of 302 with Dihydroflavins. I. J. Amer. Chem. Soc. 99, 7272 (1977).

    CAS  Google Scholar 

  159. Chan, T. W., and T. C. Bruice: Reactions of Nitroxides with 1,5-Dihydroflavins and N3’5-Dimethyl-1,5-dihydrolumiflavin. J. Amer. Chem. Soc. 99, 7287 (1977).

    CAS  Google Scholar 

  160. Dmitrienko, G. I., V. Snieckus, and T. Viswanatha: On the Mechanism of Oxygen by Tetrahydropterin and Dihydroflavin-dependent Mono-oxygenases. Bioorg. Chem. 6, 421 (1977).

    CAS  Google Scholar 

  161. Hemmerich, P.: The Present Status of Flavin and Flavocoenzyme Chemistry. Progress in the Chemistry of Organic Natural Products 33, 451 (1976).

    CAS  Google Scholar 

  162. Van Lier, J. E., G. Kan, R. Langlois, and L. L. Smith: In “Biological Hydroxylation Mechanisms” ( G. S. Boyd, and R. M. S. Smellie, eds.), pp. 21–43. London-New York: Academic Press, Inc. 1972.

    Google Scholar 

  163. Hamberg, M., B. Samuelson, I. Bjoerkhem, and H. Danielsson: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 30–85. New York- London: Academic Press, Inc. 1974.

    Google Scholar 

  164. Matsuda, Y., T. Beppu, and K. Arima: Crystallization and Positional Specificity of Hydroperoxidation of Fusarium Lipoxygenase. Biochem. Biophys. Acta 530, 439 (1978).

    CAS  Google Scholar 

  165. Gibian, M. J., and R. A. Gala Way: In “Bioorganic Chemistry”, Vol. 1 ( E. E. Van Tamelen, ed.), pp. 117–136. New York: Academic Press, Inc. 1977.

    Google Scholar 

  166. Yamazaki, Y.: In “Free Radicals in Biology”, Vol. 3 ( W. A. Pryor, ed.), pp. 213–214. New York: Academic Press, Inc. 1977.

    Google Scholar 

  167. Verhagen, J., G. A. Veldink, M. R. Egmond, J. F. G. Vliegenthart, J. Boldingh, and J. Van Der Star: Steady-State Kinetics of Anaerobic Reaction of Soybean Lipoxygenase-1 with Linoleic Acid and 13-L-Hydroperoxylinoleic Acid. Biochem. Biophys. Acta 529, 369 (1978).

    CAS  Google Scholar 

  168. Svingen, B. A., S. R. Tonsager, T. D. Lindstrom, and S. D. Aust: The Demonstration o£ the Specific Generation of Alkyl, Alkoxy and Hydroperoxy Radicals of Linoleic Acid by E.P.R. Spin Trapping Techniques. Fed. Amer. Soc. E.P. Biol. 63rd Ann. Meet. 1979, 2211.

    Google Scholar 

  169. De Groot, J. J. M. C., G. J. Garssen, J. F. G. Vliegenthart, and J. Boldingh: The Detection of Linoleic Acid Radicals in the Anaerobic Reaction of Lipoxygenase. Biochem. Biophys. Acta 326, 279 (1973).

    Google Scholar 

  170. Allen, J. C., S. Navaratnam, B. J. Parsons, G. O. Phillips, and A. J. Swallow: The Oxidation of Soybean Lipoxygenase-1. A Pulse Radiolysis Study. Biochem. Soc. Trans. 8, 121 (1980).

    CAS  Google Scholar 

  171. Izumi, Y., and A. TAI: In “Stereo-Differentiating Reactions”, pp. 70–81. New York: Academic Press, Inc. 1977.

    Google Scholar 

  172. De Groot, J. J. M. C., G. A. Veldink, J. F. G. Vliegenthart, J. Boldingh, R. Wever, and B. F. Van Gelder: Demonstration by EPR Spectroscopy of the Functional Role of Iron in Soybean Lipoxygenase-1. Biochim. Biophys. Acta 377, 71 (1975).

    Google Scholar 

  173. Egmond, M. R., P. M. Fasella, G. A. Veldink, J. F. G. Vliegenthart, and J. Boldingh: On the Mechanism of Action of Soybean Lipoxygenase-1. Eur. J. Biochem. 76, 469 (1977).

    CAS  Google Scholar 

  174. Egmond, M. R., and R. J. P. Williams: H-NMR Study of the Conversion of 13(S)-Hydroperoxylinoleic Acid by Soya Bean Lipoxygenase-1. Biochim. Biophys. Acta 531, 141 (1978).

    CAS  Google Scholar 

  175. Miyamoto, T., N. Ogino, S. Yamamoto, and O. Hayaishi: Purification of Prostaglandin Endoperoxide Synthetase from Bovine Vesicular Gland Microsomes. J. Biol. Chem. 251, 2629 (1976).

    CAS  Google Scholar 

  176. Gibson, K. H.: Prostaglandins, Thromboxanes, PGX: Biosynthetic Products from Arachidonic Acid. Chem. Soc. (London) Rev. 6, 489 (1977).

    CAS  Google Scholar 

  177. Hemler, M., W. E. M. Lands, and W. L. Smith: Purification of the Cyclooxygenase that forms Prostaglandins. J. Biol. Chem. 251, 5575 (1976).

    CAS  Google Scholar 

  178. Samuelsson, B.: Biosynthesis of Prostaglandins. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 31, 1442 (1972).

    CAS  Google Scholar 

  179. Fiebrich, F., and H. Koch: Silymarin, an Inhibitor of Lipoxygenase. Experientia 35, 1548, 1550 (1979).

    CAS  Google Scholar 

  180. Hemler, M. E., C. G. Crawford, and W. E. M. Lands: Lipoxygenation Activity of Purified Prostaglandin-forming Cyclooxygenase. Biochem. 17, 1772 (1978).

    CAS  Google Scholar 

  181. Hamberg, M., and B. Samuelsson: Stereochemistry in the Formation of 9-Hydroxy- 10,12-octadecadienoic Acid and 13-Hydroxy-9,ll-octadecadienoic Acid from Linoleic Acid by Fatty Acid Cyclooxygenase. Biochim. Biophys. Acta 617, 545 (1980).

    CAS  Google Scholar 

  182. Bild, G. S., C. S. Ramadoss, S. Lim, and B. Axelrod: Double Dioxygenation of Arachidonic Acid by Soybean Lipoxygenase. Biochem. Biophys. Res. Commun. 74, 949 (1977).

    CAS  Google Scholar 

  183. Bild, G. S., C. S. Ramadoss, and B. Axelrod: Multiple Dioxygenation by Lipoxygenase of Lipids Containing All-cs-l,4,7-octatriene Moieties. Arch. Biochem. Biophys. 184, 36 (1977).

    CAS  Google Scholar 

  184. Roza, M., and A. Francke: Cyclic Peroxides from a Soya Lipoxygenase-Catalyzed Oxygenation of Methyl Linoleate. Biochim. Biophys. Acta 528, 119 (1978).

    CAS  Google Scholar 

  185. Bild, G. S., S. G. Bhat, C. S. Ramadoss, and B. Axelrod: Biosynthesis of a Prosta-glandin by a Plant Enzyme. J. Biol. Chem. 253, 21 (1978).

    CAS  Google Scholar 

  186. Jefford, C. W., and C. G. Rimbault: Reaction of Singlet Oxygen with a Nor- bornadienol Ether. Intramolecular Interception of a Zwitterionic Peroxide. J. Amer. Chem. Soc. 100, 6515 (1978).

    CAS  Google Scholar 

  187. Beckwith, A. J. L., and R. D. Wagner: Formation of Cyclic Peroxides by Oxygenation of Thiophenol-Diene Mixtures. J. Amer. Chem. Soc. 101, 7099 (1979).

    CAS  Google Scholar 

  188. Hamberg, M., and B. Samuelsson: On the Mechanism of the Biosynthesis of Prostaglandins Ei und Fi«. J. Biol. Chem. 242, 5336 (1967).

    CAS  Google Scholar 

  189. Flashner, M. S., and V. Massey: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 245–283. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  190. Ziffer, H., K. Kabuto, D. T. Gibson, V. M. Kobal, and D. M. Jerina: The Absolute Stereochemistry of Several cw-Dihydrodiols Microbially Produced from Substituted Benzenes. Tetrahedron 33, 2491 (1977).

    CAS  Google Scholar 

  191. Gibson, D. T., J. R. Koch, and R. E. Kallio: Oxidative Degradation of Aromatic Hydrocarbons by Microorganisms. I. Enzymatic Formation of Catechol from Benzene. Biochem. 7, 2653 (1968).

    CAS  Google Scholar 

  192. Gibson, D. T., G. E. Cardini, F. C. Maseles, and R. E. Kallio: Incorporation of Oxygen-18 into Benzene by Pseudomonas putida. Biochem. 9, 1631 (1970).

    CAS  Google Scholar 

  193. Gibson, D. T., B. Gschwendt, W. K. Yeh, and V. M. Kobal: Initial Reactions in the Oxidation of Ethylbenzene by Pseudomonas putida. Biochem. 12, 1520 (1973).

    CAS  Google Scholar 

  194. Catterall, F. A., and P. A. Williams: Some Properties of the Naphthalene Oxygenase from Pseudomonas sp. NCIB 9816. J. Gen. Microbiol. 67, 117 (1971).

    CAS  Google Scholar 

  195. Jeffrey, A. M., H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson: Initial Reaction in the Oxidation of Naphthalene by Pseudomonas putida. Biochem. 14, 575 (1975).

    CAS  Google Scholar 

  196. Yeh, W. K., D. T. Gibson, and T.-N. Liu: Toluene Dioxygenase: A Multicomponent Enzyme System. Biochem. Biophys. Res. Commun. 78, 401 (1977).

    CAS  Google Scholar 

  197. Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry: Formation of (+)-CW- 2,3-Dihydroxy-l-methylcyclohexa-4,6-diene from Toluene by Pseudomonas putida. Biochem. 9, 1626 (1970).

    CAS  Google Scholar 

  198. Sauber, K., C. Fröhner, G. Rosenberg, J. Eberspächer, and F. Lingens: Purification and Properties of Pyrazon Dioxygenase from Pyrazondegrading Bacteria. Eur. J. Biochem. 74, 89 (1977).

    CAS  Google Scholar 

  199. Taniuchi, H., and O. Hayaishi: Studies on the Metabolism of Kynurenic Acid. J. Biol. Chem. 238, 283 (1963).

    CAS  Google Scholar 

  200. Reiner, A. M., and G. D. Hegeman: Metabolism of Benzoic Acid by Bacteria. Biochem. 10, 2530 (1971).

    CAS  Google Scholar 

  201. Kobayashi, S., S. Kuno, N. Itada, O. Hayaishi, S. Kozuka, and S. Oae: O18 Studies on Anthranilate Hydroxylases. A Novel Mechanism of Double Hydroxylation. Biochem. Biophys. Res. Commun. 16, 556 (1964).

    CAS  Google Scholar 

  202. Taniuchi, M., M. Hatanaka, S. Kuno, O. Hayaishi, M. Nakajima, and N. Kuri- Hara: Enzymic Formation of Catechol from Anthranilic Acid. J. Biol. Chem. 239, 2204 (1964).

    CAS  Google Scholar 

  203. Kobayashi, S., and O. Hayaishi: Anthranilic Acid Conversion to Catechol (Pseudomonas). Methods in Enzymol. 17A, 505 (1970).

    Google Scholar 

  204. Subba Rao, P. V., N. S. Sreeleela, R. Premkumar, and C. S. Vaidyanathan: Anthranilic Acid Hydroxylase (Aspergillus niger). Methods in Enzymol. 17 A, 510 (1970).

    Google Scholar 

  205. Kumar, R. P., N. S. Sreeleela, P. V. Subba Rao, and C. S. Vaidyanathan: Anthranilate Hydroxylase from Aspergillus niger: Evidence for the Participation of Iron in the Double Hydroxylation Reaction. J. Bacteriol. 113, 1213 (1973).

    CAS  Google Scholar 

  206. Subramanian, V., T.-N. Liu, W. K. Yeh, and D. T. Gibson: Toluene Dioxygenase: Purification of an Iron-Sulfur Protein by Affinity Chromatography. Biochem. Biophys. Commun. 91, 1131 (1979).

    CAS  Google Scholar 

  207. Axcell, B. C., and P. C. Geary: Purification and some Properties of a Soluble Benzene-oxidizing System from a Strain of Pseudomonas. Biochem. J. 146, 173 (1975).

    CAS  Google Scholar 

  208. Crutcher, S. E., and P. J. Geary: Properties of the Iron-Sulphur Proteins of the Benzene Dioxygenase System from Pseudomonas putida. Biochem. J. 177, 393 (1979).

    CAS  Google Scholar 

  209. Yamaguchi, M., T. Yamauchi, and H. Fujisawa: Studies on the Mechanism of Double Hydroxylation. I. Evidence for the Participation of NADH-Cytochrome c Reductase in the Reaction of Benzoate 1,2-Dioxygenase (Benzoate Hydroxylase). Biochem. Biophys. Res. Commun 67, 264 (1975).

    CAS  Google Scholar 

  210. Ullrich, V., and W. Düppel: In “The Enzymes”, Vol. 12 ( P. D. BOYER, ed.), pp. 253. New York-London: Academic Press, Inc. 1975.

    Google Scholar 

  211. Reineke, W., and H.-J. Knackmuss: Chemical Structure and Biodegradability of Halo- genated Aromatic Compounds: Substituent Effects on 1,2-Dioxygenation of Benzoic Acid. Biochim. Biophys. Acta 542, 412 (1978).

    CAS  Google Scholar 

  212. Sparrow, L. G., P. P. K. Ho, T. K. Sundaram, D. Zach, E. J. Nyns, and E. E. Snell: The Bacterial Oxidation of Vitamin B6. J. Biol. Chem. 244, 2590 (1969).

    CAS  Google Scholar 

  213. Kishore, G., and E. E. Snell: Mechanism of Action of 2-Methyl-3-hydroxy- pyridine-5-carboxylic Acid Oxygenase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 319.

    Google Scholar 

  214. Kishore, G. M., and E. E. Snell: Reactivity of an FAD-dependent Oxygenase with Free Flavins: A New Mode of Uncoupling in Flavoprotein Oxygenases. Bio- chem. Biophys. Res. Commun. 87, 518 (1979).

    CAS  Google Scholar 

  215. Kemal, C., and T. C. Bruice: Transfer of O2 from a 4a-Hydroxyperoxyflavin Anion to a Phenolated Ion. A Flavin-catalyzed Dioxygenation Reaction. J. Amer. Chem. Soc. 101, 1635 (1979).

    CAS  Google Scholar 

  216. Suzuki, I.: Oxidation of Elemental Sulfur by an Enzyme System of Thiobacillus thiooxidans. Biochim. Biophys. Acta 104, 359 (1965).

    CAS  Google Scholar 

  217. Suzuki, I.: Incorporation of Atmospheric Oxygen-18 into Thiosulfate by the Sulfur- oxidizing Enzyme of Thiobacillus thiooxidans. Biochim. Biophys. Acta 110, 97 (1965).

    CAS  Google Scholar 

  218. Cavallini, D., C. De Marco, R. Scandurra, S. Dupré, and M. T. Graziani: The Enzymatic Oxidation of Cysteamine to Hypotaurine. J. Biol. Chem. 241, 3189 (1966).

    CAS  Google Scholar 

  219. Rotilio, G., G. Frederici, L. Calabrese, M. Costa, and D. Cavallini: An Electron Paramagnetic Resonance Study of the Nonheme Iron of Cysteamine Oxygenase. J. Biol. Chem. 245, 6235 (1970).

    CAS  Google Scholar 

  220. Ewetz, L., and B. Sörbo: Characteristics of the Cysteinesulfinate-forming Enzyme in Rat Liver. Biochim. Biophys. Acta 128, 296 (1966).

    CAS  Google Scholar 

  221. Lombardini, J. B., T. P. Singer, and P. D. Boyer: Cysteine Oxygenase II. Studies on the Mechanism of the Reaction with 18Oxygen. J. Biol. Chem. 244, 1172 (1969).

    CAS  Google Scholar 

  222. Yamaguchi, K., Y. Hosokawa, N. Kohashi, Y. Kori, S. Sakakibara, and I. Ueda: Rat Liver Cysteine Dioxygenase (Cysteine Oxidase). J. Biochem. 83, 479 (1978).

    CAS  Google Scholar 

  223. Charalampous, F. C.: Biochemical Studies in Inositol. J. Biol. Chem. 235, 1286 (1960).

    CAS  Google Scholar 

  224. Charalampous, F. C.: Inositol-cleaving Enzyme from Rat Kidney. Methods in Enzymol. 5, 329 (1962).

    CAS  Google Scholar 

  225. Reddy, C. C., P. A. Pierzchala, and G. A. Hamilton: Effects of Various Metabolites, Complexing Agents and Metal Ions on Inositol Oxygenase. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1720 (1978).

    Google Scholar 

  226. Kido, T., K. Soda, T. Suzuki, and K. Asada: A New Oxygenase, 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 251, 6994 (1976).

    CAS  Google Scholar 

  227. Singh, H., and H. R. Cama: Enzymatic Cleavage of Carotenoids. Biochim. Biophys. Acta 370, 49 (1974).

    CAS  Google Scholar 

  228. Bowes, G., W. L. Ogren, and R. H. Hageman: Phosphoglycolate Production Catalyzed by Ribulose Diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 45, 716 (1971).

    CAS  Google Scholar 

  229. Lorimer, G. H., C. B. Osmond, T. Akazawa, and S. Asami: On the Mechanism of Glycolate Synthesis by Chromatium and Chlorella. Arch. Biochem. Biophys. 185, 49 (1978).

    CAS  Google Scholar 

  230. Lorimer, G. H., M. R. Badger, and T. J. Andrews: The Activation of Ribulose- 1,5-bisphosphate Carboxylase by Carbon Dioxide and Magnesium Ions. Equilibrium Kinetics, a Suggested Mechanism and Physiological Implications. Biochem. 15, 529 (1976).

    CAS  Google Scholar 

  231. Christeller, J. T., and W. A. Laing: Effects of Manganese Ions and Magnesium Ions on the Activity of Soya-bean Ribulose Bisphosphate Carboxylaseoxygenase. Biochem. J. 183, 747 (1979).

    CAS  Google Scholar 

  232. Robison, P. D., M. N. Martin, and F. R. Tabita: Differential Effects of Metal Ions on Rhodospirillum rubrum. Ribulosebisphosphate Carboxylaseoxygenase and Stoichiometric Incorporation of HCO3 into a Cobalt (III)-Enzyme Complex. Biochem. 18, 4453 (1979).

    CAS  Google Scholar 

  233. Wildner, G. F., and J. Henkel: Differential Reactivation of Ribulose 1,5-Bis- phosphate Oxygenase with Low Carboxylase Activity by Mn2 +. Fed. Eur. Biochem. Soc. Letts 91, 99 (1978).

    CAS  Google Scholar 

  234. Branden, R.: Ribulose-1,5-dipbosphate Carboxylase and Oxygenase from Green Plants are Two Different Enzymes. Biochem. Biophys. Res. Commun. 81, 539 (1978).

    CAS  Google Scholar 

  235. Mccurry, S. D., N. P. Hall, J. Pierce, C. Paech, and N. E. Tolbert: Ribulose- 1,5-bis- phosphate Carboxylaseoxygenase from Parsely. Biochem. Biophys. Res. Commun. 84, 895 (1978).

    CAS  Google Scholar 

  236. Bhagwat, A. S., J. Ramakrishna, and P. V. Sane: Specific Inhibition of Oxygenase Activity of Ribulose-1,5-diphosphate Carboxylase by Hydroxylamine. Biochem. Biophys. Res. Commun. 83, 954 (1978).

    CAS  Google Scholar 

  237. Lorimer, G. H., T. J. Andrews, and N. E. Tolbert: Ribulose Oxygenase. II. Further Proof of Reaction Products. Biochem. 12, 18 (1973).

    CAS  Google Scholar 

  238. Kosman, D. J.: Carbanions as Substrates in Biological Oxidation Reactions. Bio- organic Chem. 2, 175 (1978).

    CAS  Google Scholar 

  239. Pierce, J., N. E. Tolbert, and R. Barker: A Mass Spectrometric Analysis of the Reaction of Ribulosebisphosphate Carboxylaseoxygenase. J. Biol. Chem. 255, 509 (1980).

    CAS  Google Scholar 

  240. Sue, J. M., and J. R. Knowles: Retention of Oxygens at C-2 and C-3 of D-Ribulose 1,5-Bisphosphate in the Reaction Catalyzed by Ribulose-1,5-bisphosphate Carboxylase. Biochem. 17, 4041 (1978).

    CAS  Google Scholar 

  241. Cardinale, G. J., and S. Udenfriend: Prolyl Hydroxylase. Adv. in Enzymol. 41, 245 (1974).

    Google Scholar 

  242. Risteli, J., K. Tryggvason, and K. I. Kivirikko: Prolyl 3-Hydroxylase: Partial Characterization of the Enzyme from Rat Kidney Cortex. Eur. J. Biochem. 73, 485 (1977).

    CAS  Google Scholar 

  243. Tryggvason, K., K. Majamaa, J. Risteli, and K. I. Kivirikko: Partial Purification and Characterization of Chick-Embryo Prolyl 3-Hydroxylase. Biochem. J. 183, 303 (1979).

    CAS  Google Scholar 

  244. Miller, R. L., and H. H. Varner: Purification and Enzymic Properties of Lysyl Hydroxylase from Fetal Porcine Skin. Biochem. 18, 5928 (1979).

    Google Scholar 

  245. Turpeenniemi, T. M., U. Puistola, H. Anttinen, and K. I. Kivirikko: Affinity Chromatography of Lysyl Hydroxylase on Concanavalin A-Agarose. Biochim. Biophys. Acta 483, 215 (1977).

    CAS  Google Scholar 

  246. Henderson, L. L., and L. M. Henderson: Purification and Properties Trimethyllysine Hydroxylase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 2032.

    Google Scholar 

  247. Hulse, J. D., S. R. Ellis, and L. M. Henderson: Carnitine Biosynthesis. J. Biol. Chem. 253, 1654 (1978).

    CAS  Google Scholar 

  248. Bankel, L., G. Lindstedt, and S. Lindstedt: Thymine 7-Hydroxylase from Neuro- spora crassa. Substrate Specificity Studies. Biochim. Biophys. Acta 481, 431 (1977).

    CAS  Google Scholar 

  249. Turner, M. K., J. E. Farthing, and S. J. Brewer: Oxygenation of (3-methyl-3H) Desacetoxycephalosporin C to (3-hydroxymethyl-3H) Desacetylcephalosporin C by 2-Oxoglutarate-linked Dioxygenases from Acremonium chrysogenum and Steptomyces clavuligerus. Biochem. J. 173, 839 (1978).

    CAS  Google Scholar 

  250. Hook, D. J., L. T. Chang, R. P. Elander, and R. B. Morin: Stimulation of the Conversion of Penicillin N to Cephalosporin by Ascorbic Acid, a-Ketoglutarate, and Ferrous Ions in Cell-Free Extracts of Strains of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87, 258 (1979).

    CAS  Google Scholar 

  251. Stevens, C. M., E. P. Abraham, F.-C. Huang, and C. J. SIH: Incorporation of Molecular Oxygen at C-17 of Cephalosporin C during its Biosynthesis. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34, 625 (1975).

    Google Scholar 

  252. Taniguchi, K., T. Kappe, and M. D. Armstrong: Further Studies on Phenyl- pyruvate Oxidase. J. Biol. Chem. 239, 3389 (1964).

    CAS  Google Scholar 

  253. Abbott, M. T., and S. Udenfriend: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayishi, ed.), pp. 168–214. New York-London: Academic Press, Inc. 1974.

    Google Scholar 

  254. Tuderman, L., R. Myllyla, and K. I. Kivirikko: Mechanism of Prolylhydroxylase Reaction I. Eur. J. Biochem. 80, 341 (1977).

    CAS  Google Scholar 

  255. Counts, D. F., G. J. Cardinale, and S. Udenfriend: Prolyl Hydroxylase Half Reaction: Peptidyl Prolyl-independent Decarboxylation of a-Ketoglutarate. Proc. Natl Acad. Sci. U.S.A. 75, 2145 (1978).

    CAS  Google Scholar 

  256. Rao, N. V., and E. Adams: Partial Reaction of Prolyl Hydroxylase. J. Biol. Chem. 253, 6327 (1978).

    CAS  Google Scholar 

  257. Puistola, U., T. M. Turpeenniemi-Hujanen, R. Myllyla, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. I. Initial Velocity Kinetics and Related Aspects. Biochim. Biophys. Acta 611, 40 (1980).

    CAS  Google Scholar 

  258. Holme, E., G. Lindstedt, and S. Lindstedt: Partial Reaction of Thymine 7-hydroxy- lase. Acta Chem. Scand. B33, 621 (1979).

    Google Scholar 

  259. Lindstedt, G., S. Lindstedt, and I. Nordin: Purification and Some Properties of y-Butyrobetaine Hydroxylase from Pseudomonas sp. AK 1. Biochem. 16, 2181 (1977).

    CAS  Google Scholar 

  260. Shaffer, P. M., R. P. Mccroskey, R. D. Palmatier, R. J. Midgett, and M. T. Abbott: The Cell-free Conversion of a Deoxyribonucleoside to a Ribonucleoside without Detachment of the Deoxyribose. Biochem. Biophys. Res. Commun. 33, 806 (1968).

    CAS  Google Scholar 

  261. Hausmann, E.: Cofactor Requirements for the Enzymatic Hydroxylation of Lysine in a Polypetide Precursor of Collagen. Biochim. Biophys. Acta 133, 591 (1967).

    CAS  Google Scholar 

  262. Abbott, M. T., E. K. Schandl, R. F. Lee, T. S. Parker, and R. J. Midgett: Co- factor requirements for Thymine 7-Hydroxylase. Biochim. Biophys. Acta 132, 525 (1967).

    CAS  Google Scholar 

  263. Abbott, M. T., T. A. Dragila, and R. P. Mccroskey: The Formation of 5-Formyl- uracil by Cell-Free Preparation from Neurospora crassa. Biochim. Biophys. Acta 169, 1 (1968).

    CAS  Google Scholar 

  264. Watanabe, M. S., R. P. Mccroskey, and M. T. Abbott: The Enzymatic Conversion of 5-Formyluracil to Uracil 5-Carboxylic Acid. J. Biol. Chem. 245, 2023 (1970).

    CAS  Google Scholar 

  265. Wada, G. H., J. H. Fellman, T. S. Fujita, and E. S. Roth: Purification and Properties of Avian Liver p-Hydroxyphenylpyruvate Hydroxylase. J. Biol. Chem. 250, 6720 (1975).

    CAS  Google Scholar 

  266. Lindblad, B., G. Lindstedt, S. Lindstedt, and M. Rundgren: Purification and Some Properties of Human 4-Hydroxylphenylpyruvate Dioxygenase (I). J. Biol. Chem. 252, 5073 (1977).

    CAS  Google Scholar 

  267. Lindstedt, S., B. Odelhog, and M. Rundgren: Purification and Some Properties of 4-Hydroxyphenylpyruvate Dioxygenase from Pseudomonas sp. P. J. 874. Biochem. 16, 3369 (1977).

    CAS  Google Scholar 

  268. Lindblad, B., G. Lindstedt, M. Tofft, and S. Lindstedt: The Mechanism of OC- Ketoglutarate Oxidation in Coupled Enzymatic Oxygenations. J. Amer. Chem. Soc. 91, 4604 (1968).

    Google Scholar 

  269. Cardinale, G. J., R. E. Rhoads, and S. Udenfriend: Simultaneous Incorporation of 180 into Succinate and Hydroxyproline Catalyzed by Collagen Prolyl Hydroxylase. Biochem. Biophys. Res. Commun. 43, 537 (1971).

    CAS  Google Scholar 

  270. Holme, E., G. Lindstedt, S. Lindstedt, and M. Tofft: 1SO Studies of the 2-Keto- glutarate-dependent Sequential Oxygenation of Thymine to 5-Carboxyuracil. J. Biol. Chem. 246, 3314 (1971).

    CAS  Google Scholar 

  271. Lindblad, B., G. Lindstedt, and S. Lindstedt: The Mechanism of Enzymic Formation of Homogentisate from -Hydroxyphenylpyruvate. J. Amer. Chem. Soc. 92, 7446 (1970).

    CAS  Google Scholar 

  272. Myllylà, R., L. Tuderman, and K. I. Kivirikko: Mechanism of the Prolyl Hydroxylase Reaction 2. Eur. J. Biochem. 80, 349 (1977).

    Google Scholar 

  273. Holme, E.: A Kinetic Study of Thymine 7-Hydroxylase from Neurospora crassa. Biochem. 14, 4999 (1975).

    CAS  Google Scholar 

  274. Puistola, U., T. M. Turpeenniemi, R. Myllylà, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. II. Inhibition Kinetics and the Reaction Mechanism. Biochim. Biophys. Acta 611, 51 (1980).

    CAS  Google Scholar 

  275. Rundgren, M.: Steady State Kinetics of 4-Hydroxyphenylpyruvate Dioxygenase from Human Liver II. J. Biol. Chem. 252, 5094 (1977).

    CAS  Google Scholar 

  276. Hurych, J., P. Hobza, J. Rencova, and R. Zahradnik: In “The Biology of Fibroplasts” ( E. Kulonen, ed.), pp. 365–372. New York: Academic Press, Inc. 1973.

    Google Scholar 

  277. Liu, T. Z., and R. S. Bhatnagar: Mechanism of Hydroxylation of Proline. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 32, 613 (1973).

    Google Scholar 

  278. Halme, J., K. I. Kivirikko, and K. Simons: Isolation and Partial Characterization of Highly Purified Protocollagen Proline Hydroxylase. Biochim. Biophys. Acta 198, 460 (1970).

    CAS  Google Scholar 

  279. Popenoe, E. A., R. B. Aronson, and D. D. Van Slyke: The Sulfhydryl Nature of Collagen Proline Hydroxylase. Arch. Biochem. Biophys. 133, 286 (1969).

    CAS  Google Scholar 

  280. Englard, S., and C. F. Midelfort: Stereochemical Course of y-Butyrobetaine Hydroxylation to Carnitine. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1806 (1978).

    Google Scholar 

  281. Tryggvason, K., J. Risteli, and K. I. Kivirikko: Separation of Prolyl 3-Hydroxylase and 4-Hydroxylase Activities and the 4-Hydroxyproline Requirement for Synthesis of 3-Hydroxyproline. Biochem. Biophys. Res. Commun. 76, 275 (1977).

    CAS  Google Scholar 

  282. Isbell, H. S., H. L. Frush, and Z. Orhanovic: Reaction of Carbohydrates with Hydroperoxides III. Oxidation of Sodium Salts of Alduronic and Glyulosonic Acids by Sodium Peroxide. Carbohydrate Res. 36, 283 (1974).

    CAS  Google Scholar 

  283. Sanfilippo, J., JR., C.-I. Chern, and J. S. Valentine: Oxidative Cleavage of oe-Keto, a-Hydroxy- and a-Halo Ketones, Esters and Carboxylic Acids by Superoxide. J. Org. Chem. 41, 1077 (1976).

    Google Scholar 

  284. Ilina, L. M., S. A. Borisenkova, A. P. Rudenko, and E. V. Lavrova: Transition Metal Phthalocyanines as Pyruvic Acid Decarboxylation Catalysts. Vestn. Mosk. Univ. Khim. 13, 249 (1972).

    CAS  Google Scholar 

  285. Jefford, C. W., A. F. Boschung, T. A. B. M. Bolsman, R. M. Moriarty, and B. Melnick: Reaction of Singlet Oxygen with oc-Ketocarboxylic Acids. J. Amer. Chem. Soc. 98, 1017 (1976).

    CAS  Google Scholar 

  286. Jefford, C. W., A. Exarchou, and P. A. Cadby: The Role of Singlet Oxygen as Reagent in the Dye-Sensitized Photo-oxygenation of oc-Ketocarboxylic Acids. Tetrahedron Letts 1978, 2053.

    Google Scholar 

  287. Jefford, C. W., and P. A. Cadby, in press.

    Google Scholar 

  288. Bruice, T. C., and P. Y. Bruice: Solution Chemistry of Arene Oxides: Acc. Chem. Res. 9, 379 (1976).

    Google Scholar 

  289. Groves, J. T., and G. A. Mcclusky: Aliphatic Hydroxylation via Oxygen Rebound. Oxygen Transfer Catalyzed by Iron. J. Amer. Chem. Soc. 98, 859 (1976).

    CAS  Google Scholar 

  290. Groves, J. T., and M. Van Der Puy: Stereospecific Aliphatic Hydroxylation by Iron-Hydrogen Peroxide. Evidence for a Stepwise Process. J. Amer. Chem. Soc. 98, 5290 (1976).

    CAS  Google Scholar 

  291. Jefford, C. W., and P. A. Cadby, unpublished results.

    Google Scholar 

  292. Saito, I., Y. Chujo, H. Shimazu, M. Yamane, T. Matsuura, and H. J. Cahnmann: Non Enzymic Oxidation of -Hydroxyphenylpyruvic Acid with Singlet Oxygen to Homogentisic Acid. A Model for the Action of -Hydroxyphenylpyruvate Hydroxylase. J. Amer. Chem. Soc. 97, 5272 (1975).

    CAS  Google Scholar 

  293. Moriarty, R. M., A. Chin, and M. P. Tucker: Dioxygen Fixation. Oxene Transfer in the Reaction of Singlet Dioxygen with a-Keto Acids. J. Amer. Chem. Soc. 100, 5578 (1978).

    CAS  Google Scholar 

  294. Moriarty, R. M., K. B. White, and A. Chin: Ozonation of Ketenes. Nature of Intermediates. J. Amer. Chem. Soc. 100, 5582 (1978).

    CAS  Google Scholar 

  295. Yang, N. C., and J. Libman: Ozonation of Acetylenes and Related Compounds in the Presence of Tetracyanoethylene and Pinacolone. J. Org. Chem. 39, 1782 (1974).

    CAS  Google Scholar 

  296. Keay, R. E., and G. A. Hamilton: Alkene Epoxidation by Intermediates Formed During the Ozonation of Alkynes. J. Amer. Chem. Soc. 98, 6578 (1976).

    CAS  Google Scholar 

  297. Antholine, W. E., and D. H. Petering: On the Reaction of Iron Bleomycin with Thiols and Oxygen. Biochem. Biophys. Res. Commun. 90, 384 (1979).

    CAS  Google Scholar 

  298. Ohmoro, M., and M. Takagi: Polarography of a-Keto Acids in Aqueous and Nonaqueous Solutions. Bull. Chem. Soc. (Japan). 50, 773 (1977).

    Google Scholar 

  299. Hobza, P., J. Hurych, and R. Zahradnik: Quantum Chemical Study of the Mechanism of Collagen Proline Hydroxylation. Biochim. Biophys. Acta 304, 466 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jefford, C.W., Cadby, P.A. (1981). Molecular Mechanisms of Enzyme-Catalyzed Dioxygenation (An Interdisciplinary Review). In: Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 40. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8611-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8611-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8613-8

  • Online ISBN: 978-3-7091-8611-4

  • eBook Packages: Springer Book Archive