Hayaishi, O.: In “Molecular Mechanisms of Oxygen Activation” ( O. HAYAISHI, ed.), pp. 1–28. New York-London: Academic Press, Inc. 1974.
Google Scholar
Hayaishi, O., M. Nozaki, and M. T. Abbott: In “The Enzymes”, Vol. 12 ( P. D. Boyer, ed.), pp. 119–189. New York-London: Academic Press, Inc. 1975.
Google Scholar
George, P.: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 3–36. New York-London: J. Wiley & Sons, Inc. 1965.
Google Scholar
Hamilton, G. A.: In “Progress in Bioorganic Chemistry”, Vol. 1 ( E. T. Kaiser and F. J. Kézdy, eds.), pp. 83–157. New York-London-Toronto: Wiley-Interscience. 1971.
Google Scholar
Hamilton, G. A.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 405–451. New York-London: Academic Press, Inc. 1974.
Google Scholar
Henrici-Olivé, G., and S. Olivé: Activation of Molecular Oxygen. Angew. Chem. Int. Edn (Engl.) 13, 29 (1974).
Google Scholar
Martell, A. E., and M. M. Taqui Khan: In “Inorganic Biochemistry”, Vol. 2 ( G. L. Eichhorn, ed.), p. 645. Amsterdam: Elsevier. 1973.
Google Scholar
Boyd, G. S.: In: “Biological Hydroxylation Mechanisms” ( G. S. Boyd and R. M. S. Smellie, eds.), pp. 1–9. London-New York: Academic Press, Inc. 1972.
Google Scholar
Lyons, J. E.: In “Aspects of Homogeneous Catalysis”, Vol. 3 ( R. UGO, ed.), pp. 1–136. Dortrecht: Reidel. 1977.
Google Scholar
Jones, R. D., D. A. Summer Ville, and F. Basolo: Synthetic Oxygen Carriers Related to Biological Systems. Chem. Rev. 79, 139 (1979).
CAS
Google Scholar
Matsuura, T.: Biomimetic Oxygenation. Tetrahedron 33, 2869 (1977).
CAS
Google Scholar
Bayer, E., P. Krauss, A. Röder, and P. Schretzmann: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 227–263. Maryland: University Park Press. 1973.
Google Scholar
Criegee, R.: Versuche zur Darstellung von Tetramethyl-cyclobutadien. Angew. Chem. 74, 703 (1962).
CAS
Google Scholar
Turro, N. J., V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper: Reaction of Strained Acetylenes with Molecular Oxygen. J. Amer. Chem. Soc. 98, 6758 (1976).
CAS
Google Scholar
Howard, J. A.: In “Free Radicals”, Vol. 2 ( J. K. Kochi, ed.), pp. 3–62. London: Wiley-Interscience. 1973.
Google Scholar
Lloyd, W. G.: In “Methods in Free-Radical Chemistry”, Vol. 4 ( E. S. Huyser, ed.), pp. 2–131. New York: Marcel Dekker, Inc. 1973.
Google Scholar
Denny, R. W., and A. Nickon: Sensitized Photooxygenation of Olefins. Org. Reactions 20, 133 (1973).
CAS
Google Scholar
Gollnick, K.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 111–134. Chichester: Wiley-Interscience. 1978.
Google Scholar
Schmitt, R. J., V. M. Bierbaum, and C. H. Depuy: Gas-Phase Reactions of Carbanions with Triplet and Singlet Molecular Oxygen. J. Amer. Chem. Soc. 101, 6443 (1979).
CAS
Google Scholar
Jensen, W. B.: The Lewis Acid-Base Definitions: A Status Report. Chem. Rev. 78, 1 (1978).
CAS
Google Scholar
Nishinaga, A., T. Shimizu, and T. Matsuura: Reaction of Potassium Superoxide with Phenoxy Radicals. On the Mechanism of Base-Catalyzed Oxygenation of Phenols. Chem. Letts 1977, 547.
Google Scholar
Goto, K., H. Tamura, and M. Nagayama: The Mechanism of Oxygenation of Ferrous Ion in Neutral Solution. Inorgan. Chem. 9, 963 (1970).
CAS
Google Scholar
Ishida, H., H. Takahashi, H. Sato, and H. Tsubomura: The Interaction of Oxygen with Organic Molecules. J. Amer. Chem. Soc. 92, 275 (1970).
CAS
Google Scholar
Heidt, L. J., and A. M. Johnson: Optical Study of the Hydrates of Molecular Oxygen in Water. J. Amer. Chem. Soc. 79, 5587 (1957).
CAS
Google Scholar
Gray, H. B., and H. J. Schugar: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eichhorn, ed.), pp. 102–319. Amsterdam: Elsevier. 1973.
Google Scholar
Reed, C. A., and S. K. Cheung: On the Bonding of Fe02 in Hemoglobin and Related Dioxygen Complexes. Proc. Ntl. Acad. Sci. U.S.A. 74, 1780 (1977).
CAS
Google Scholar
Vaska, L.: Dioxygen-Metal Complexes: Towards a Unified View. Acc. Chem. Res. 9, 175 (1976).
CAS
Google Scholar
Basolo, F., B. M. Hoffman, and J. A. Ibers: Synthetic Oxygen Carriers of Biological Interest. Acc. Chem. Res. 8, 384 (1975).
CAS
Google Scholar
Hammond, G. S., and C.-H. S. Wu: Oxidation of Iron(II) Chloride in Nonaqueous Solvents. Adv. in Chem. 77, 186 (1968).
Google Scholar
Carter, M. J., D. P. Riliema, and F. Basolo: Oxygen Carrier and Redox Properties of Some Neutral Cobalt Chelates. Axial and In-plane Ligand Effects. J. Amer. Chem. Soc. 96, 392 (1974).
CAS
Google Scholar
Dawson, J. H., R. H. Holm, J. R. Trudell, G. Barth, R. E. Linder, E. Bunnen-Berg, C. Djerassi, and S. C. Tang: Oxidized Cytochrome P-450. Magnetic Circular Dichroism Evidence for Thiolate Ligation in the Substrate-Bound Form. J. Amer. Chem. Soc. 98, 3707 (1976).
CAS
Google Scholar
Valentine, J. S.: The Dioxygen Ligand in Mononuclear Group VIII Transition Metal Complexes. Chem. Rev. 73, 235 (1973).
CAS
Google Scholar
Sen, A., and J. Halpern: Role of Transition Metal-Dioxygen Complexes in Catalytic Oxidation. J. Amer. Chem. Soc. 99, 8337 (1977).
CAS
Google Scholar
Schmidt, D. D., and J. T. Yoke: Autoxidation of a Coordinated Trialkylphosphine. J. Amer. Chem. Soc. 93, 637 (1971).
Google Scholar
Hanzlik, R. P., and D. Williamson: Oxygen Activation by Transition Metal Complexes. 2. J. Amer. Chem. Soc. 98, 6570 (1976).
CAS
Google Scholar
Sutin, N., and J. K. Yandell: Autoxidation Reactions Catalyzed by Iron (III) and Iron (IV) Dithiolate Complexes. J. Amer. Chem. Soc. 95, 4847 (1973).
CAS
Google Scholar
Holland, D., and D. J. Milner: Liquid Phase Metal-Centred Autoxidation of Cyclo-octene Promoted by Rhodium Species. J. Chem. Soc. (London) Dalton Trans. 1975, 2440.
Google Scholar
Read, G., and P. J. C. Walker: Oxygenation Studies. Part 2. Rhodium(l)-catalyzed Autoxidation of Oct-l-ene at Ambient Temperature and Pressure. J. Chem. Soc. ( London) Dalton Trans. 1977, 883.
Google Scholar
Mimoun, H., M. M. P. Marchirant, and I. S. De Roch: Activation of Molecular Oxygen: Rhodium-catalyzed Oxidation of Olefins. J. Amer. Chem. Soc. 100, 5437 (1978).
Google Scholar
Takao, K., H. Azuma, Y. Fujiwara, T. Imanaka, and S. Teranishi: Oxidation by Transition Metal Complexes. V. Oxidation of Vinyl Esters Catalyzed by Rhodium Complex. Bull. Chem. Soc. Japan 45, 2003 (1972).
Google Scholar
Bartlett, P. D., and J. S. Mckennis: Catalyzed Decomposition of Tetramethyl- 1,2-Dioxetane by Rhodium and Iridium Complexes. J. Amer. Chem. Soc. 99, 5334 (1977).
CAS
Google Scholar
Tsuji, J., and H. Takayanagi: Organic Synthesis by Means of Metal Complexes. XIII. J. Amer. Chem. Soc. 96, 7349 (1974).
CAS
Google Scholar
Rogió, M. M., T. R. Demmin, and W. B. Hammond: Cleavage of Carbon-Carbon Bonds. Copper (Il)-Induced Oxygenolysis of o-Quinones, Catechols and Phenols. J. Amer. Chem. Soc. 98, 7441 (1976).
Google Scholar
Rogió, M. M., and T. R. Demmin: Cleavage of Carbon-Carbon Bonds. Copper(II)- Induced Oxygenolysis of o-Benzoquinones, Catechols and Phenols. On the Question of Nonenzymic Oxidation of Aromatics and Activation of Molecular Oxygen. J. Amer. Chem. Soc. 100, 5472 (1978).
Google Scholar
Tsuji, J., and H. Takayanagi: Oxidative Cleavage Reaction of Catechol and Phenol to Monoester of ds,ds-Muconic Acid with the Oxidizing Systems of 02CuCl, KOHQ1CI2 and K02CUC12 in a Mixture of Pyridine and Alcohol. Tetrahedron 34, 641 (1978).
CAS
Google Scholar
Tsuji, J., and H. Takayanagi: Oxidative Reaction of 3-Methylindole Catalyzed by CuCl-Pyridine Complex under Oxygen. Chem. Letts 1980, 65–66.
Google Scholar
Brown, D. G., L. Beckmann, C. H. Ashby, G. C. Vogel, and J. T. Reinprecht: Tetrahedron Letts 1977, 1363. Oxygen-Dependent Ring Cleavage in a Copper Coordinated Catechol.
Google Scholar
Grinstead, R. R.: Metal-catalyzed Oxidation of 3,5-di-Butyl Pyrocatechol, and its Significance in the Mechanism of Pyrocatechase Action. Biochemistry 3, 1308 (1964).
CAS
Google Scholar
Kramer, C. E., G. Da Vies, R. B. Davis, and R. W. Slaven: Characterization of a Novel Low Oxidation State Transition Metal Peroxide from the Reaction of Copper(I) Chloride with Oxygen in Pyridine. Chem. Commun. 1975, 606.
Google Scholar
Tyson, C. A., and A. E. Martell: Kinetics and Mechanism of the Metal Chelate Catalyzed Oxidation of Pyrocatechols. J. Amer. Chem. Soc. 94, 939 (1972).
CAS
Google Scholar
Buffle, J., and A. E. Martell: Metal Ion Catalyzed Oxidation of o-Dihydroxy Aromatic Compounds by Oxygen. 1. Inorgan. Chem. 16, 2221 (1977).
CAS
Google Scholar
Wüthrich, K., and S. Fallab: Reaktivität von Koordinationsverbindungen. XI. Mechanismus der Kupfer (Il)-katalysierten Autoxydation von o-Phenylendiamin. Helv. Chim. Acta 47, 1440 (1964).
Google Scholar
Ohkatsu, Y., and O. Tetsuo: The Liquid-Phase Oxidation of Aldehydes with Metal Tetra(7-tolyl)porphyrins. Bull. Chem. Soc. Japan 50, 2945 (1977).
CAS
Google Scholar
Ohkatsu, Y., and T. Tsuruta: Autoxidation Reactions of Hydrocarbons Catalyzed by Co (II) Tetra (7-tolyl) porphyrin. Bull. Chem. Soc. Japan 51, 188 (1978).
CAS
Google Scholar
Abel, W. E., J. M. Pratt, R. Whelan, and P. J. Wilkinson: Reduction of Coordinated 02 by Organic Substrates. J. Amer. Chem. Soc. 96, 7119 (1974).
CAS
Google Scholar
Nishinaga, A., T. Tojo, and T. Matsuura: A Model Catalytic Oxygenation for the Reaction of Quercetinase. Chem. Commun. 1974, 896.
Google Scholar
Nishinaga, A., K. Watanabe, and T. Matsuura: Oxygenation of 2,6-Di-i-Butyl- 4-alkylphenols Catalyzed by Cobalt(II) SchifT’s Base Complexes. Tetrahedron Letts 1974, 1291.
Google Scholar
Vogt, L. H. JR., J. G. Wirth, and H. L. Finkbeiner: Selective Autoxidation of some Phenols Using Bis(salicylaldehyde)ethylenediiminecobalt Catalysts. J. Org. Chem. 34, 273 (1969).
CAS
Google Scholar
Dance, I. G., R. C. Conrad, and J. E. Cline: Mechanism of Cobalt Dithiolene Complex Catalysis of Thiol Autoxidation in Acidic Acetonitrile Solution. Chem. Commun. 1974, 13.
Google Scholar
Vogt, L. H. JR.: Reversible Oxygen-Carrying Chelates. Chem. Rev. 63, 269 (1963).
CAS
Google Scholar
Nishinaga, A., K. Nishizawa, H. Tomita, and T. Matsuura: Novel Peroxycobalt(III) Complexes Derived from 4-Aryl-2,6-di-írí-butylphenols. J. Amer. Chem. Soc. 99, 1287 (1977).
CAS
Google Scholar
Nishinaga, A., H. Tomita, and T. Matsuura: Selective Formation of Peroxyquinolato Co(III) Complexes in the Oxygenation of 4-Alkyl-2,6-di-i-butylphenols with Co(II)-Schiff’s Base Complexes. Tetrahedron Letts 1979, 2893.
Google Scholar
Kamiya, Y.: The Autoxidation of a-Methylstyrene Catalyzed by Copper Phthalo- cyanine. Tetrahedron Letts 1968, 4965.
Google Scholar
Kamiya, Y.: Catalysis by Metal Acetylacetonates in the Autoxidation of Hydrocarbons. J. Catalysis 24, 69 (1972).
CAS
Google Scholar
Mcneal, R. J., and G. R. Cook: Photoionization of 02 in the Metastable *Ag State. J. Chem. Phys. 45, 3469 (1966).
CAS
Google Scholar
Bartlett, N., and D. H. Lohmann: Dioxygenyl Hexafluoroplatinate(V). Proc. Chem. Soc. ( London ) 1962, 115.
Google Scholar
D’orazio, L. A., and R. H. Wood: Thermodynamics of the Higher Oxides. 1. The Heats of Formation and Lattice Energies of the Superoxides of Potassium, Rubidium and Cesium. J. Phys. Chem. 69, 2550 (1965).
Google Scholar
Lee-Ruff, E.: The Organic Chemistry of Superoxide. J. Chem. Soc. (London) Rev. 6, 195 (1977).
CAS
Google Scholar
Sawyer, D. T., M. J. Gibian, M. M. Morrison, and E. T. Seo: On the Reactivity of Superoxide Ion. J. Amer. Chem. Soc. 100, 627 (1978).
CAS
Google Scholar
Danen, W. C., and R. J. Warner: The Remarkable Nucleophlicity of Superoxide Anion Radical. Rate Constants for Reaction of Superoxide Ion with Aliphatic Bromides. Tetrahedron Letts 1977, 989.
Google Scholar
Wilshire, J., and D. T. Sawyer: Redox Chemistry of Dioxygen Species. Acc. Chem. Res. 12, 105 (1979).
CAS
Google Scholar
Mayer, R., J. Widom, and L. Que, JR.: Involvement of Superoxide in the Reactions of Catechol Dioxygenases. Biochem. Biophys. Res. Commun. 92, 285 (1980).
CAS
Google Scholar
Myllylà, R., L. M. Schubotz, U. Weser, and K. I. Kivirikko: Involvement of Superoxide in the Prolyl and Lysyl Hydroxylase Reactions. Biochem. Biophys. Res. Commun. 89, 98 (1979).
Google Scholar
Bhagwat, A. S., and P. V. Sane: Evidence for the Involvement of Superoxide Anions in the Oxygenase Reaction of Ribulose-l,2-diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 84, 865 (1978).
CAS
Google Scholar
Kido, T., K. Soda, and K. Asada: Properties of 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 253, 226 (1978).
CAS
Google Scholar
Hamilton, G. A., P. K. Adolf, J. Dejersey, G. C. Dubois, G. R. Dyrkacz, and R. D. Libby: Trivalent Copper, Superoxide, and Galactose Oxidase. J. Amer. Chem. Soc. 100, 1899 (1978).
CAS
Google Scholar
Bellus, D.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 61–110. Chichester: Wiley-Interscience. 1978.
Google Scholar
Turro, N. J., M. F. Chow, and Y. Ito: Autoxidation of Ketenes, Diradicaloid and Zwitterionic Mechanisms of Reactions of Triplet Molecular Oxygen and Ketenes. J. Amer. Chem. Soc. 100, 5580 (1978).
CAS
Google Scholar
Siegel, B., and J. Lanphear: Iron-catalyzed Oxidative Decarboxylation of Benzoyl- formic Acid. J. Amer. Chem. Soc. 101, 2221 (1979).
CAS
Google Scholar
Siegel, B., and J. Lanphear: Kinetics and Mechanism for the Acid-catalyzed Oxidative Decarboxylation of Benzoylformic Acid. J. Org. Chem. 44, 942 (1979).
CAS
Google Scholar
Kochi, J. K. In “Free Radicals”, Vol. 1 (J. K. Kochi, ed.), pp. 529–683. London: Wiley-Interscience. 1973.
Google Scholar
Jones, M. M., and J. E. Hix, JR.: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eich-Horn, ed.), pp. 361. Amsterdam: Elsevier. 1973.
Google Scholar
Nozaki, M.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 135–165. New York-London: Academic Press, Inc. 1974.
Google Scholar
White, G. A., and R. M. Krupka: Ascorbic Acid Oxidase and Ascorbic Acid Oxygenase of Myrothecium verrucaria. Arch. Biochem. Biophys. 110, 448 (1965).
CAS
Google Scholar
Gaunt, J. K., and W. C. Evans: Metabolism of 4-Chloro-2-methylphenoxyacetate by a Soil Pseudomonad. Biochem. J. 122, 533 (1971).
CAS
Google Scholar
Fujioka, M., and H. Wada: The Bacterial Oxidation of Indole. Biochim. Biophys. Acta 158, 70 (1968).
CAS
Google Scholar
Sharma, H. K., and C. S. Vaidyanathan: A New Mode of Ring Cleavage of 2,3- Dihydroxybenzoic Acid in Tecoma starts (L.). European J. Biochem. 56, 163 (1975).
CAS
Google Scholar
Seidman, M. M., A. Toms, and J. M. Wood: Influence of Side-Chain Substituents on the Position of Cleavage of the Benezene Ring by Pseudomonas fluorescens. J. Bacteriol. 97, 1192 (1969).
CAS
Google Scholar
Tack, B. F., P. J. Chapman, and S. Dagely: Metabolism of Gallic Acid and Syringic Acid by Pseudomonas putida. J. Biological Chem. 247, 6438 (1972).
CAS
Google Scholar
Que, L., JR., J. D. Lipscomb, R. Zimmermann, E. Munck, N. R. Orme-Johnson, and W. H. Orme-Johnson: Mossbauer and E. P. R. Spectroscopy of Protocate- chuate 3,4-Dioxygenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 452, 320 (1976).
CAS
Google Scholar
Que, L., JR., J. D. Lipscomb, E. Munck, and J. M. Wood: Protocatechuate 3,4- Dioxygenase Inhibitor Studies and Mechanistic Implications. Biochim. Biophys. Acta 485, 60 (1977).
Google Scholar
Que, L., JR.: Non-Heme Iron Dioxygenases. Structure and Bonding 40, 40 (1980).
Google Scholar
Keyes, W. E., T. M. Loehr, and M. L. Taylor: Raman Spectral Evidence for Tyrosine Coordination of Iron in Protocatechuate 3,4-Dioxygenase. Biochem. Biophys. Res. Commun. 83, 941 (1978).
CAS
Google Scholar
Tatsuno, Y., Y. Saeki, M. Iwaki, T. Yagi, M. Nozaki, T. Kitagawa, and S. Otsuka: Resonance Raman Spectra of Protocatechuate 3,4-Dioxygenase. Evidence for Coordination of Tyrosine Residue to Ferric Iron. J. Amer. Chem. Soc. 100, 4614 (1978).
CAS
Google Scholar
Felton, R. H., L. D. Cheung, R. S. Phillips, and S. W. May: A Resonance Raman Study of Substrate and Inhibitor Binding to Protocatechuate-3,4-dioxygenase. Biochem. Biophys. Res. Commun. 85, 844 (1978).
CAS
Google Scholar
May, S. W., and R. S. Phillips: Protocatechuate 3,4-Dioxygenase: Implications of Ionization Effects on Binding and Dissociation of Halohydroxybenzoates and on Catalytic Turnover. Biochemistry 18, 5933 (1979).
CAS
Google Scholar
Que, L., JR., and R. H. Heistand II: Resonance Raman Studies on Pyrocatechase. J. Amer. Chem. Soc. 101, 2219 (1979).
CAS
Google Scholar
May, S. W., R. S. Phillips, and C. D. Oldham: Interaction of Protocatechuate with Substituted Hydroxybenzoic Acids and Related Compounds. Biochemistry 17, 1853 (1978).
CAS
Google Scholar
Nakata, H., T. Yamauchi, and H. Fujisawa: Studies on the Reaction Intermediate of Protocatechuate 3,4-Dioxygenase. Biochim. Biophys. Acta 527, 171 (1978).
CAS
Google Scholar
Hayaishi, O., M. Katagiri, and S. Rothberg: Mechanism of the Pyrocatechase Reaction. J. Amer. Chem. Soc. 77, 5450 (1955).
CAS
Google Scholar
Sawaki, Y., and Y. Ogata: Acyl Migration in the Acid-catalyzed Decomposition of oc-Hydroperoxy Ketones. J. Amer. Chem. Soc. 100, 856 (1978).
CAS
Google Scholar
Sawaki, Y., and Y. Ogata: Chemiluminescence from the Base-Catalyzed Decomposition of a-Hydro- peroxy Ketones. Competitive Cyclic and Acyclic Reactions. J. Amer. Chem. Soc. 99, 5412 (1977).
CAS
Google Scholar
Smith, P. A. S.: In “Molecular Rearrangements”, Vol. 1 ( P. De Mayo, ed.), pp. 457–491. New York-London: Wiley-Interscience. 1963.
Google Scholar
Sawaki, Y., and C. S. Foote: Acyclic Mechanism in the Cleavage of Benzils with Alkaline Hydrogen Peroxide. J. Amer. Chem. Soc. 101, 6292 (1979).
CAS
Google Scholar
Jefford, C. W., W. Knopfel, and P. A. Cadby: Oxygenation of 3-Aryl-2-hydroxy- acrylic Acids. The Question of Linear Fragmentation vs. Cyclization and Cleavage of Intermediates. J. Amer. Chem. Soc. 100, 6432 (1978).
CAS
Google Scholar
Hassall, C. H.: The Baeyer-Villiger Oxidation of Aldehydes and Ketones. Org. Reactions 9, 73 (1957).
Google Scholar
Phillips, R. S., and C. D. Oldham: Fluorohydroxy Benzoic Acids as Active Site Spectral Probes for Protocatechuate 3,4-Dioxygenase. Fed. Proc., Fed. Amer. Soc. Exper. Biol. 37, 1720 (1978).
Google Scholar
Nishinaga, A., T. Itahara, T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of eríbutylated Phenols. I. Regioselectivity in the Base-catalyzed Oxygenation of terí-Butylphenols. J. Amer. Chem. Soc. 100, 1820 (1978).
CAS
Google Scholar
Nishinaga, A., T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of tert- Butylated Phenols 3. Base-catalyzed Reaction of Peroxyquinols Derived from Oxygenation of 2,6-Di-íerí-butylphenols and Mechanism of Regioselective Formation of Epoxy- o-quinol from 2,4,6-Tri-terí-butylphenol. J. Org. Chem. 44, 2983 (1979).
CAS
Google Scholar
Sawaki, Y., and Y. Ogata: p Scission of Acyl Radicals in the Radical Decomposition of Various a-Hydroperoxy Ketones. J. Org. Chem. 41, 2340 (1976).
CAS
Google Scholar
Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi: Extradiol Cleavage of 3-Substituted Catechols by an Intradiol Dioxygenase, Pyrocatechase, from a Pseudomonad. J. Biol. Chem. 250, 4848 (1975).
CAS
Google Scholar
Ribbons, D. W., and P. J. SENIOR: 2,3-Dihydroxybenzoate 3,4-Oxygenase from Pseudomonas fluorescens. Arch. Biochem. Biophys. 138, 557 (1970).
CAS
Google Scholar
Gauthier, J. J., and S. C. Rittenberg: The Metabolism of Nicotinic Acid. J. Biol. Chem. 246, 3737 (1971).
CAS
Google Scholar
Crandall, D. I., R. C. Krueger, F. Anan, K. Yasunobu, and H. S. Mason: Oxygen Transfer by the Homogentisate Oxidase of Rat Liver. J. Biol. Chem. 235, 3011 (1960).
CAS
Google Scholar
Mehler, A. H.: In “Oxygenases” ( O. Hayaishi, ed.), p. 100. New York: Academic Press, Inc. 1960.
Google Scholar
Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi: Metapyro- catechase. J. Biol. Chem. 243, 2682 (1968).
CAS
Google Scholar
Lipscomb, J. D., B. H. Huynh, and E. Münck: Nitric Oxide Derivatives of Fe2+- EDTA and Protocatechuate Dioxygenases. Fed. Am. Soc. Exp. Biol. 63rd Ann. Meet. 1979, 2659.
Google Scholar
Omo-Kamimoto, M., and S. Senoh: Studies on 3,4-Dihydroxyphenylacetate-2,3-dioxy- genase. J. Biochem. (Tokyo) 75, 321 (1974).
Google Scholar
Dagley, S., and P. J. Geary: The Time Sequence of Interactions of a Dioxygenase with its Substrates. Biochim. Biophys. Acta 167, 459 (1968).
CAS
Google Scholar
Tai, H. H., and C. J. Sih: 3,4-Dihydroxy-9,10-secoandrost-l,3,5(10)-triene-9,17-dione- 4,5-Dioxygenase from Norcardiarestrictus. J. Biol. Chem. 245, 5062 (1970).
CAS
Google Scholar
Crawford, R. L., S. W. Hutton, and P. J. Chapman: Purification and Properties of Gentisate 1,2-Dioxygenase from Moraxella osloensis. J. Bacteriol. 121, 794 (1975).
CAS
Google Scholar
Tokuyama, K.: Homogentisicase. I. II. III. J. Biochem. (Tokyo) 46, 1379 (1959).
CAS
Google Scholar
Crandall, D. I.: Molecular Oxygenation by Fe-Activated Enzymes in Mammalian Metabolism. Oxidases Related Redox Systems, Proc. Symp., Amherst, Mass. 1, 263 (1964).
Google Scholar
Koontz, W. A., and R. Shiman: Beef Kidney 3-Hydroxyanthranilic Acid Oxygenase. J. Biol. Chem. 251, 368 (1976).
CAS
Google Scholar
Cain, R. B., C. Houghton, and K. A. Wright: Microbial Metabolism of the Pyridine Ring. Biochem. J. 140, 293 (1974).
CAS
Google Scholar
Frydman, R. B., M. L. Tomaro, and B. Frydman: Pyrrolooxygenases. Biochim. Biophys. Acta 284, 63 (1972).
CAS
Google Scholar
Fiegelson, P., and F. O. Brady: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 87–133. New York-London: Academic Press, Inc. 1974.
Google Scholar
Makino, R., and Y. Ishimura: Negligible Amount of Copper in Hepatic L-Tryptophan 2,3-Dioxygenase. J. Biol. Chem. 251, 7722 (1976).
CAS
Google Scholar
Hirata, F., T. Ohnishi, and O. Hayaishi: Indoleamine 2,3-Dioxygenase. J. Biol. Chem. 252, 4637 (1977).
CAS
Google Scholar
Taniguchi, T., M. Sono, F. Hirata, O. Hayaishi, M. Tamura, K. Hayashi, T. Iitzuka, and Y. Ishimura: Indoleamine 2,3-Dioxygenase: Kinetic Studies on the Binding of Superoxide Anion and Molecular Oxygen to Enzyme. J. Biol. Chem. 254, 3288 (1979).
CAS
Google Scholar
Tsuda, H.: 5-Hydroxytryptophan Metabolism in Rat Brain. L. 5-Hydroxytryptophan Pyrrolase. Wakayama Igaku 25, 1 (1974).
CAS
Google Scholar
Vanneste, W. H., and A. Zuberbuhler: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 398–399. New York-London: Academic Press, Inc. 1974.
Google Scholar
Brown, S. B., and R. F. G. J. King: The Mechanism of Haem Catabolism. Biochem. J. 170, 297 (1978).
CAS
Google Scholar
Jackson, A. H., M. G. Lee, R. T. Jenkins, S. B. Brown, and B. D. Chaney: Oxidative Ring Opening of Octaethylchlorohaemin and its meso-Hydroxy Derivative to Octaethylbiliverdin. Tetrahedron Letts 1978, 5135.
Google Scholar
O’Carra, P.: In “Porphyrins and Metalloporphyrins” ( K. M. Smith, ed.), p. 123. Amsterdam: Elsevier. 1975.
Google Scholar
Brown, S. B., and R. F. G. J. King: An lsO Double-Labelling Study of Haemoglobin Catabolism in the Rat. Biochem. J. 150, 565 (1975).
CAS
Google Scholar
Chaney, B. D., and S. B. Brown: The Mechanism of Coupled Oxidation of Octaethylhaem to Octaethylbiliverdin. Biochem. Soc. Trans. 6, 419 (1978).
CAS
Google Scholar
Brown, S. B., and R. F. G. J. King: 180 Studies of Haem Catabolism. Biochem. Soc. Trans. 4, 197 (1976).
CAS
Google Scholar
Ho, T.-L.: The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem. Rev. 75, 1 (1975).
CAS
Google Scholar
Hastings, J. W., and T. Wilson: Bioluminescence and Chemiluminescence. Photo- chem. and Photobiol. 23, 461 (1976).
CAS
Google Scholar
Deluca, M. A., : Bioluminescence and Chemilumenescence. In “Methods in Enzymology”, Vol. 57. New York: Academic Press, Inc. 1978.
Google Scholar
Mcelroy, W. D., and M. Deluca: In Chemiluminescence and Bioluminescence,, ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 285–311. New York: Plenum Press. 1973.
Google Scholar
Deluca, M.: Firefly Luciferase. Adv. in Enzymol. 44, 37 (1976).
Google Scholar
Wannlund, J., M. Deluca, K. Stempel, and P. D. Boyer: Use of 14C-Carboxyl- Luciferin in Determining the Mechanism of the Firefly Luciferase Catalyzed Reac-tions. Biochem. Biophys. Res. Commun. 81, 987 (1978).
CAS
Google Scholar
Shimomura, O., T. Goto, and F. H. Johnson: Source of Oxygen in the C02 Produced in the Bioluminescent Oxidation of Firefly Luciferin. Proc. Natl. Acad. Sci. U.S.A. 74, 2799 (1977).
CAS
Google Scholar
Koo, J.-Y., S. P. Schmidt, and G. B. Schuster: Bioluminescence of the Firefly: Key Steps in the Formation of the Electronically Excited State for Model Systems. Proc. Natl Acad. Sci. U.S.A. 75, 30 (1978).
CAS
Google Scholar
Schuster, G. B.: Chemiluminescence of Organic Peroxides. Conversion of Ground- State Reactants to Excited-State Products by the Chemically Initiated Electron- Exchange Luminescence Mechanism. Acc. Chem. Res. 12, 366 (1979).
CAS
Google Scholar
Inoue, S., H. Kakoi, M. Murata, T. Goto, and O. Shimomura: Complete Structure of Renilla Luciferin and Luciferyl Sulfate. Tetrahedron Letts 1977, 2685.
Google Scholar
Inoue, S., H. Kakoi, and T. Goto: Oplophorus Luciferin, Bioluminescent Substance of the Decapod Shrimps, Oplophorus spinosus and Heterocarpus laevigatus. Chem. Commun. 1976, 1056.
Google Scholar
Shimomura, O., T. Masugi, F. H. Johnson, and Y. Haneda: Properties and Reaction Mechanism of the Bioluminescent System of the Deep-Sea Shrimp Oplophorus gracilorostris. Biochemistry 17, 994 (1978).
CAS
Google Scholar
Inoue, S., K. Okada, H. Kakoi, and T. Goto: Fish Bioluminescence I. Isolation of a Luminescent Substance from a Myctophina Fish, Neoscopelus microchir, and Identification of it as Oplophorus Luciferin. Chem. Letts 1977, 257.
Google Scholar
Kishi, Y., T. Goto, Y. Hirata, O. Shimomura, and F. H. Johnson: Cypridina Bioluminescence I. Structure of Cypridina Luciferin. Tetrahedron Letts 1966, 3427.
Google Scholar
153.Cormier, M. J., J. Lee, and J. E. Wampler: Bioluminescence: Recent Advances. Ann. Rev. Biochem. 44, 255 (1975).
Google Scholar
Shimomura, O., and F. H. Johnson: Exchange of Oxygen Between Solvent H20 and CO2 Produced in Cypridina Bioluminescence. Biochem. Biophys. Res. Commun. 51, 558 (1973).
CAS
Google Scholar
Hart, R. C., K. E. Stempel, P. D. Boyer, and M. J. Cormier: The Mechanism of the Enzyme-Catalyzed Bioluminescent Oxidation of Coelenterate-type Luciferin. Biochem. Biophys. Res. Commun. 81, 980 (1978).
CAS
Google Scholar
Goto, T., I. Kobuta, N. Suzuki, and Y. Kishi: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 325–335. New York: Plenum Press. 1973.
Google Scholar
Shimomura, O., and F. H. Johnson: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 337–344. New York: Plenum Press. 1973.
Google Scholar
Kemal, C., T. W. Chan, and T. C. Bruice: Reaction of 302 with Dihydroflavins. I. J. Amer. Chem. Soc. 99, 7272 (1977).
CAS
Google Scholar
Chan, T. W., and T. C. Bruice: Reactions of Nitroxides with 1,5-Dihydroflavins and N3’5-Dimethyl-1,5-dihydrolumiflavin. J. Amer. Chem. Soc. 99, 7287 (1977).
CAS
Google Scholar
Dmitrienko, G. I., V. Snieckus, and T. Viswanatha: On the Mechanism of Oxygen by Tetrahydropterin and Dihydroflavin-dependent Mono-oxygenases. Bioorg. Chem. 6, 421 (1977).
CAS
Google Scholar
Hemmerich, P.: The Present Status of Flavin and Flavocoenzyme Chemistry. Progress in the Chemistry of Organic Natural Products 33, 451 (1976).
CAS
Google Scholar
Van Lier, J. E., G. Kan, R. Langlois, and L. L. Smith: In “Biological Hydroxylation Mechanisms” ( G. S. Boyd, and R. M. S. Smellie, eds.), pp. 21–43. London-New York: Academic Press, Inc. 1972.
Google Scholar
Hamberg, M., B. Samuelson, I. Bjoerkhem, and H. Danielsson: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 30–85. New York- London: Academic Press, Inc. 1974.
Google Scholar
Matsuda, Y., T. Beppu, and K. Arima: Crystallization and Positional Specificity of Hydroperoxidation of Fusarium Lipoxygenase. Biochem. Biophys. Acta 530, 439 (1978).
CAS
Google Scholar
Gibian, M. J., and R. A. Gala Way: In “Bioorganic Chemistry”, Vol. 1 ( E. E. Van Tamelen, ed.), pp. 117–136. New York: Academic Press, Inc. 1977.
Google Scholar
Yamazaki, Y.: In “Free Radicals in Biology”, Vol. 3 ( W. A. Pryor, ed.), pp. 213–214. New York: Academic Press, Inc. 1977.
Google Scholar
Verhagen, J., G. A. Veldink, M. R. Egmond, J. F. G. Vliegenthart, J. Boldingh, and J. Van Der Star: Steady-State Kinetics of Anaerobic Reaction of Soybean Lipoxygenase-1 with Linoleic Acid and 13-L-Hydroperoxylinoleic Acid. Biochem. Biophys. Acta 529, 369 (1978).
CAS
Google Scholar
Svingen, B. A., S. R. Tonsager, T. D. Lindstrom, and S. D. Aust: The Demonstration o£ the Specific Generation of Alkyl, Alkoxy and Hydroperoxy Radicals of Linoleic Acid by E.P.R. Spin Trapping Techniques. Fed. Amer. Soc. E.P. Biol. 63rd Ann. Meet. 1979, 2211.
Google Scholar
De Groot, J. J. M. C., G. J. Garssen, J. F. G. Vliegenthart, and J. Boldingh: The Detection of Linoleic Acid Radicals in the Anaerobic Reaction of Lipoxygenase. Biochem. Biophys. Acta 326, 279 (1973).
Google Scholar
Allen, J. C., S. Navaratnam, B. J. Parsons, G. O. Phillips, and A. J. Swallow: The Oxidation of Soybean Lipoxygenase-1. A Pulse Radiolysis Study. Biochem. Soc. Trans. 8, 121 (1980).
CAS
Google Scholar
Izumi, Y., and A. TAI: In “Stereo-Differentiating Reactions”, pp. 70–81. New York: Academic Press, Inc. 1977.
Google Scholar
De Groot, J. J. M. C., G. A. Veldink, J. F. G. Vliegenthart, J. Boldingh, R. Wever, and B. F. Van Gelder: Demonstration by EPR Spectroscopy of the Functional Role of Iron in Soybean Lipoxygenase-1. Biochim. Biophys. Acta 377, 71 (1975).
Google Scholar
Egmond, M. R., P. M. Fasella, G. A. Veldink, J. F. G. Vliegenthart, and J. Boldingh: On the Mechanism of Action of Soybean Lipoxygenase-1. Eur. J. Biochem. 76, 469 (1977).
CAS
Google Scholar
Egmond, M. R., and R. J. P. Williams: H-NMR Study of the Conversion of 13(S)-Hydroperoxylinoleic Acid by Soya Bean Lipoxygenase-1. Biochim. Biophys. Acta 531, 141 (1978).
CAS
Google Scholar
Miyamoto, T., N. Ogino, S. Yamamoto, and O. Hayaishi: Purification of Prostaglandin Endoperoxide Synthetase from Bovine Vesicular Gland Microsomes. J. Biol. Chem. 251, 2629 (1976).
CAS
Google Scholar
Gibson, K. H.: Prostaglandins, Thromboxanes, PGX: Biosynthetic Products from Arachidonic Acid. Chem. Soc. (London) Rev. 6, 489 (1977).
CAS
Google Scholar
Hemler, M., W. E. M. Lands, and W. L. Smith: Purification of the Cyclooxygenase that forms Prostaglandins. J. Biol. Chem. 251, 5575 (1976).
CAS
Google Scholar
Samuelsson, B.: Biosynthesis of Prostaglandins. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 31, 1442 (1972).
CAS
Google Scholar
Fiebrich, F., and H. Koch: Silymarin, an Inhibitor of Lipoxygenase. Experientia 35, 1548, 1550 (1979).
CAS
Google Scholar
Hemler, M. E., C. G. Crawford, and W. E. M. Lands: Lipoxygenation Activity of Purified Prostaglandin-forming Cyclooxygenase. Biochem. 17, 1772 (1978).
CAS
Google Scholar
Hamberg, M., and B. Samuelsson: Stereochemistry in the Formation of 9-Hydroxy- 10,12-octadecadienoic Acid and 13-Hydroxy-9,ll-octadecadienoic Acid from Linoleic Acid by Fatty Acid Cyclooxygenase. Biochim. Biophys. Acta 617, 545 (1980).
CAS
Google Scholar
Bild, G. S., C. S. Ramadoss, S. Lim, and B. Axelrod: Double Dioxygenation of Arachidonic Acid by Soybean Lipoxygenase. Biochem. Biophys. Res. Commun. 74, 949 (1977).
CAS
Google Scholar
Bild, G. S., C. S. Ramadoss, and B. Axelrod: Multiple Dioxygenation by Lipoxygenase of Lipids Containing All-cs-l,4,7-octatriene Moieties. Arch. Biochem. Biophys. 184, 36 (1977).
CAS
Google Scholar
Roza, M., and A. Francke: Cyclic Peroxides from a Soya Lipoxygenase-Catalyzed Oxygenation of Methyl Linoleate. Biochim. Biophys. Acta 528, 119 (1978).
CAS
Google Scholar
Bild, G. S., S. G. Bhat, C. S. Ramadoss, and B. Axelrod: Biosynthesis of a Prosta-glandin by a Plant Enzyme. J. Biol. Chem. 253, 21 (1978).
CAS
Google Scholar
Jefford, C. W., and C. G. Rimbault: Reaction of Singlet Oxygen with a Nor- bornadienol Ether. Intramolecular Interception of a Zwitterionic Peroxide. J. Amer. Chem. Soc. 100, 6515 (1978).
CAS
Google Scholar
Beckwith, A. J. L., and R. D. Wagner: Formation of Cyclic Peroxides by Oxygenation of Thiophenol-Diene Mixtures. J. Amer. Chem. Soc. 101, 7099 (1979).
CAS
Google Scholar
Hamberg, M., and B. Samuelsson: On the Mechanism of the Biosynthesis of Prostaglandins Ei und Fi«. J. Biol. Chem. 242, 5336 (1967).
CAS
Google Scholar
Flashner, M. S., and V. Massey: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 245–283. New York-London: Academic Press, Inc. 1974.
Google Scholar
Ziffer, H., K. Kabuto, D. T. Gibson, V. M. Kobal, and D. M. Jerina: The Absolute Stereochemistry of Several cw-Dihydrodiols Microbially Produced from Substituted Benzenes. Tetrahedron 33, 2491 (1977).
CAS
Google Scholar
Gibson, D. T., J. R. Koch, and R. E. Kallio: Oxidative Degradation of Aromatic Hydrocarbons by Microorganisms. I. Enzymatic Formation of Catechol from Benzene. Biochem. 7, 2653 (1968).
CAS
Google Scholar
Gibson, D. T., G. E. Cardini, F. C. Maseles, and R. E. Kallio: Incorporation of Oxygen-18 into Benzene by Pseudomonas putida. Biochem. 9, 1631 (1970).
CAS
Google Scholar
Gibson, D. T., B. Gschwendt, W. K. Yeh, and V. M. Kobal: Initial Reactions in the Oxidation of Ethylbenzene by Pseudomonas putida. Biochem. 12, 1520 (1973).
CAS
Google Scholar
Catterall, F. A., and P. A. Williams: Some Properties of the Naphthalene Oxygenase from Pseudomonas sp. NCIB 9816. J. Gen. Microbiol. 67, 117 (1971).
CAS
Google Scholar
Jeffrey, A. M., H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson: Initial Reaction in the Oxidation of Naphthalene by Pseudomonas putida. Biochem. 14, 575 (1975).
CAS
Google Scholar
Yeh, W. K., D. T. Gibson, and T.-N. Liu: Toluene Dioxygenase: A Multicomponent Enzyme System. Biochem. Biophys. Res. Commun. 78, 401 (1977).
CAS
Google Scholar
Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry: Formation of (+)-CW- 2,3-Dihydroxy-l-methylcyclohexa-4,6-diene from Toluene by Pseudomonas putida. Biochem. 9, 1626 (1970).
CAS
Google Scholar
Sauber, K., C. Fröhner, G. Rosenberg, J. Eberspächer, and F. Lingens: Purification and Properties of Pyrazon Dioxygenase from Pyrazondegrading Bacteria. Eur. J. Biochem. 74, 89 (1977).
CAS
Google Scholar
Taniuchi, H., and O. Hayaishi: Studies on the Metabolism of Kynurenic Acid. J. Biol. Chem. 238, 283 (1963).
CAS
Google Scholar
Reiner, A. M., and G. D. Hegeman: Metabolism of Benzoic Acid by Bacteria. Biochem. 10, 2530 (1971).
CAS
Google Scholar
Kobayashi, S., S. Kuno, N. Itada, O. Hayaishi, S. Kozuka, and S. Oae: O18 Studies on Anthranilate Hydroxylases. A Novel Mechanism of Double Hydroxylation. Biochem. Biophys. Res. Commun. 16, 556 (1964).
CAS
Google Scholar
Taniuchi, M., M. Hatanaka, S. Kuno, O. Hayaishi, M. Nakajima, and N. Kuri- Hara: Enzymic Formation of Catechol from Anthranilic Acid. J. Biol. Chem. 239, 2204 (1964).
CAS
Google Scholar
Kobayashi, S., and O. Hayaishi: Anthranilic Acid Conversion to Catechol (Pseudomonas). Methods in Enzymol. 17A, 505 (1970).
Google Scholar
Subba Rao, P. V., N. S. Sreeleela, R. Premkumar, and C. S. Vaidyanathan: Anthranilic Acid Hydroxylase (Aspergillus niger). Methods in Enzymol. 17 A, 510 (1970).
Google Scholar
Kumar, R. P., N. S. Sreeleela, P. V. Subba Rao, and C. S. Vaidyanathan: Anthranilate Hydroxylase from Aspergillus niger: Evidence for the Participation of Iron in the Double Hydroxylation Reaction. J. Bacteriol. 113, 1213 (1973).
CAS
Google Scholar
Subramanian, V., T.-N. Liu, W. K. Yeh, and D. T. Gibson: Toluene Dioxygenase: Purification of an Iron-Sulfur Protein by Affinity Chromatography. Biochem. Biophys. Commun. 91, 1131 (1979).
CAS
Google Scholar
Axcell, B. C., and P. C. Geary: Purification and some Properties of a Soluble Benzene-oxidizing System from a Strain of Pseudomonas. Biochem. J. 146, 173 (1975).
CAS
Google Scholar
Crutcher, S. E., and P. J. Geary: Properties of the Iron-Sulphur Proteins of the Benzene Dioxygenase System from Pseudomonas putida. Biochem. J. 177, 393 (1979).
CAS
Google Scholar
Yamaguchi, M., T. Yamauchi, and H. Fujisawa: Studies on the Mechanism of Double Hydroxylation. I. Evidence for the Participation of NADH-Cytochrome c Reductase in the Reaction of Benzoate 1,2-Dioxygenase (Benzoate Hydroxylase). Biochem. Biophys. Res. Commun 67, 264 (1975).
CAS
Google Scholar
Ullrich, V., and W. Düppel: In “The Enzymes”, Vol. 12 ( P. D. BOYER, ed.), pp. 253. New York-London: Academic Press, Inc. 1975.
Google Scholar
Reineke, W., and H.-J. Knackmuss: Chemical Structure and Biodegradability of Halo- genated Aromatic Compounds: Substituent Effects on 1,2-Dioxygenation of Benzoic Acid. Biochim. Biophys. Acta 542, 412 (1978).
CAS
Google Scholar
Sparrow, L. G., P. P. K. Ho, T. K. Sundaram, D. Zach, E. J. Nyns, and E. E. Snell: The Bacterial Oxidation of Vitamin B6. J. Biol. Chem. 244, 2590 (1969).
CAS
Google Scholar
Kishore, G., and E. E. Snell: Mechanism of Action of 2-Methyl-3-hydroxy- pyridine-5-carboxylic Acid Oxygenase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 319.
Google Scholar
Kishore, G. M., and E. E. Snell: Reactivity of an FAD-dependent Oxygenase with Free Flavins: A New Mode of Uncoupling in Flavoprotein Oxygenases. Bio- chem. Biophys. Res. Commun. 87, 518 (1979).
CAS
Google Scholar
Kemal, C., and T. C. Bruice: Transfer of O2 from a 4a-Hydroxyperoxyflavin Anion to a Phenolated Ion. A Flavin-catalyzed Dioxygenation Reaction. J. Amer. Chem. Soc. 101, 1635 (1979).
CAS
Google Scholar
Suzuki, I.: Oxidation of Elemental Sulfur by an Enzyme System of Thiobacillus thiooxidans. Biochim. Biophys. Acta 104, 359 (1965).
CAS
Google Scholar
Suzuki, I.: Incorporation of Atmospheric Oxygen-18 into Thiosulfate by the Sulfur- oxidizing Enzyme of Thiobacillus thiooxidans. Biochim. Biophys. Acta 110, 97 (1965).
CAS
Google Scholar
Cavallini, D., C. De Marco, R. Scandurra, S. Dupré, and M. T. Graziani: The Enzymatic Oxidation of Cysteamine to Hypotaurine. J. Biol. Chem. 241, 3189 (1966).
CAS
Google Scholar
Rotilio, G., G. Frederici, L. Calabrese, M. Costa, and D. Cavallini: An Electron Paramagnetic Resonance Study of the Nonheme Iron of Cysteamine Oxygenase. J. Biol. Chem. 245, 6235 (1970).
CAS
Google Scholar
Ewetz, L., and B. Sörbo: Characteristics of the Cysteinesulfinate-forming Enzyme in Rat Liver. Biochim. Biophys. Acta 128, 296 (1966).
CAS
Google Scholar
Lombardini, J. B., T. P. Singer, and P. D. Boyer: Cysteine Oxygenase II. Studies on the Mechanism of the Reaction with 18Oxygen. J. Biol. Chem. 244, 1172 (1969).
CAS
Google Scholar
Yamaguchi, K., Y. Hosokawa, N. Kohashi, Y. Kori, S. Sakakibara, and I. Ueda: Rat Liver Cysteine Dioxygenase (Cysteine Oxidase). J. Biochem. 83, 479 (1978).
CAS
Google Scholar
Charalampous, F. C.: Biochemical Studies in Inositol. J. Biol. Chem. 235, 1286 (1960).
CAS
Google Scholar
Charalampous, F. C.: Inositol-cleaving Enzyme from Rat Kidney. Methods in Enzymol. 5, 329 (1962).
CAS
Google Scholar
Reddy, C. C., P. A. Pierzchala, and G. A. Hamilton: Effects of Various Metabolites, Complexing Agents and Metal Ions on Inositol Oxygenase. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1720 (1978).
Google Scholar
Kido, T., K. Soda, T. Suzuki, and K. Asada: A New Oxygenase, 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 251, 6994 (1976).
CAS
Google Scholar
Singh, H., and H. R. Cama: Enzymatic Cleavage of Carotenoids. Biochim. Biophys. Acta 370, 49 (1974).
CAS
Google Scholar
Bowes, G., W. L. Ogren, and R. H. Hageman: Phosphoglycolate Production Catalyzed by Ribulose Diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 45, 716 (1971).
CAS
Google Scholar
Lorimer, G. H., C. B. Osmond, T. Akazawa, and S. Asami: On the Mechanism of Glycolate Synthesis by Chromatium and Chlorella. Arch. Biochem. Biophys. 185, 49 (1978).
CAS
Google Scholar
Lorimer, G. H., M. R. Badger, and T. J. Andrews: The Activation of Ribulose- 1,5-bisphosphate Carboxylase by Carbon Dioxide and Magnesium Ions. Equilibrium Kinetics, a Suggested Mechanism and Physiological Implications. Biochem. 15, 529 (1976).
CAS
Google Scholar
Christeller, J. T., and W. A. Laing: Effects of Manganese Ions and Magnesium Ions on the Activity of Soya-bean Ribulose Bisphosphate Carboxylaseoxygenase. Biochem. J. 183, 747 (1979).
CAS
Google Scholar
Robison, P. D., M. N. Martin, and F. R. Tabita: Differential Effects of Metal Ions on Rhodospirillum rubrum. Ribulosebisphosphate Carboxylaseoxygenase and Stoichiometric Incorporation of HCO3 into a Cobalt (III)-Enzyme Complex. Biochem. 18, 4453 (1979).
CAS
Google Scholar
Wildner, G. F., and J. Henkel: Differential Reactivation of Ribulose 1,5-Bis- phosphate Oxygenase with Low Carboxylase Activity by Mn2 +. Fed. Eur. Biochem. Soc. Letts 91, 99 (1978).
CAS
Google Scholar
Branden, R.: Ribulose-1,5-dipbosphate Carboxylase and Oxygenase from Green Plants are Two Different Enzymes. Biochem. Biophys. Res. Commun. 81, 539 (1978).
CAS
Google Scholar
Mccurry, S. D., N. P. Hall, J. Pierce, C. Paech, and N. E. Tolbert: Ribulose- 1,5-bis- phosphate Carboxylaseoxygenase from Parsely. Biochem. Biophys. Res. Commun. 84, 895 (1978).
CAS
Google Scholar
Bhagwat, A. S., J. Ramakrishna, and P. V. Sane: Specific Inhibition of Oxygenase Activity of Ribulose-1,5-diphosphate Carboxylase by Hydroxylamine. Biochem. Biophys. Res. Commun. 83, 954 (1978).
CAS
Google Scholar
Lorimer, G. H., T. J. Andrews, and N. E. Tolbert: Ribulose Oxygenase. II. Further Proof of Reaction Products. Biochem. 12, 18 (1973).
CAS
Google Scholar
Kosman, D. J.: Carbanions as Substrates in Biological Oxidation Reactions. Bio- organic Chem. 2, 175 (1978).
CAS
Google Scholar
Pierce, J., N. E. Tolbert, and R. Barker: A Mass Spectrometric Analysis of the Reaction of Ribulosebisphosphate Carboxylaseoxygenase. J. Biol. Chem. 255, 509 (1980).
CAS
Google Scholar
Sue, J. M., and J. R. Knowles: Retention of Oxygens at C-2 and C-3 of D-Ribulose 1,5-Bisphosphate in the Reaction Catalyzed by Ribulose-1,5-bisphosphate Carboxylase. Biochem. 17, 4041 (1978).
CAS
Google Scholar
Cardinale, G. J., and S. Udenfriend: Prolyl Hydroxylase. Adv. in Enzymol. 41, 245 (1974).
Google Scholar
Risteli, J., K. Tryggvason, and K. I. Kivirikko: Prolyl 3-Hydroxylase: Partial Characterization of the Enzyme from Rat Kidney Cortex. Eur. J. Biochem. 73, 485 (1977).
CAS
Google Scholar
Tryggvason, K., K. Majamaa, J. Risteli, and K. I. Kivirikko: Partial Purification and Characterization of Chick-Embryo Prolyl 3-Hydroxylase. Biochem. J. 183, 303 (1979).
CAS
Google Scholar
Miller, R. L., and H. H. Varner: Purification and Enzymic Properties of Lysyl Hydroxylase from Fetal Porcine Skin. Biochem. 18, 5928 (1979).
Google Scholar
Turpeenniemi, T. M., U. Puistola, H. Anttinen, and K. I. Kivirikko: Affinity Chromatography of Lysyl Hydroxylase on Concanavalin A-Agarose. Biochim. Biophys. Acta 483, 215 (1977).
CAS
Google Scholar
Henderson, L. L., and L. M. Henderson: Purification and Properties Trimethyllysine Hydroxylase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 2032.
Google Scholar
Hulse, J. D., S. R. Ellis, and L. M. Henderson: Carnitine Biosynthesis. J. Biol. Chem. 253, 1654 (1978).
CAS
Google Scholar
Bankel, L., G. Lindstedt, and S. Lindstedt: Thymine 7-Hydroxylase from Neuro- spora crassa. Substrate Specificity Studies. Biochim. Biophys. Acta 481, 431 (1977).
CAS
Google Scholar
Turner, M. K., J. E. Farthing, and S. J. Brewer: Oxygenation of (3-methyl-3H) Desacetoxycephalosporin C to (3-hydroxymethyl-3H) Desacetylcephalosporin C by 2-Oxoglutarate-linked Dioxygenases from Acremonium chrysogenum and Steptomyces clavuligerus. Biochem. J. 173, 839 (1978).
CAS
Google Scholar
Hook, D. J., L. T. Chang, R. P. Elander, and R. B. Morin: Stimulation of the Conversion of Penicillin N to Cephalosporin by Ascorbic Acid, a-Ketoglutarate, and Ferrous Ions in Cell-Free Extracts of Strains of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87, 258 (1979).
CAS
Google Scholar
Stevens, C. M., E. P. Abraham, F.-C. Huang, and C. J. SIH: Incorporation of Molecular Oxygen at C-17 of Cephalosporin C during its Biosynthesis. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34, 625 (1975).
Google Scholar
Taniguchi, K., T. Kappe, and M. D. Armstrong: Further Studies on Phenyl- pyruvate Oxidase. J. Biol. Chem. 239, 3389 (1964).
CAS
Google Scholar
Abbott, M. T., and S. Udenfriend: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayishi, ed.), pp. 168–214. New York-London: Academic Press, Inc. 1974.
Google Scholar
Tuderman, L., R. Myllyla, and K. I. Kivirikko: Mechanism of Prolylhydroxylase Reaction I. Eur. J. Biochem. 80, 341 (1977).
CAS
Google Scholar
Counts, D. F., G. J. Cardinale, and S. Udenfriend: Prolyl Hydroxylase Half Reaction: Peptidyl Prolyl-independent Decarboxylation of a-Ketoglutarate. Proc. Natl Acad. Sci. U.S.A. 75, 2145 (1978).
CAS
Google Scholar
Rao, N. V., and E. Adams: Partial Reaction of Prolyl Hydroxylase. J. Biol. Chem. 253, 6327 (1978).
CAS
Google Scholar
Puistola, U., T. M. Turpeenniemi-Hujanen, R. Myllyla, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. I. Initial Velocity Kinetics and Related Aspects. Biochim. Biophys. Acta 611, 40 (1980).
CAS
Google Scholar
Holme, E., G. Lindstedt, and S. Lindstedt: Partial Reaction of Thymine 7-hydroxy- lase. Acta Chem. Scand. B33, 621 (1979).
Google Scholar
Lindstedt, G., S. Lindstedt, and I. Nordin: Purification and Some Properties of y-Butyrobetaine Hydroxylase from Pseudomonas sp. AK 1. Biochem. 16, 2181 (1977).
CAS
Google Scholar
Shaffer, P. M., R. P. Mccroskey, R. D. Palmatier, R. J. Midgett, and M. T. Abbott: The Cell-free Conversion of a Deoxyribonucleoside to a Ribonucleoside without Detachment of the Deoxyribose. Biochem. Biophys. Res. Commun. 33, 806 (1968).
CAS
Google Scholar
Hausmann, E.: Cofactor Requirements for the Enzymatic Hydroxylation of Lysine in a Polypetide Precursor of Collagen. Biochim. Biophys. Acta 133, 591 (1967).
CAS
Google Scholar
Abbott, M. T., E. K. Schandl, R. F. Lee, T. S. Parker, and R. J. Midgett: Co- factor requirements for Thymine 7-Hydroxylase. Biochim. Biophys. Acta 132, 525 (1967).
CAS
Google Scholar
Abbott, M. T., T. A. Dragila, and R. P. Mccroskey: The Formation of 5-Formyl- uracil by Cell-Free Preparation from Neurospora crassa. Biochim. Biophys. Acta 169, 1 (1968).
CAS
Google Scholar
Watanabe, M. S., R. P. Mccroskey, and M. T. Abbott: The Enzymatic Conversion of 5-Formyluracil to Uracil 5-Carboxylic Acid. J. Biol. Chem. 245, 2023 (1970).
CAS
Google Scholar
Wada, G. H., J. H. Fellman, T. S. Fujita, and E. S. Roth: Purification and Properties of Avian Liver p-Hydroxyphenylpyruvate Hydroxylase. J. Biol. Chem. 250, 6720 (1975).
CAS
Google Scholar
Lindblad, B., G. Lindstedt, S. Lindstedt, and M. Rundgren: Purification and Some Properties of Human 4-Hydroxylphenylpyruvate Dioxygenase (I). J. Biol. Chem. 252, 5073 (1977).
CAS
Google Scholar
Lindstedt, S., B. Odelhog, and M. Rundgren: Purification and Some Properties of 4-Hydroxyphenylpyruvate Dioxygenase from Pseudomonas sp. P. J. 874. Biochem. 16, 3369 (1977).
CAS
Google Scholar
Lindblad, B., G. Lindstedt, M. Tofft, and S. Lindstedt: The Mechanism of OC- Ketoglutarate Oxidation in Coupled Enzymatic Oxygenations. J. Amer. Chem. Soc. 91, 4604 (1968).
Google Scholar
Cardinale, G. J., R. E. Rhoads, and S. Udenfriend: Simultaneous Incorporation of 180 into Succinate and Hydroxyproline Catalyzed by Collagen Prolyl Hydroxylase. Biochem. Biophys. Res. Commun. 43, 537 (1971).
CAS
Google Scholar
Holme, E., G. Lindstedt, S. Lindstedt, and M. Tofft: 1SO Studies of the 2-Keto- glutarate-dependent Sequential Oxygenation of Thymine to 5-Carboxyuracil. J. Biol. Chem. 246, 3314 (1971).
CAS
Google Scholar
Lindblad, B., G. Lindstedt, and S. Lindstedt: The Mechanism of Enzymic Formation of Homogentisate from -Hydroxyphenylpyruvate. J. Amer. Chem. Soc. 92, 7446 (1970).
CAS
Google Scholar
Myllylà, R., L. Tuderman, and K. I. Kivirikko: Mechanism of the Prolyl Hydroxylase Reaction 2. Eur. J. Biochem. 80, 349 (1977).
Google Scholar
Holme, E.: A Kinetic Study of Thymine 7-Hydroxylase from Neurospora crassa. Biochem. 14, 4999 (1975).
CAS
Google Scholar
Puistola, U., T. M. Turpeenniemi, R. Myllylà, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. II. Inhibition Kinetics and the Reaction Mechanism. Biochim. Biophys. Acta 611, 51 (1980).
CAS
Google Scholar
Rundgren, M.: Steady State Kinetics of 4-Hydroxyphenylpyruvate Dioxygenase from Human Liver II. J. Biol. Chem. 252, 5094 (1977).
CAS
Google Scholar
Hurych, J., P. Hobza, J. Rencova, and R. Zahradnik: In “The Biology of Fibroplasts” ( E. Kulonen, ed.), pp. 365–372. New York: Academic Press, Inc. 1973.
Google Scholar
Liu, T. Z., and R. S. Bhatnagar: Mechanism of Hydroxylation of Proline. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 32, 613 (1973).
Google Scholar
Halme, J., K. I. Kivirikko, and K. Simons: Isolation and Partial Characterization of Highly Purified Protocollagen Proline Hydroxylase. Biochim. Biophys. Acta 198, 460 (1970).
CAS
Google Scholar
Popenoe, E. A., R. B. Aronson, and D. D. Van Slyke: The Sulfhydryl Nature of Collagen Proline Hydroxylase. Arch. Biochem. Biophys. 133, 286 (1969).
CAS
Google Scholar
Englard, S., and C. F. Midelfort: Stereochemical Course of y-Butyrobetaine Hydroxylation to Carnitine. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1806 (1978).
Google Scholar
Tryggvason, K., J. Risteli, and K. I. Kivirikko: Separation of Prolyl 3-Hydroxylase and 4-Hydroxylase Activities and the 4-Hydroxyproline Requirement for Synthesis of 3-Hydroxyproline. Biochem. Biophys. Res. Commun. 76, 275 (1977).
CAS
Google Scholar
Isbell, H. S., H. L. Frush, and Z. Orhanovic: Reaction of Carbohydrates with Hydroperoxides III. Oxidation of Sodium Salts of Alduronic and Glyulosonic Acids by Sodium Peroxide. Carbohydrate Res. 36, 283 (1974).
CAS
Google Scholar
Sanfilippo, J., JR., C.-I. Chern, and J. S. Valentine: Oxidative Cleavage of oe-Keto, a-Hydroxy- and a-Halo Ketones, Esters and Carboxylic Acids by Superoxide. J. Org. Chem. 41, 1077 (1976).
Google Scholar
Ilina, L. M., S. A. Borisenkova, A. P. Rudenko, and E. V. Lavrova: Transition Metal Phthalocyanines as Pyruvic Acid Decarboxylation Catalysts. Vestn. Mosk. Univ. Khim. 13, 249 (1972).
CAS
Google Scholar
Jefford, C. W., A. F. Boschung, T. A. B. M. Bolsman, R. M. Moriarty, and B. Melnick: Reaction of Singlet Oxygen with oc-Ketocarboxylic Acids. J. Amer. Chem. Soc. 98, 1017 (1976).
CAS
Google Scholar
Jefford, C. W., A. Exarchou, and P. A. Cadby: The Role of Singlet Oxygen as Reagent in the Dye-Sensitized Photo-oxygenation of oc-Ketocarboxylic Acids. Tetrahedron Letts 1978, 2053.
Google Scholar
Jefford, C. W., and P. A. Cadby, in press.
Google Scholar
Bruice, T. C., and P. Y. Bruice: Solution Chemistry of Arene Oxides: Acc. Chem. Res. 9, 379 (1976).
Google Scholar
Groves, J. T., and G. A. Mcclusky: Aliphatic Hydroxylation via Oxygen Rebound. Oxygen Transfer Catalyzed by Iron. J. Amer. Chem. Soc. 98, 859 (1976).
CAS
Google Scholar
Groves, J. T., and M. Van Der Puy: Stereospecific Aliphatic Hydroxylation by Iron-Hydrogen Peroxide. Evidence for a Stepwise Process. J. Amer. Chem. Soc. 98, 5290 (1976).
CAS
Google Scholar
Jefford, C. W., and P. A. Cadby, unpublished results.
Google Scholar
Saito, I., Y. Chujo, H. Shimazu, M. Yamane, T. Matsuura, and H. J. Cahnmann: Non Enzymic Oxidation of -Hydroxyphenylpyruvic Acid with Singlet Oxygen to Homogentisic Acid. A Model for the Action of -Hydroxyphenylpyruvate Hydroxylase. J. Amer. Chem. Soc. 97, 5272 (1975).
CAS
Google Scholar
Moriarty, R. M., A. Chin, and M. P. Tucker: Dioxygen Fixation. Oxene Transfer in the Reaction of Singlet Dioxygen with a-Keto Acids. J. Amer. Chem. Soc. 100, 5578 (1978).
CAS
Google Scholar
Moriarty, R. M., K. B. White, and A. Chin: Ozonation of Ketenes. Nature of Intermediates. J. Amer. Chem. Soc. 100, 5582 (1978).
CAS
Google Scholar
Yang, N. C., and J. Libman: Ozonation of Acetylenes and Related Compounds in the Presence of Tetracyanoethylene and Pinacolone. J. Org. Chem. 39, 1782 (1974).
CAS
Google Scholar
Keay, R. E., and G. A. Hamilton: Alkene Epoxidation by Intermediates Formed During the Ozonation of Alkynes. J. Amer. Chem. Soc. 98, 6578 (1976).
CAS
Google Scholar
Antholine, W. E., and D. H. Petering: On the Reaction of Iron Bleomycin with Thiols and Oxygen. Biochem. Biophys. Res. Commun. 90, 384 (1979).
CAS
Google Scholar
Ohmoro, M., and M. Takagi: Polarography of a-Keto Acids in Aqueous and Nonaqueous Solutions. Bull. Chem. Soc. (Japan). 50, 773 (1977).
Google Scholar
Hobza, P., J. Hurych, and R. Zahradnik: Quantum Chemical Study of the Mechanism of Collagen Proline Hydroxylation. Biochim. Biophys. Acta 304, 466 (1973).
CAS
Google Scholar