Molecular Mechanisms of Enzyme-Catalyzed Dioxygenation (An Interdisciplinary Review)

  • C. W. Jefford
  • P. A. Cadby
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 40)


Enzymes which catalyze the introduction of one or both atoms of a molecule of oxygen into an organic substrate are termed oxygenases. Further classification into mono- and dioxygenases in based on whether the enzyme causes transfer of just one atom to the substrate (S) (eq. 1) or whether the whole molecule is incorporated into a single substrate (eq. 2a) or is shared by a pair of substrates (S, S′) (eq. 2b) (1, 2)1.


Molecular Oxygen Singlet Oxygen High Occupied Molecular Orbital Acyl Migration Phenoxy Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayaishi, O.: In “Molecular Mechanisms of Oxygen Activation” ( O. HAYAISHI, ed.), pp. 1–28. New York-London: Academic Press, Inc. 1974.Google Scholar
  2. 2.
    Hayaishi, O., M. Nozaki, and M. T. Abbott: In “The Enzymes”, Vol. 12 ( P. D. Boyer, ed.), pp. 119–189. New York-London: Academic Press, Inc. 1975.Google Scholar
  3. 3.
    George, P.: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 3–36. New York-London: J. Wiley & Sons, Inc. 1965.Google Scholar
  4. 4.
    Hamilton, G. A.: In “Progress in Bioorganic Chemistry”, Vol. 1 ( E. T. Kaiser and F. J. Kézdy, eds.), pp. 83–157. New York-London-Toronto: Wiley-Interscience. 1971.Google Scholar
  5. 5.
    Hamilton, G. A.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 405–451. New York-London: Academic Press, Inc. 1974.Google Scholar
  6. 6.
    Henrici-Olivé, G., and S. Olivé: Activation of Molecular Oxygen. Angew. Chem. Int. Edn (Engl.) 13, 29 (1974).Google Scholar
  7. 7.
    Martell, A. E., and M. M. Taqui Khan: In “Inorganic Biochemistry”, Vol. 2 ( G. L. Eichhorn, ed.), p. 645. Amsterdam: Elsevier. 1973.Google Scholar
  8. 8.
    Boyd, G. S.: In: “Biological Hydroxylation Mechanisms” ( G. S. Boyd and R. M. S. Smellie, eds.), pp. 1–9. London-New York: Academic Press, Inc. 1972.Google Scholar
  9. 9.
    Lyons, J. E.: In “Aspects of Homogeneous Catalysis”, Vol. 3 ( R. UGO, ed.), pp. 1–136. Dortrecht: Reidel. 1977.Google Scholar
  10. 10.
    Jones, R. D., D. A. Summer Ville, and F. Basolo: Synthetic Oxygen Carriers Related to Biological Systems. Chem. Rev. 79, 139 (1979).Google Scholar
  11. 11.
    Matsuura, T.: Biomimetic Oxygenation. Tetrahedron 33, 2869 (1977).Google Scholar
  12. 12.
    Bayer, E., P. Krauss, A. Röder, and P. Schretzmann: In “Oxidases and Related Redox Systems”, Vol. 1 ( T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 227–263. Maryland: University Park Press. 1973.Google Scholar
  13. 13.
    Criegee, R.: Versuche zur Darstellung von Tetramethyl-cyclobutadien. Angew. Chem. 74, 703 (1962).Google Scholar
  14. 14.
    Turro, N. J., V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper: Reaction of Strained Acetylenes with Molecular Oxygen. J. Amer. Chem. Soc. 98, 6758 (1976).Google Scholar
  15. 15.
    Howard, J. A.: In “Free Radicals”, Vol. 2 ( J. K. Kochi, ed.), pp. 3–62. London: Wiley-Interscience. 1973.Google Scholar
  16. 16.
    Lloyd, W. G.: In “Methods in Free-Radical Chemistry”, Vol. 4 ( E. S. Huyser, ed.), pp. 2–131. New York: Marcel Dekker, Inc. 1973.Google Scholar
  17. 17.
    Denny, R. W., and A. Nickon: Sensitized Photooxygenation of Olefins. Org. Reactions 20, 133 (1973).Google Scholar
  18. 18.
    Gollnick, K.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 111–134. Chichester: Wiley-Interscience. 1978.Google Scholar
  19. 19.
    Schmitt, R. J., V. M. Bierbaum, and C. H. Depuy: Gas-Phase Reactions of Carbanions with Triplet and Singlet Molecular Oxygen. J. Amer. Chem. Soc. 101, 6443 (1979).Google Scholar
  20. 20.
    Jensen, W. B.: The Lewis Acid-Base Definitions: A Status Report. Chem. Rev. 78, 1 (1978).Google Scholar
  21. 21.
    Nishinaga, A., T. Shimizu, and T. Matsuura: Reaction of Potassium Superoxide with Phenoxy Radicals. On the Mechanism of Base-Catalyzed Oxygenation of Phenols. Chem. Letts 1977, 547.Google Scholar
  22. 22.
    Goto, K., H. Tamura, and M. Nagayama: The Mechanism of Oxygenation of Ferrous Ion in Neutral Solution. Inorgan. Chem. 9, 963 (1970).Google Scholar
  23. 23.
    Ishida, H., H. Takahashi, H. Sato, and H. Tsubomura: The Interaction of Oxygen with Organic Molecules. J. Amer. Chem. Soc. 92, 275 (1970).Google Scholar
  24. 24.
    Heidt, L. J., and A. M. Johnson: Optical Study of the Hydrates of Molecular Oxygen in Water. J. Amer. Chem. Soc. 79, 5587 (1957).Google Scholar
  25. 25.
    Gray, H. B., and H. J. Schugar: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eichhorn, ed.), pp. 102–319. Amsterdam: Elsevier. 1973.Google Scholar
  26. 26.
    Reed, C. A., and S. K. Cheung: On the Bonding of Fe02 in Hemoglobin and Related Dioxygen Complexes. Proc. Ntl. Acad. Sci. U.S.A. 74, 1780 (1977).Google Scholar
  27. 27.
    Vaska, L.: Dioxygen-Metal Complexes: Towards a Unified View. Acc. Chem. Res. 9, 175 (1976).Google Scholar
  28. 28.
    Basolo, F., B. M. Hoffman, and J. A. Ibers: Synthetic Oxygen Carriers of Biological Interest. Acc. Chem. Res. 8, 384 (1975).Google Scholar
  29. 29.
    Hammond, G. S., and C.-H. S. Wu: Oxidation of Iron(II) Chloride in Nonaqueous Solvents. Adv. in Chem. 77, 186 (1968).Google Scholar
  30. 30.
    Carter, M. J., D. P. Riliema, and F. Basolo: Oxygen Carrier and Redox Properties of Some Neutral Cobalt Chelates. Axial and In-plane Ligand Effects. J. Amer. Chem. Soc. 96, 392 (1974).Google Scholar
  31. 31.
    Dawson, J. H., R. H. Holm, J. R. Trudell, G. Barth, R. E. Linder, E. Bunnen-Berg, C. Djerassi, and S. C. Tang: Oxidized Cytochrome P-450. Magnetic Circular Dichroism Evidence for Thiolate Ligation in the Substrate-Bound Form. J. Amer. Chem. Soc. 98, 3707 (1976).Google Scholar
  32. 32.
    Valentine, J. S.: The Dioxygen Ligand in Mononuclear Group VIII Transition Metal Complexes. Chem. Rev. 73, 235 (1973).Google Scholar
  33. 33.
    Sen, A., and J. Halpern: Role of Transition Metal-Dioxygen Complexes in Catalytic Oxidation. J. Amer. Chem. Soc. 99, 8337 (1977).Google Scholar
  34. 34.
    Schmidt, D. D., and J. T. Yoke: Autoxidation of a Coordinated Trialkylphosphine. J. Amer. Chem. Soc. 93, 637 (1971).Google Scholar
  35. 35.
    Hanzlik, R. P., and D. Williamson: Oxygen Activation by Transition Metal Complexes. 2. J. Amer. Chem. Soc. 98, 6570 (1976).Google Scholar
  36. 36.
    Sutin, N., and J. K. Yandell: Autoxidation Reactions Catalyzed by Iron (III) and Iron (IV) Dithiolate Complexes. J. Amer. Chem. Soc. 95, 4847 (1973).Google Scholar
  37. 37.
    Holland, D., and D. J. Milner: Liquid Phase Metal-Centred Autoxidation of Cyclo-octene Promoted by Rhodium Species. J. Chem. Soc. (London) Dalton Trans. 1975, 2440.Google Scholar
  38. 38.
    Read, G., and P. J. C. Walker: Oxygenation Studies. Part 2. Rhodium(l)-catalyzed Autoxidation of Oct-l-ene at Ambient Temperature and Pressure. J. Chem. Soc. ( London) Dalton Trans. 1977, 883.Google Scholar
  39. 39.
    Mimoun, H., M. M. P. Marchirant, and I. S. De Roch: Activation of Molecular Oxygen: Rhodium-catalyzed Oxidation of Olefins. J. Amer. Chem. Soc. 100, 5437 (1978).Google Scholar
  40. 40.
    Takao, K., H. Azuma, Y. Fujiwara, T. Imanaka, and S. Teranishi: Oxidation by Transition Metal Complexes. V. Oxidation of Vinyl Esters Catalyzed by Rhodium Complex. Bull. Chem. Soc. Japan 45, 2003 (1972).Google Scholar
  41. 41.
    Bartlett, P. D., and J. S. Mckennis: Catalyzed Decomposition of Tetramethyl- 1,2-Dioxetane by Rhodium and Iridium Complexes. J. Amer. Chem. Soc. 99, 5334 (1977).Google Scholar
  42. 42.
    Tsuji, J., and H. Takayanagi: Organic Synthesis by Means of Metal Complexes. XIII. J. Amer. Chem. Soc. 96, 7349 (1974).Google Scholar
  43. 43.
    Rogió, M. M., T. R. Demmin, and W. B. Hammond: Cleavage of Carbon-Carbon Bonds. Copper (Il)-Induced Oxygenolysis of o-Quinones, Catechols and Phenols. J. Amer. Chem. Soc. 98, 7441 (1976).Google Scholar
  44. 44.
    Rogió, M. M., and T. R. Demmin: Cleavage of Carbon-Carbon Bonds. Copper(II)- Induced Oxygenolysis of o-Benzoquinones, Catechols and Phenols. On the Question of Nonenzymic Oxidation of Aromatics and Activation of Molecular Oxygen. J. Amer. Chem. Soc. 100, 5472 (1978).Google Scholar
  45. 45.
    Tsuji, J., and H. Takayanagi: Oxidative Cleavage Reaction of Catechol and Phenol to Monoester of ds,ds-Muconic Acid with the Oxidizing Systems of 02CuCl, KOHQ1CI2 and K02CUC12 in a Mixture of Pyridine and Alcohol. Tetrahedron 34, 641 (1978).Google Scholar
  46. 46.
    Tsuji, J., and H. Takayanagi: Oxidative Reaction of 3-Methylindole Catalyzed by CuCl-Pyridine Complex under Oxygen. Chem. Letts 1980, 65–66.Google Scholar
  47. 47.
    Brown, D. G., L. Beckmann, C. H. Ashby, G. C. Vogel, and J. T. Reinprecht: Tetrahedron Letts 1977, 1363. Oxygen-Dependent Ring Cleavage in a Copper Coordinated Catechol.Google Scholar
  48. 48.
    Grinstead, R. R.: Metal-catalyzed Oxidation of 3,5-di-Butyl Pyrocatechol, and its Significance in the Mechanism of Pyrocatechase Action. Biochemistry 3, 1308 (1964).Google Scholar
  49. 49.
    Kramer, C. E., G. Da Vies, R. B. Davis, and R. W. Slaven: Characterization of a Novel Low Oxidation State Transition Metal Peroxide from the Reaction of Copper(I) Chloride with Oxygen in Pyridine. Chem. Commun. 1975, 606.Google Scholar
  50. 50.
    Tyson, C. A., and A. E. Martell: Kinetics and Mechanism of the Metal Chelate Catalyzed Oxidation of Pyrocatechols. J. Amer. Chem. Soc. 94, 939 (1972).Google Scholar
  51. 51.
    Buffle, J., and A. E. Martell: Metal Ion Catalyzed Oxidation of o-Dihydroxy Aromatic Compounds by Oxygen. 1. Inorgan. Chem. 16, 2221 (1977).Google Scholar
  52. 52.
    Wüthrich, K., and S. Fallab: Reaktivität von Koordinationsverbindungen. XI. Mechanismus der Kupfer (Il)-katalysierten Autoxydation von o-Phenylendiamin. Helv. Chim. Acta 47, 1440 (1964).Google Scholar
  53. 53.
    Ohkatsu, Y., and O. Tetsuo: The Liquid-Phase Oxidation of Aldehydes with Metal Tetra(7-tolyl)porphyrins. Bull. Chem. Soc. Japan 50, 2945 (1977).Google Scholar
  54. 54.
    Ohkatsu, Y., and T. Tsuruta: Autoxidation Reactions of Hydrocarbons Catalyzed by Co (II) Tetra (7-tolyl) porphyrin. Bull. Chem. Soc. Japan 51, 188 (1978).Google Scholar
  55. 55.
    Abel, W. E., J. M. Pratt, R. Whelan, and P. J. Wilkinson: Reduction of Coordinated 02 by Organic Substrates. J. Amer. Chem. Soc. 96, 7119 (1974).Google Scholar
  56. 56.
    Nishinaga, A., T. Tojo, and T. Matsuura: A Model Catalytic Oxygenation for the Reaction of Quercetinase. Chem. Commun. 1974, 896.Google Scholar
  57. 57.
    Nishinaga, A., K. Watanabe, and T. Matsuura: Oxygenation of 2,6-Di-i-Butyl- 4-alkylphenols Catalyzed by Cobalt(II) SchifT’s Base Complexes. Tetrahedron Letts 1974, 1291.Google Scholar
  58. 58.
    Vogt, L. H. JR., J. G. Wirth, and H. L. Finkbeiner: Selective Autoxidation of some Phenols Using Bis(salicylaldehyde)ethylenediiminecobalt Catalysts. J. Org. Chem. 34, 273 (1969).Google Scholar
  59. 59.
    Dance, I. G., R. C. Conrad, and J. E. Cline: Mechanism of Cobalt Dithiolene Complex Catalysis of Thiol Autoxidation in Acidic Acetonitrile Solution. Chem. Commun. 1974, 13.Google Scholar
  60. 60.
    Vogt, L. H. JR.: Reversible Oxygen-Carrying Chelates. Chem. Rev. 63, 269 (1963).Google Scholar
  61. 61.
    Nishinaga, A., K. Nishizawa, H. Tomita, and T. Matsuura: Novel Peroxycobalt(III) Complexes Derived from 4-Aryl-2,6-di-írí-butylphenols. J. Amer. Chem. Soc. 99, 1287 (1977).Google Scholar
  62. 62.
    Nishinaga, A., H. Tomita, and T. Matsuura: Selective Formation of Peroxyquinolato Co(III) Complexes in the Oxygenation of 4-Alkyl-2,6-di-i-butylphenols with Co(II)-Schiff’s Base Complexes. Tetrahedron Letts 1979, 2893.Google Scholar
  63. 63.
    Kamiya, Y.: The Autoxidation of a-Methylstyrene Catalyzed by Copper Phthalo- cyanine. Tetrahedron Letts 1968, 4965.Google Scholar
  64. 64.
    Kamiya, Y.: Catalysis by Metal Acetylacetonates in the Autoxidation of Hydrocarbons. J. Catalysis 24, 69 (1972).Google Scholar
  65. 65.
    Mcneal, R. J., and G. R. Cook: Photoionization of 02 in the Metastable *Ag State. J. Chem. Phys. 45, 3469 (1966).Google Scholar
  66. 66.
    Bartlett, N., and D. H. Lohmann: Dioxygenyl Hexafluoroplatinate(V). Proc. Chem. Soc. ( London ) 1962, 115.Google Scholar
  67. 67.
    D’orazio, L. A., and R. H. Wood: Thermodynamics of the Higher Oxides. 1. The Heats of Formation and Lattice Energies of the Superoxides of Potassium, Rubidium and Cesium. J. Phys. Chem. 69, 2550 (1965).Google Scholar
  68. 68.
    Lee-Ruff, E.: The Organic Chemistry of Superoxide. J. Chem. Soc. (London) Rev. 6, 195 (1977).Google Scholar
  69. 69.
    Sawyer, D. T., M. J. Gibian, M. M. Morrison, and E. T. Seo: On the Reactivity of Superoxide Ion. J. Amer. Chem. Soc. 100, 627 (1978).Google Scholar
  70. 70.
    Danen, W. C., and R. J. Warner: The Remarkable Nucleophlicity of Superoxide Anion Radical. Rate Constants for Reaction of Superoxide Ion with Aliphatic Bromides. Tetrahedron Letts 1977, 989.Google Scholar
  71. 71.
    Wilshire, J., and D. T. Sawyer: Redox Chemistry of Dioxygen Species. Acc. Chem. Res. 12, 105 (1979).Google Scholar
  72. 72.
    Mayer, R., J. Widom, and L. Que, JR.: Involvement of Superoxide in the Reactions of Catechol Dioxygenases. Biochem. Biophys. Res. Commun. 92, 285 (1980).Google Scholar
  73. 73.
    Myllylà, R., L. M. Schubotz, U. Weser, and K. I. Kivirikko: Involvement of Superoxide in the Prolyl and Lysyl Hydroxylase Reactions. Biochem. Biophys. Res. Commun. 89, 98 (1979).Google Scholar
  74. 74.
    Bhagwat, A. S., and P. V. Sane: Evidence for the Involvement of Superoxide Anions in the Oxygenase Reaction of Ribulose-l,2-diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 84, 865 (1978).Google Scholar
  75. 75.
    Kido, T., K. Soda, and K. Asada: Properties of 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 253, 226 (1978).Google Scholar
  76. 76.
    Hamilton, G. A., P. K. Adolf, J. Dejersey, G. C. Dubois, G. R. Dyrkacz, and R. D. Libby: Trivalent Copper, Superoxide, and Galactose Oxidase. J. Amer. Chem. Soc. 100, 1899 (1978).Google Scholar
  77. 77.
    Bellus, D.: In “Singlet Oxygen” ( B. Rànby and J. F. Rabek, eds.), pp. 61–110. Chichester: Wiley-Interscience. 1978.Google Scholar
  78. 78.
    Turro, N. J., M. F. Chow, and Y. Ito: Autoxidation of Ketenes, Diradicaloid and Zwitterionic Mechanisms of Reactions of Triplet Molecular Oxygen and Ketenes. J. Amer. Chem. Soc. 100, 5580 (1978).Google Scholar
  79. 79.
    Siegel, B., and J. Lanphear: Iron-catalyzed Oxidative Decarboxylation of Benzoyl- formic Acid. J. Amer. Chem. Soc. 101, 2221 (1979).Google Scholar
  80. 80.
    Siegel, B., and J. Lanphear: Kinetics and Mechanism for the Acid-catalyzed Oxidative Decarboxylation of Benzoylformic Acid. J. Org. Chem. 44, 942 (1979).Google Scholar
  81. 81.
    Kochi, J. K. In “Free Radicals”, Vol. 1 (J. K. Kochi, ed.), pp. 529–683. London: Wiley-Interscience. 1973.Google Scholar
  82. 82.
    Jones, M. M., and J. E. Hix, JR.: In “Inorganic Biochemistry”, Vol. 1 ( G. L. Eich-Horn, ed.), pp. 361. Amsterdam: Elsevier. 1973.Google Scholar
  83. 83.
    Nozaki, M.: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 135–165. New York-London: Academic Press, Inc. 1974.Google Scholar
  84. 84.
    White, G. A., and R. M. Krupka: Ascorbic Acid Oxidase and Ascorbic Acid Oxygenase of Myrothecium verrucaria. Arch. Biochem. Biophys. 110, 448 (1965).Google Scholar
  85. 85.
    Gaunt, J. K., and W. C. Evans: Metabolism of 4-Chloro-2-methylphenoxyacetate by a Soil Pseudomonad. Biochem. J. 122, 533 (1971).Google Scholar
  86. 86.
    Fujioka, M., and H. Wada: The Bacterial Oxidation of Indole. Biochim. Biophys. Acta 158, 70 (1968).Google Scholar
  87. 87.
    Sharma, H. K., and C. S. Vaidyanathan: A New Mode of Ring Cleavage of 2,3- Dihydroxybenzoic Acid in Tecoma starts (L.). European J. Biochem. 56, 163 (1975).Google Scholar
  88. 88.
    Seidman, M. M., A. Toms, and J. M. Wood: Influence of Side-Chain Substituents on the Position of Cleavage of the Benezene Ring by Pseudomonas fluorescens. J. Bacteriol. 97, 1192 (1969).Google Scholar
  89. 89.
    Tack, B. F., P. J. Chapman, and S. Dagely: Metabolism of Gallic Acid and Syringic Acid by Pseudomonas putida. J. Biological Chem. 247, 6438 (1972).Google Scholar
  90. 90.
    Que, L., JR., J. D. Lipscomb, R. Zimmermann, E. Munck, N. R. Orme-Johnson, and W. H. Orme-Johnson: Mossbauer and E. P. R. Spectroscopy of Protocate- chuate 3,4-Dioxygenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 452, 320 (1976).Google Scholar
  91. 91.
    Que, L., JR., J. D. Lipscomb, E. Munck, and J. M. Wood: Protocatechuate 3,4- Dioxygenase Inhibitor Studies and Mechanistic Implications. Biochim. Biophys. Acta 485, 60 (1977).Google Scholar
  92. 92.
    Que, L., JR.: Non-Heme Iron Dioxygenases. Structure and Bonding 40, 40 (1980).Google Scholar
  93. 93.
    Keyes, W. E., T. M. Loehr, and M. L. Taylor: Raman Spectral Evidence for Tyrosine Coordination of Iron in Protocatechuate 3,4-Dioxygenase. Biochem. Biophys. Res. Commun. 83, 941 (1978).Google Scholar
  94. 94.
    Tatsuno, Y., Y. Saeki, M. Iwaki, T. Yagi, M. Nozaki, T. Kitagawa, and S. Otsuka: Resonance Raman Spectra of Protocatechuate 3,4-Dioxygenase. Evidence for Coordination of Tyrosine Residue to Ferric Iron. J. Amer. Chem. Soc. 100, 4614 (1978).Google Scholar
  95. 95.
    Felton, R. H., L. D. Cheung, R. S. Phillips, and S. W. May: A Resonance Raman Study of Substrate and Inhibitor Binding to Protocatechuate-3,4-dioxygenase. Biochem. Biophys. Res. Commun. 85, 844 (1978).Google Scholar
  96. 96.
    May, S. W., and R. S. Phillips: Protocatechuate 3,4-Dioxygenase: Implications of Ionization Effects on Binding and Dissociation of Halohydroxybenzoates and on Catalytic Turnover. Biochemistry 18, 5933 (1979).Google Scholar
  97. 97.
    Que, L., JR., and R. H. Heistand II: Resonance Raman Studies on Pyrocatechase. J. Amer. Chem. Soc. 101, 2219 (1979).Google Scholar
  98. 98.
    May, S. W., R. S. Phillips, and C. D. Oldham: Interaction of Protocatechuate with Substituted Hydroxybenzoic Acids and Related Compounds. Biochemistry 17, 1853 (1978).Google Scholar
  99. 99.
    Nakata, H., T. Yamauchi, and H. Fujisawa: Studies on the Reaction Intermediate of Protocatechuate 3,4-Dioxygenase. Biochim. Biophys. Acta 527, 171 (1978).Google Scholar
  100. 100.
    Hayaishi, O., M. Katagiri, and S. Rothberg: Mechanism of the Pyrocatechase Reaction. J. Amer. Chem. Soc. 77, 5450 (1955).Google Scholar
  101. 101.
    Sawaki, Y., and Y. Ogata: Acyl Migration in the Acid-catalyzed Decomposition of oc-Hydroperoxy Ketones. J. Amer. Chem. Soc. 100, 856 (1978).Google Scholar
  102. 102.
    Sawaki, Y., and Y. Ogata: Chemiluminescence from the Base-Catalyzed Decomposition of a-Hydro- peroxy Ketones. Competitive Cyclic and Acyclic Reactions. J. Amer. Chem. Soc. 99, 5412 (1977).Google Scholar
  103. 103.
    Smith, P. A. S.: In “Molecular Rearrangements”, Vol. 1 ( P. De Mayo, ed.), pp. 457–491. New York-London: Wiley-Interscience. 1963.Google Scholar
  104. 104.
    Sawaki, Y., and C. S. Foote: Acyclic Mechanism in the Cleavage of Benzils with Alkaline Hydrogen Peroxide. J. Amer. Chem. Soc. 101, 6292 (1979).Google Scholar
  105. 105.
    Jefford, C. W., W. Knopfel, and P. A. Cadby: Oxygenation of 3-Aryl-2-hydroxy- acrylic Acids. The Question of Linear Fragmentation vs. Cyclization and Cleavage of Intermediates. J. Amer. Chem. Soc. 100, 6432 (1978).Google Scholar
  106. 106.
    Hassall, C. H.: The Baeyer-Villiger Oxidation of Aldehydes and Ketones. Org. Reactions 9, 73 (1957).Google Scholar
  107. 107.
    Phillips, R. S., and C. D. Oldham: Fluorohydroxy Benzoic Acids as Active Site Spectral Probes for Protocatechuate 3,4-Dioxygenase. Fed. Proc., Fed. Amer. Soc. Exper. Biol. 37, 1720 (1978).Google Scholar
  108. 108.
    Nishinaga, A., T. Itahara, T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of eríbutylated Phenols. I. Regioselectivity in the Base-catalyzed Oxygenation of terí-Butylphenols. J. Amer. Chem. Soc. 100, 1820 (1978).Google Scholar
  109. 109.
    Nishinaga, A., T. Shimizu, and T. Matsuura: Base-catalyzed Oxygenation of tert- Butylated Phenols 3. Base-catalyzed Reaction of Peroxyquinols Derived from Oxygenation of 2,6-Di-íerí-butylphenols and Mechanism of Regioselective Formation of Epoxy- o-quinol from 2,4,6-Tri-terí-butylphenol. J. Org. Chem. 44, 2983 (1979).Google Scholar
  110. 110.
    Sawaki, Y., and Y. Ogata: p Scission of Acyl Radicals in the Radical Decomposition of Various a-Hydroperoxy Ketones. J. Org. Chem. 41, 2340 (1976).Google Scholar
  111. 111.
    Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi: Extradiol Cleavage of 3-Substituted Catechols by an Intradiol Dioxygenase, Pyrocatechase, from a Pseudomonad. J. Biol. Chem. 250, 4848 (1975).Google Scholar
  112. 112.
    Ribbons, D. W., and P. J. SENIOR: 2,3-Dihydroxybenzoate 3,4-Oxygenase from Pseudomonas fluorescens. Arch. Biochem. Biophys. 138, 557 (1970).Google Scholar
  113. 113.
    Gauthier, J. J., and S. C. Rittenberg: The Metabolism of Nicotinic Acid. J. Biol. Chem. 246, 3737 (1971).Google Scholar
  114. 114.
    Crandall, D. I., R. C. Krueger, F. Anan, K. Yasunobu, and H. S. Mason: Oxygen Transfer by the Homogentisate Oxidase of Rat Liver. J. Biol. Chem. 235, 3011 (1960).Google Scholar
  115. 115.
    Mehler, A. H.: In “Oxygenases” ( O. Hayaishi, ed.), p. 100. New York: Academic Press, Inc. 1960.Google Scholar
  116. 116.
    Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi: Metapyro- catechase. J. Biol. Chem. 243, 2682 (1968).Google Scholar
  117. 117.
    Lipscomb, J. D., B. H. Huynh, and E. Münck: Nitric Oxide Derivatives of Fe2+- EDTA and Protocatechuate Dioxygenases. Fed. Am. Soc. Exp. Biol. 63rd Ann. Meet. 1979, 2659.Google Scholar
  118. 118.
    Omo-Kamimoto, M., and S. Senoh: Studies on 3,4-Dihydroxyphenylacetate-2,3-dioxy- genase. J. Biochem. (Tokyo) 75, 321 (1974).Google Scholar
  119. 119.
    Dagley, S., and P. J. Geary: The Time Sequence of Interactions of a Dioxygenase with its Substrates. Biochim. Biophys. Acta 167, 459 (1968).Google Scholar
  120. 120.
    Tai, H. H., and C. J. Sih: 3,4-Dihydroxy-9,10-secoandrost-l,3,5(10)-triene-9,17-dione- 4,5-Dioxygenase from Norcardiarestrictus. J. Biol. Chem. 245, 5062 (1970).Google Scholar
  121. 121.
    Crawford, R. L., S. W. Hutton, and P. J. Chapman: Purification and Properties of Gentisate 1,2-Dioxygenase from Moraxella osloensis. J. Bacteriol. 121, 794 (1975).Google Scholar
  122. 122.
    Tokuyama, K.: Homogentisicase. I. II. III. J. Biochem. (Tokyo) 46, 1379 (1959).Google Scholar
  123. 123.
    Crandall, D. I.: Molecular Oxygenation by Fe-Activated Enzymes in Mammalian Metabolism. Oxidases Related Redox Systems, Proc. Symp., Amherst, Mass. 1, 263 (1964).Google Scholar
  124. 124.
    Koontz, W. A., and R. Shiman: Beef Kidney 3-Hydroxyanthranilic Acid Oxygenase. J. Biol. Chem. 251, 368 (1976).Google Scholar
  125. 125.
    Cain, R. B., C. Houghton, and K. A. Wright: Microbial Metabolism of the Pyridine Ring. Biochem. J. 140, 293 (1974).Google Scholar
  126. 126.
    Frydman, R. B., M. L. Tomaro, and B. Frydman: Pyrrolooxygenases. Biochim. Biophys. Acta 284, 63 (1972).Google Scholar
  127. 127.
    Fiegelson, P., and F. O. Brady: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 87–133. New York-London: Academic Press, Inc. 1974.Google Scholar
  128. 128.
    Makino, R., and Y. Ishimura: Negligible Amount of Copper in Hepatic L-Tryptophan 2,3-Dioxygenase. J. Biol. Chem. 251, 7722 (1976).Google Scholar
  129. 129.
    Hirata, F., T. Ohnishi, and O. Hayaishi: Indoleamine 2,3-Dioxygenase. J. Biol. Chem. 252, 4637 (1977).Google Scholar
  130. 130.
    Taniguchi, T., M. Sono, F. Hirata, O. Hayaishi, M. Tamura, K. Hayashi, T. Iitzuka, and Y. Ishimura: Indoleamine 2,3-Dioxygenase: Kinetic Studies on the Binding of Superoxide Anion and Molecular Oxygen to Enzyme. J. Biol. Chem. 254, 3288 (1979).Google Scholar
  131. 131.
    Tsuda, H.: 5-Hydroxytryptophan Metabolism in Rat Brain. L. 5-Hydroxytryptophan Pyrrolase. Wakayama Igaku 25, 1 (1974).Google Scholar
  132. 132.
    Vanneste, W. H., and A. Zuberbuhler: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 398–399. New York-London: Academic Press, Inc. 1974.Google Scholar
  133. 133.
    Brown, S. B., and R. F. G. J. King: The Mechanism of Haem Catabolism. Biochem. J. 170, 297 (1978).Google Scholar
  134. 134.
    Jackson, A. H., M. G. Lee, R. T. Jenkins, S. B. Brown, and B. D. Chaney: Oxidative Ring Opening of Octaethylchlorohaemin and its meso-Hydroxy Derivative to Octaethylbiliverdin. Tetrahedron Letts 1978, 5135.Google Scholar
  135. 135.
    O’Carra, P.: In “Porphyrins and Metalloporphyrins” ( K. M. Smith, ed.), p. 123. Amsterdam: Elsevier. 1975.Google Scholar
  136. 136.
    Brown, S. B., and R. F. G. J. King: An lsO Double-Labelling Study of Haemoglobin Catabolism in the Rat. Biochem. J. 150, 565 (1975).Google Scholar
  137. 137.
    Chaney, B. D., and S. B. Brown: The Mechanism of Coupled Oxidation of Octaethylhaem to Octaethylbiliverdin. Biochem. Soc. Trans. 6, 419 (1978).Google Scholar
  138. 138.
    Brown, S. B., and R. F. G. J. King: 180 Studies of Haem Catabolism. Biochem. Soc. Trans. 4, 197 (1976).Google Scholar
  139. 139.
    Ho, T.-L.: The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem. Rev. 75, 1 (1975).Google Scholar
  140. 140.
    Hastings, J. W., and T. Wilson: Bioluminescence and Chemiluminescence. Photo- chem. and Photobiol. 23, 461 (1976).Google Scholar
  141. 141.
    Deluca, M. A., : Bioluminescence and Chemilumenescence. In “Methods in Enzymology”, Vol. 57. New York: Academic Press, Inc. 1978.Google Scholar
  142. 142.
    Mcelroy, W. D., and M. Deluca: In Chemiluminescence and Bioluminescence,, ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 285–311. New York: Plenum Press. 1973.Google Scholar
  143. 143.
    Deluca, M.: Firefly Luciferase. Adv. in Enzymol. 44, 37 (1976).Google Scholar
  144. 144.
    Wannlund, J., M. Deluca, K. Stempel, and P. D. Boyer: Use of 14C-Carboxyl- Luciferin in Determining the Mechanism of the Firefly Luciferase Catalyzed Reac-tions. Biochem. Biophys. Res. Commun. 81, 987 (1978).Google Scholar
  145. 145.
    Shimomura, O., T. Goto, and F. H. Johnson: Source of Oxygen in the C02 Produced in the Bioluminescent Oxidation of Firefly Luciferin. Proc. Natl. Acad. Sci. U.S.A. 74, 2799 (1977).Google Scholar
  146. 146.
    Koo, J.-Y., S. P. Schmidt, and G. B. Schuster: Bioluminescence of the Firefly: Key Steps in the Formation of the Electronically Excited State for Model Systems. Proc. Natl Acad. Sci. U.S.A. 75, 30 (1978).Google Scholar
  147. 147.
    Schuster, G. B.: Chemiluminescence of Organic Peroxides. Conversion of Ground- State Reactants to Excited-State Products by the Chemically Initiated Electron- Exchange Luminescence Mechanism. Acc. Chem. Res. 12, 366 (1979).Google Scholar
  148. 148.
    Inoue, S., H. Kakoi, M. Murata, T. Goto, and O. Shimomura: Complete Structure of Renilla Luciferin and Luciferyl Sulfate. Tetrahedron Letts 1977, 2685.Google Scholar
  149. 149.
    Inoue, S., H. Kakoi, and T. Goto: Oplophorus Luciferin, Bioluminescent Substance of the Decapod Shrimps, Oplophorus spinosus and Heterocarpus laevigatus. Chem. Commun. 1976, 1056.Google Scholar
  150. 150.
    Shimomura, O., T. Masugi, F. H. Johnson, and Y. Haneda: Properties and Reaction Mechanism of the Bioluminescent System of the Deep-Sea Shrimp Oplophorus gracilorostris. Biochemistry 17, 994 (1978).Google Scholar
  151. 151.
    Inoue, S., K. Okada, H. Kakoi, and T. Goto: Fish Bioluminescence I. Isolation of a Luminescent Substance from a Myctophina Fish, Neoscopelus microchir, and Identification of it as Oplophorus Luciferin. Chem. Letts 1977, 257.Google Scholar
  152. 152.
    Kishi, Y., T. Goto, Y. Hirata, O. Shimomura, and F. H. Johnson: Cypridina Bioluminescence I. Structure of Cypridina Luciferin. Tetrahedron Letts 1966, 3427.Google Scholar
  153. 153.Cormier, M. J., J. Lee, and J. E. Wampler: Bioluminescence: Recent Advances. Ann. Rev. Biochem. 44, 255 (1975).Google Scholar
  154. 154.
    Shimomura, O., and F. H. Johnson: Exchange of Oxygen Between Solvent H20 and CO2 Produced in Cypridina Bioluminescence. Biochem. Biophys. Res. Commun. 51, 558 (1973).Google Scholar
  155. 155.
    Hart, R. C., K. E. Stempel, P. D. Boyer, and M. J. Cormier: The Mechanism of the Enzyme-Catalyzed Bioluminescent Oxidation of Coelenterate-type Luciferin. Biochem. Biophys. Res. Commun. 81, 980 (1978).Google Scholar
  156. 156.
    Goto, T., I. Kobuta, N. Suzuki, and Y. Kishi: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 325–335. New York: Plenum Press. 1973.Google Scholar
  157. 157.
    Shimomura, O., and F. H. Johnson: In “Chemiluminescence and Bioluminescence” ( M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 337–344. New York: Plenum Press. 1973.Google Scholar
  158. 158.
    Kemal, C., T. W. Chan, and T. C. Bruice: Reaction of 302 with Dihydroflavins. I. J. Amer. Chem. Soc. 99, 7272 (1977).Google Scholar
  159. 159.
    Chan, T. W., and T. C. Bruice: Reactions of Nitroxides with 1,5-Dihydroflavins and N3’5-Dimethyl-1,5-dihydrolumiflavin. J. Amer. Chem. Soc. 99, 7287 (1977).Google Scholar
  160. 160.
    Dmitrienko, G. I., V. Snieckus, and T. Viswanatha: On the Mechanism of Oxygen by Tetrahydropterin and Dihydroflavin-dependent Mono-oxygenases. Bioorg. Chem. 6, 421 (1977).Google Scholar
  161. 161.
    Hemmerich, P.: The Present Status of Flavin and Flavocoenzyme Chemistry. Progress in the Chemistry of Organic Natural Products 33, 451 (1976).Google Scholar
  162. 162.
    Van Lier, J. E., G. Kan, R. Langlois, and L. L. Smith: In “Biological Hydroxylation Mechanisms” ( G. S. Boyd, and R. M. S. Smellie, eds.), pp. 21–43. London-New York: Academic Press, Inc. 1972.Google Scholar
  163. 163.
    Hamberg, M., B. Samuelson, I. Bjoerkhem, and H. Danielsson: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 30–85. New York- London: Academic Press, Inc. 1974.Google Scholar
  164. 164.
    Matsuda, Y., T. Beppu, and K. Arima: Crystallization and Positional Specificity of Hydroperoxidation of Fusarium Lipoxygenase. Biochem. Biophys. Acta 530, 439 (1978).Google Scholar
  165. 165.
    Gibian, M. J., and R. A. Gala Way: In “Bioorganic Chemistry”, Vol. 1 ( E. E. Van Tamelen, ed.), pp. 117–136. New York: Academic Press, Inc. 1977.Google Scholar
  166. 166.
    Yamazaki, Y.: In “Free Radicals in Biology”, Vol. 3 ( W. A. Pryor, ed.), pp. 213–214. New York: Academic Press, Inc. 1977.Google Scholar
  167. 167.
    Verhagen, J., G. A. Veldink, M. R. Egmond, J. F. G. Vliegenthart, J. Boldingh, and J. Van Der Star: Steady-State Kinetics of Anaerobic Reaction of Soybean Lipoxygenase-1 with Linoleic Acid and 13-L-Hydroperoxylinoleic Acid. Biochem. Biophys. Acta 529, 369 (1978).Google Scholar
  168. 168.
    Svingen, B. A., S. R. Tonsager, T. D. Lindstrom, and S. D. Aust: The Demonstration o£ the Specific Generation of Alkyl, Alkoxy and Hydroperoxy Radicals of Linoleic Acid by E.P.R. Spin Trapping Techniques. Fed. Amer. Soc. E.P. Biol. 63rd Ann. Meet. 1979, 2211.Google Scholar
  169. 169.
    De Groot, J. J. M. C., G. J. Garssen, J. F. G. Vliegenthart, and J. Boldingh: The Detection of Linoleic Acid Radicals in the Anaerobic Reaction of Lipoxygenase. Biochem. Biophys. Acta 326, 279 (1973).Google Scholar
  170. 170.
    Allen, J. C., S. Navaratnam, B. J. Parsons, G. O. Phillips, and A. J. Swallow: The Oxidation of Soybean Lipoxygenase-1. A Pulse Radiolysis Study. Biochem. Soc. Trans. 8, 121 (1980).Google Scholar
  171. 171.
    Izumi, Y., and A. TAI: In “Stereo-Differentiating Reactions”, pp. 70–81. New York: Academic Press, Inc. 1977.Google Scholar
  172. 172.
    De Groot, J. J. M. C., G. A. Veldink, J. F. G. Vliegenthart, J. Boldingh, R. Wever, and B. F. Van Gelder: Demonstration by EPR Spectroscopy of the Functional Role of Iron in Soybean Lipoxygenase-1. Biochim. Biophys. Acta 377, 71 (1975).Google Scholar
  173. 173.
    Egmond, M. R., P. M. Fasella, G. A. Veldink, J. F. G. Vliegenthart, and J. Boldingh: On the Mechanism of Action of Soybean Lipoxygenase-1. Eur. J. Biochem. 76, 469 (1977).Google Scholar
  174. 174.
    Egmond, M. R., and R. J. P. Williams: H-NMR Study of the Conversion of 13(S)-Hydroperoxylinoleic Acid by Soya Bean Lipoxygenase-1. Biochim. Biophys. Acta 531, 141 (1978).Google Scholar
  175. 175.
    Miyamoto, T., N. Ogino, S. Yamamoto, and O. Hayaishi: Purification of Prostaglandin Endoperoxide Synthetase from Bovine Vesicular Gland Microsomes. J. Biol. Chem. 251, 2629 (1976).Google Scholar
  176. 176.
    Gibson, K. H.: Prostaglandins, Thromboxanes, PGX: Biosynthetic Products from Arachidonic Acid. Chem. Soc. (London) Rev. 6, 489 (1977).Google Scholar
  177. 177.
    Hemler, M., W. E. M. Lands, and W. L. Smith: Purification of the Cyclooxygenase that forms Prostaglandins. J. Biol. Chem. 251, 5575 (1976).Google Scholar
  178. 178.
    Samuelsson, B.: Biosynthesis of Prostaglandins. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 31, 1442 (1972).Google Scholar
  179. 179.
    Fiebrich, F., and H. Koch: Silymarin, an Inhibitor of Lipoxygenase. Experientia 35, 1548, 1550 (1979).Google Scholar
  180. 180.
    Hemler, M. E., C. G. Crawford, and W. E. M. Lands: Lipoxygenation Activity of Purified Prostaglandin-forming Cyclooxygenase. Biochem. 17, 1772 (1978).Google Scholar
  181. 181.
    Hamberg, M., and B. Samuelsson: Stereochemistry in the Formation of 9-Hydroxy- 10,12-octadecadienoic Acid and 13-Hydroxy-9,ll-octadecadienoic Acid from Linoleic Acid by Fatty Acid Cyclooxygenase. Biochim. Biophys. Acta 617, 545 (1980).Google Scholar
  182. 182.
    Bild, G. S., C. S. Ramadoss, S. Lim, and B. Axelrod: Double Dioxygenation of Arachidonic Acid by Soybean Lipoxygenase. Biochem. Biophys. Res. Commun. 74, 949 (1977).Google Scholar
  183. 183.
    Bild, G. S., C. S. Ramadoss, and B. Axelrod: Multiple Dioxygenation by Lipoxygenase of Lipids Containing All-cs-l,4,7-octatriene Moieties. Arch. Biochem. Biophys. 184, 36 (1977).Google Scholar
  184. 184.
    Roza, M., and A. Francke: Cyclic Peroxides from a Soya Lipoxygenase-Catalyzed Oxygenation of Methyl Linoleate. Biochim. Biophys. Acta 528, 119 (1978).Google Scholar
  185. 185.
    Bild, G. S., S. G. Bhat, C. S. Ramadoss, and B. Axelrod: Biosynthesis of a Prosta-glandin by a Plant Enzyme. J. Biol. Chem. 253, 21 (1978).Google Scholar
  186. 186.
    Jefford, C. W., and C. G. Rimbault: Reaction of Singlet Oxygen with a Nor- bornadienol Ether. Intramolecular Interception of a Zwitterionic Peroxide. J. Amer. Chem. Soc. 100, 6515 (1978).Google Scholar
  187. 187.
    Beckwith, A. J. L., and R. D. Wagner: Formation of Cyclic Peroxides by Oxygenation of Thiophenol-Diene Mixtures. J. Amer. Chem. Soc. 101, 7099 (1979).Google Scholar
  188. 188.
    Hamberg, M., and B. Samuelsson: On the Mechanism of the Biosynthesis of Prostaglandins Ei und Fi«. J. Biol. Chem. 242, 5336 (1967).Google Scholar
  189. 189.
    Flashner, M. S., and V. Massey: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayaishi, ed.), pp. 245–283. New York-London: Academic Press, Inc. 1974.Google Scholar
  190. 190.
    Ziffer, H., K. Kabuto, D. T. Gibson, V. M. Kobal, and D. M. Jerina: The Absolute Stereochemistry of Several cw-Dihydrodiols Microbially Produced from Substituted Benzenes. Tetrahedron 33, 2491 (1977).Google Scholar
  191. 191.
    Gibson, D. T., J. R. Koch, and R. E. Kallio: Oxidative Degradation of Aromatic Hydrocarbons by Microorganisms. I. Enzymatic Formation of Catechol from Benzene. Biochem. 7, 2653 (1968).Google Scholar
  192. 192.
    Gibson, D. T., G. E. Cardini, F. C. Maseles, and R. E. Kallio: Incorporation of Oxygen-18 into Benzene by Pseudomonas putida. Biochem. 9, 1631 (1970).Google Scholar
  193. 193.
    Gibson, D. T., B. Gschwendt, W. K. Yeh, and V. M. Kobal: Initial Reactions in the Oxidation of Ethylbenzene by Pseudomonas putida. Biochem. 12, 1520 (1973).Google Scholar
  194. 194.
    Catterall, F. A., and P. A. Williams: Some Properties of the Naphthalene Oxygenase from Pseudomonas sp. NCIB 9816. J. Gen. Microbiol. 67, 117 (1971).Google Scholar
  195. 195.
    Jeffrey, A. M., H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson: Initial Reaction in the Oxidation of Naphthalene by Pseudomonas putida. Biochem. 14, 575 (1975).Google Scholar
  196. 196.
    Yeh, W. K., D. T. Gibson, and T.-N. Liu: Toluene Dioxygenase: A Multicomponent Enzyme System. Biochem. Biophys. Res. Commun. 78, 401 (1977).Google Scholar
  197. 197.
    Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry: Formation of (+)-CW- 2,3-Dihydroxy-l-methylcyclohexa-4,6-diene from Toluene by Pseudomonas putida. Biochem. 9, 1626 (1970).Google Scholar
  198. 198.
    Sauber, K., C. Fröhner, G. Rosenberg, J. Eberspächer, and F. Lingens: Purification and Properties of Pyrazon Dioxygenase from Pyrazondegrading Bacteria. Eur. J. Biochem. 74, 89 (1977).Google Scholar
  199. 199.
    Taniuchi, H., and O. Hayaishi: Studies on the Metabolism of Kynurenic Acid. J. Biol. Chem. 238, 283 (1963).Google Scholar
  200. 200.
    Reiner, A. M., and G. D. Hegeman: Metabolism of Benzoic Acid by Bacteria. Biochem. 10, 2530 (1971).Google Scholar
  201. 201.
    Kobayashi, S., S. Kuno, N. Itada, O. Hayaishi, S. Kozuka, and S. Oae: O18 Studies on Anthranilate Hydroxylases. A Novel Mechanism of Double Hydroxylation. Biochem. Biophys. Res. Commun. 16, 556 (1964).Google Scholar
  202. 202.
    Taniuchi, M., M. Hatanaka, S. Kuno, O. Hayaishi, M. Nakajima, and N. Kuri- Hara: Enzymic Formation of Catechol from Anthranilic Acid. J. Biol. Chem. 239, 2204 (1964).Google Scholar
  203. 203.
    Kobayashi, S., and O. Hayaishi: Anthranilic Acid Conversion to Catechol (Pseudomonas). Methods in Enzymol. 17A, 505 (1970).Google Scholar
  204. 204.
    Subba Rao, P. V., N. S. Sreeleela, R. Premkumar, and C. S. Vaidyanathan: Anthranilic Acid Hydroxylase (Aspergillus niger). Methods in Enzymol. 17 A, 510 (1970).Google Scholar
  205. 205.
    Kumar, R. P., N. S. Sreeleela, P. V. Subba Rao, and C. S. Vaidyanathan: Anthranilate Hydroxylase from Aspergillus niger: Evidence for the Participation of Iron in the Double Hydroxylation Reaction. J. Bacteriol. 113, 1213 (1973).Google Scholar
  206. 206.
    Subramanian, V., T.-N. Liu, W. K. Yeh, and D. T. Gibson: Toluene Dioxygenase: Purification of an Iron-Sulfur Protein by Affinity Chromatography. Biochem. Biophys. Commun. 91, 1131 (1979).Google Scholar
  207. 207.
    Axcell, B. C., and P. C. Geary: Purification and some Properties of a Soluble Benzene-oxidizing System from a Strain of Pseudomonas. Biochem. J. 146, 173 (1975).Google Scholar
  208. 208.
    Crutcher, S. E., and P. J. Geary: Properties of the Iron-Sulphur Proteins of the Benzene Dioxygenase System from Pseudomonas putida. Biochem. J. 177, 393 (1979).Google Scholar
  209. 209.
    Yamaguchi, M., T. Yamauchi, and H. Fujisawa: Studies on the Mechanism of Double Hydroxylation. I. Evidence for the Participation of NADH-Cytochrome c Reductase in the Reaction of Benzoate 1,2-Dioxygenase (Benzoate Hydroxylase). Biochem. Biophys. Res. Commun 67, 264 (1975).Google Scholar
  210. 210.
    Ullrich, V., and W. Düppel: In “The Enzymes”, Vol. 12 ( P. D. BOYER, ed.), pp. 253. New York-London: Academic Press, Inc. 1975.Google Scholar
  211. 211.
    Reineke, W., and H.-J. Knackmuss: Chemical Structure and Biodegradability of Halo- genated Aromatic Compounds: Substituent Effects on 1,2-Dioxygenation of Benzoic Acid. Biochim. Biophys. Acta 542, 412 (1978).Google Scholar
  212. 212.
    Sparrow, L. G., P. P. K. Ho, T. K. Sundaram, D. Zach, E. J. Nyns, and E. E. Snell: The Bacterial Oxidation of Vitamin B6. J. Biol. Chem. 244, 2590 (1969).Google Scholar
  213. 213.
    Kishore, G., and E. E. Snell: Mechanism of Action of 2-Methyl-3-hydroxy- pyridine-5-carboxylic Acid Oxygenase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 319.Google Scholar
  214. 214.
    Kishore, G. M., and E. E. Snell: Reactivity of an FAD-dependent Oxygenase with Free Flavins: A New Mode of Uncoupling in Flavoprotein Oxygenases. Bio- chem. Biophys. Res. Commun. 87, 518 (1979).Google Scholar
  215. 215.
    Kemal, C., and T. C. Bruice: Transfer of O2 from a 4a-Hydroxyperoxyflavin Anion to a Phenolated Ion. A Flavin-catalyzed Dioxygenation Reaction. J. Amer. Chem. Soc. 101, 1635 (1979).Google Scholar
  216. 216.
    Suzuki, I.: Oxidation of Elemental Sulfur by an Enzyme System of Thiobacillus thiooxidans. Biochim. Biophys. Acta 104, 359 (1965).Google Scholar
  217. 217.
    Suzuki, I.: Incorporation of Atmospheric Oxygen-18 into Thiosulfate by the Sulfur- oxidizing Enzyme of Thiobacillus thiooxidans. Biochim. Biophys. Acta 110, 97 (1965).Google Scholar
  218. 218.
    Cavallini, D., C. De Marco, R. Scandurra, S. Dupré, and M. T. Graziani: The Enzymatic Oxidation of Cysteamine to Hypotaurine. J. Biol. Chem. 241, 3189 (1966).Google Scholar
  219. 219.
    Rotilio, G., G. Frederici, L. Calabrese, M. Costa, and D. Cavallini: An Electron Paramagnetic Resonance Study of the Nonheme Iron of Cysteamine Oxygenase. J. Biol. Chem. 245, 6235 (1970).Google Scholar
  220. 220.
    Ewetz, L., and B. Sörbo: Characteristics of the Cysteinesulfinate-forming Enzyme in Rat Liver. Biochim. Biophys. Acta 128, 296 (1966).Google Scholar
  221. 221.
    Lombardini, J. B., T. P. Singer, and P. D. Boyer: Cysteine Oxygenase II. Studies on the Mechanism of the Reaction with 18Oxygen. J. Biol. Chem. 244, 1172 (1969).Google Scholar
  222. 222.
    Yamaguchi, K., Y. Hosokawa, N. Kohashi, Y. Kori, S. Sakakibara, and I. Ueda: Rat Liver Cysteine Dioxygenase (Cysteine Oxidase). J. Biochem. 83, 479 (1978).Google Scholar
  223. 223.
    Charalampous, F. C.: Biochemical Studies in Inositol. J. Biol. Chem. 235, 1286 (1960).Google Scholar
  224. 224.
    Charalampous, F. C.: Inositol-cleaving Enzyme from Rat Kidney. Methods in Enzymol. 5, 329 (1962).Google Scholar
  225. 225.
    Reddy, C. C., P. A. Pierzchala, and G. A. Hamilton: Effects of Various Metabolites, Complexing Agents and Metal Ions on Inositol Oxygenase. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1720 (1978).Google Scholar
  226. 226.
    Kido, T., K. Soda, T. Suzuki, and K. Asada: A New Oxygenase, 2-Nitropropane Dioxygenase of Hansenula mrakii. J. Biol. Chem. 251, 6994 (1976).Google Scholar
  227. 227.
    Singh, H., and H. R. Cama: Enzymatic Cleavage of Carotenoids. Biochim. Biophys. Acta 370, 49 (1974).Google Scholar
  228. 228.
    Bowes, G., W. L. Ogren, and R. H. Hageman: Phosphoglycolate Production Catalyzed by Ribulose Diphosphate Carboxylase. Biochem. Biophys. Res. Commun. 45, 716 (1971).Google Scholar
  229. 229.
    Lorimer, G. H., C. B. Osmond, T. Akazawa, and S. Asami: On the Mechanism of Glycolate Synthesis by Chromatium and Chlorella. Arch. Biochem. Biophys. 185, 49 (1978).Google Scholar
  230. 230.
    Lorimer, G. H., M. R. Badger, and T. J. Andrews: The Activation of Ribulose- 1,5-bisphosphate Carboxylase by Carbon Dioxide and Magnesium Ions. Equilibrium Kinetics, a Suggested Mechanism and Physiological Implications. Biochem. 15, 529 (1976).Google Scholar
  231. 231.
    Christeller, J. T., and W. A. Laing: Effects of Manganese Ions and Magnesium Ions on the Activity of Soya-bean Ribulose Bisphosphate Carboxylaseoxygenase. Biochem. J. 183, 747 (1979).Google Scholar
  232. 232.
    Robison, P. D., M. N. Martin, and F. R. Tabita: Differential Effects of Metal Ions on Rhodospirillum rubrum. Ribulosebisphosphate Carboxylaseoxygenase and Stoichiometric Incorporation of HCO3 into a Cobalt (III)-Enzyme Complex. Biochem. 18, 4453 (1979).Google Scholar
  233. 233.
    Wildner, G. F., and J. Henkel: Differential Reactivation of Ribulose 1,5-Bis- phosphate Oxygenase with Low Carboxylase Activity by Mn2 +. Fed. Eur. Biochem. Soc. Letts 91, 99 (1978).Google Scholar
  234. 234.
    Branden, R.: Ribulose-1,5-dipbosphate Carboxylase and Oxygenase from Green Plants are Two Different Enzymes. Biochem. Biophys. Res. Commun. 81, 539 (1978).Google Scholar
  235. 235.
    Mccurry, S. D., N. P. Hall, J. Pierce, C. Paech, and N. E. Tolbert: Ribulose- 1,5-bis- phosphate Carboxylaseoxygenase from Parsely. Biochem. Biophys. Res. Commun. 84, 895 (1978).Google Scholar
  236. 236.
    Bhagwat, A. S., J. Ramakrishna, and P. V. Sane: Specific Inhibition of Oxygenase Activity of Ribulose-1,5-diphosphate Carboxylase by Hydroxylamine. Biochem. Biophys. Res. Commun. 83, 954 (1978).Google Scholar
  237. 237.
    Lorimer, G. H., T. J. Andrews, and N. E. Tolbert: Ribulose Oxygenase. II. Further Proof of Reaction Products. Biochem. 12, 18 (1973).Google Scholar
  238. 238.
    Kosman, D. J.: Carbanions as Substrates in Biological Oxidation Reactions. Bio- organic Chem. 2, 175 (1978).Google Scholar
  239. 239.
    Pierce, J., N. E. Tolbert, and R. Barker: A Mass Spectrometric Analysis of the Reaction of Ribulosebisphosphate Carboxylaseoxygenase. J. Biol. Chem. 255, 509 (1980).Google Scholar
  240. 240.
    Sue, J. M., and J. R. Knowles: Retention of Oxygens at C-2 and C-3 of D-Ribulose 1,5-Bisphosphate in the Reaction Catalyzed by Ribulose-1,5-bisphosphate Carboxylase. Biochem. 17, 4041 (1978).Google Scholar
  241. 241.
    Cardinale, G. J., and S. Udenfriend: Prolyl Hydroxylase. Adv. in Enzymol. 41, 245 (1974).Google Scholar
  242. 242.
    Risteli, J., K. Tryggvason, and K. I. Kivirikko: Prolyl 3-Hydroxylase: Partial Characterization of the Enzyme from Rat Kidney Cortex. Eur. J. Biochem. 73, 485 (1977).Google Scholar
  243. 243.
    Tryggvason, K., K. Majamaa, J. Risteli, and K. I. Kivirikko: Partial Purification and Characterization of Chick-Embryo Prolyl 3-Hydroxylase. Biochem. J. 183, 303 (1979).Google Scholar
  244. 244.
    Miller, R. L., and H. H. Varner: Purification and Enzymic Properties of Lysyl Hydroxylase from Fetal Porcine Skin. Biochem. 18, 5928 (1979).Google Scholar
  245. 245.
    Turpeenniemi, T. M., U. Puistola, H. Anttinen, and K. I. Kivirikko: Affinity Chromatography of Lysyl Hydroxylase on Concanavalin A-Agarose. Biochim. Biophys. Acta 483, 215 (1977).Google Scholar
  246. 246.
    Henderson, L. L., and L. M. Henderson: Purification and Properties Trimethyllysine Hydroxylase. Fed. Amer. Soc. Exp. Biol. 63 rd Annual Meet. 1979, 2032.Google Scholar
  247. 247.
    Hulse, J. D., S. R. Ellis, and L. M. Henderson: Carnitine Biosynthesis. J. Biol. Chem. 253, 1654 (1978).Google Scholar
  248. 248.
    Bankel, L., G. Lindstedt, and S. Lindstedt: Thymine 7-Hydroxylase from Neuro- spora crassa. Substrate Specificity Studies. Biochim. Biophys. Acta 481, 431 (1977).Google Scholar
  249. 249.
    Turner, M. K., J. E. Farthing, and S. J. Brewer: Oxygenation of (3-methyl-3H) Desacetoxycephalosporin C to (3-hydroxymethyl-3H) Desacetylcephalosporin C by 2-Oxoglutarate-linked Dioxygenases from Acremonium chrysogenum and Steptomyces clavuligerus. Biochem. J. 173, 839 (1978).Google Scholar
  250. 250.
    Hook, D. J., L. T. Chang, R. P. Elander, and R. B. Morin: Stimulation of the Conversion of Penicillin N to Cephalosporin by Ascorbic Acid, a-Ketoglutarate, and Ferrous Ions in Cell-Free Extracts of Strains of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87, 258 (1979).Google Scholar
  251. 251.
    Stevens, C. M., E. P. Abraham, F.-C. Huang, and C. J. SIH: Incorporation of Molecular Oxygen at C-17 of Cephalosporin C during its Biosynthesis. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34, 625 (1975).Google Scholar
  252. 252.
    Taniguchi, K., T. Kappe, and M. D. Armstrong: Further Studies on Phenyl- pyruvate Oxidase. J. Biol. Chem. 239, 3389 (1964).Google Scholar
  253. 253.
    Abbott, M. T., and S. Udenfriend: In “Molecular Mechanisms of Oxygen Activation” ( O. Hayishi, ed.), pp. 168–214. New York-London: Academic Press, Inc. 1974.Google Scholar
  254. 254.
    Tuderman, L., R. Myllyla, and K. I. Kivirikko: Mechanism of Prolylhydroxylase Reaction I. Eur. J. Biochem. 80, 341 (1977).Google Scholar
  255. 255.
    Counts, D. F., G. J. Cardinale, and S. Udenfriend: Prolyl Hydroxylase Half Reaction: Peptidyl Prolyl-independent Decarboxylation of a-Ketoglutarate. Proc. Natl Acad. Sci. U.S.A. 75, 2145 (1978).Google Scholar
  256. 256.
    Rao, N. V., and E. Adams: Partial Reaction of Prolyl Hydroxylase. J. Biol. Chem. 253, 6327 (1978).Google Scholar
  257. 257.
    Puistola, U., T. M. Turpeenniemi-Hujanen, R. Myllyla, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. I. Initial Velocity Kinetics and Related Aspects. Biochim. Biophys. Acta 611, 40 (1980).Google Scholar
  258. 258.
    Holme, E., G. Lindstedt, and S. Lindstedt: Partial Reaction of Thymine 7-hydroxy- lase. Acta Chem. Scand. B33, 621 (1979).Google Scholar
  259. 259.
    Lindstedt, G., S. Lindstedt, and I. Nordin: Purification and Some Properties of y-Butyrobetaine Hydroxylase from Pseudomonas sp. AK 1. Biochem. 16, 2181 (1977).Google Scholar
  260. 260.
    Shaffer, P. M., R. P. Mccroskey, R. D. Palmatier, R. J. Midgett, and M. T. Abbott: The Cell-free Conversion of a Deoxyribonucleoside to a Ribonucleoside without Detachment of the Deoxyribose. Biochem. Biophys. Res. Commun. 33, 806 (1968).Google Scholar
  261. 261.
    Hausmann, E.: Cofactor Requirements for the Enzymatic Hydroxylation of Lysine in a Polypetide Precursor of Collagen. Biochim. Biophys. Acta 133, 591 (1967).Google Scholar
  262. 262.
    Abbott, M. T., E. K. Schandl, R. F. Lee, T. S. Parker, and R. J. Midgett: Co- factor requirements for Thymine 7-Hydroxylase. Biochim. Biophys. Acta 132, 525 (1967).Google Scholar
  263. 263.
    Abbott, M. T., T. A. Dragila, and R. P. Mccroskey: The Formation of 5-Formyl- uracil by Cell-Free Preparation from Neurospora crassa. Biochim. Biophys. Acta 169, 1 (1968).Google Scholar
  264. 264.
    Watanabe, M. S., R. P. Mccroskey, and M. T. Abbott: The Enzymatic Conversion of 5-Formyluracil to Uracil 5-Carboxylic Acid. J. Biol. Chem. 245, 2023 (1970).Google Scholar
  265. 265.
    Wada, G. H., J. H. Fellman, T. S. Fujita, and E. S. Roth: Purification and Properties of Avian Liver p-Hydroxyphenylpyruvate Hydroxylase. J. Biol. Chem. 250, 6720 (1975).Google Scholar
  266. 266.
    Lindblad, B., G. Lindstedt, S. Lindstedt, and M. Rundgren: Purification and Some Properties of Human 4-Hydroxylphenylpyruvate Dioxygenase (I). J. Biol. Chem. 252, 5073 (1977).Google Scholar
  267. 267.
    Lindstedt, S., B. Odelhog, and M. Rundgren: Purification and Some Properties of 4-Hydroxyphenylpyruvate Dioxygenase from Pseudomonas sp. P. J. 874. Biochem. 16, 3369 (1977).Google Scholar
  268. 268.
    Lindblad, B., G. Lindstedt, M. Tofft, and S. Lindstedt: The Mechanism of OC- Ketoglutarate Oxidation in Coupled Enzymatic Oxygenations. J. Amer. Chem. Soc. 91, 4604 (1968).Google Scholar
  269. 269.
    Cardinale, G. J., R. E. Rhoads, and S. Udenfriend: Simultaneous Incorporation of 180 into Succinate and Hydroxyproline Catalyzed by Collagen Prolyl Hydroxylase. Biochem. Biophys. Res. Commun. 43, 537 (1971).Google Scholar
  270. 270.
    Holme, E., G. Lindstedt, S. Lindstedt, and M. Tofft: 1SO Studies of the 2-Keto- glutarate-dependent Sequential Oxygenation of Thymine to 5-Carboxyuracil. J. Biol. Chem. 246, 3314 (1971).Google Scholar
  271. 271.
    Lindblad, B., G. Lindstedt, and S. Lindstedt: The Mechanism of Enzymic Formation of Homogentisate from -Hydroxyphenylpyruvate. J. Amer. Chem. Soc. 92, 7446 (1970).Google Scholar
  272. 272.
    Myllylà, R., L. Tuderman, and K. I. Kivirikko: Mechanism of the Prolyl Hydroxylase Reaction 2. Eur. J. Biochem. 80, 349 (1977).Google Scholar
  273. 273.
    Holme, E.: A Kinetic Study of Thymine 7-Hydroxylase from Neurospora crassa. Biochem. 14, 4999 (1975).Google Scholar
  274. 274.
    Puistola, U., T. M. Turpeenniemi, R. Myllylà, and K. I. Kivirikko: Studies on the Lysyl Hydroxylase Reaction. II. Inhibition Kinetics and the Reaction Mechanism. Biochim. Biophys. Acta 611, 51 (1980).Google Scholar
  275. 275.
    Rundgren, M.: Steady State Kinetics of 4-Hydroxyphenylpyruvate Dioxygenase from Human Liver II. J. Biol. Chem. 252, 5094 (1977).Google Scholar
  276. 276.
    Hurych, J., P. Hobza, J. Rencova, and R. Zahradnik: In “The Biology of Fibroplasts” ( E. Kulonen, ed.), pp. 365–372. New York: Academic Press, Inc. 1973.Google Scholar
  277. 277.
    Liu, T. Z., and R. S. Bhatnagar: Mechanism of Hydroxylation of Proline. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 32, 613 (1973).Google Scholar
  278. 278.
    Halme, J., K. I. Kivirikko, and K. Simons: Isolation and Partial Characterization of Highly Purified Protocollagen Proline Hydroxylase. Biochim. Biophys. Acta 198, 460 (1970).Google Scholar
  279. 279.
    Popenoe, E. A., R. B. Aronson, and D. D. Van Slyke: The Sulfhydryl Nature of Collagen Proline Hydroxylase. Arch. Biochem. Biophys. 133, 286 (1969).Google Scholar
  280. 280.
    Englard, S., and C. F. Midelfort: Stereochemical Course of y-Butyrobetaine Hydroxylation to Carnitine. Fed. Proc., Fed. Amer. Soc. Exp. Biol. 37, 1806 (1978).Google Scholar
  281. 281.
    Tryggvason, K., J. Risteli, and K. I. Kivirikko: Separation of Prolyl 3-Hydroxylase and 4-Hydroxylase Activities and the 4-Hydroxyproline Requirement for Synthesis of 3-Hydroxyproline. Biochem. Biophys. Res. Commun. 76, 275 (1977).Google Scholar
  282. 282.
    Isbell, H. S., H. L. Frush, and Z. Orhanovic: Reaction of Carbohydrates with Hydroperoxides III. Oxidation of Sodium Salts of Alduronic and Glyulosonic Acids by Sodium Peroxide. Carbohydrate Res. 36, 283 (1974).Google Scholar
  283. 283.
    Sanfilippo, J., JR., C.-I. Chern, and J. S. Valentine: Oxidative Cleavage of oe-Keto, a-Hydroxy- and a-Halo Ketones, Esters and Carboxylic Acids by Superoxide. J. Org. Chem. 41, 1077 (1976).Google Scholar
  284. 284.
    Ilina, L. M., S. A. Borisenkova, A. P. Rudenko, and E. V. Lavrova: Transition Metal Phthalocyanines as Pyruvic Acid Decarboxylation Catalysts. Vestn. Mosk. Univ. Khim. 13, 249 (1972).Google Scholar
  285. 285.
    Jefford, C. W., A. F. Boschung, T. A. B. M. Bolsman, R. M. Moriarty, and B. Melnick: Reaction of Singlet Oxygen with oc-Ketocarboxylic Acids. J. Amer. Chem. Soc. 98, 1017 (1976).Google Scholar
  286. 286.
    Jefford, C. W., A. Exarchou, and P. A. Cadby: The Role of Singlet Oxygen as Reagent in the Dye-Sensitized Photo-oxygenation of oc-Ketocarboxylic Acids. Tetrahedron Letts 1978, 2053.Google Scholar
  287. 287.
    Jefford, C. W., and P. A. Cadby, in press.Google Scholar
  288. 288.
    Bruice, T. C., and P. Y. Bruice: Solution Chemistry of Arene Oxides: Acc. Chem. Res. 9, 379 (1976).Google Scholar
  289. 289.
    Groves, J. T., and G. A. Mcclusky: Aliphatic Hydroxylation via Oxygen Rebound. Oxygen Transfer Catalyzed by Iron. J. Amer. Chem. Soc. 98, 859 (1976).Google Scholar
  290. 290.
    Groves, J. T., and M. Van Der Puy: Stereospecific Aliphatic Hydroxylation by Iron-Hydrogen Peroxide. Evidence for a Stepwise Process. J. Amer. Chem. Soc. 98, 5290 (1976).Google Scholar
  291. 291.
    Jefford, C. W., and P. A. Cadby, unpublished results.Google Scholar
  292. 292.
    Saito, I., Y. Chujo, H. Shimazu, M. Yamane, T. Matsuura, and H. J. Cahnmann: Non Enzymic Oxidation of -Hydroxyphenylpyruvic Acid with Singlet Oxygen to Homogentisic Acid. A Model for the Action of -Hydroxyphenylpyruvate Hydroxylase. J. Amer. Chem. Soc. 97, 5272 (1975).Google Scholar
  293. 293.
    Moriarty, R. M., A. Chin, and M. P. Tucker: Dioxygen Fixation. Oxene Transfer in the Reaction of Singlet Dioxygen with a-Keto Acids. J. Amer. Chem. Soc. 100, 5578 (1978).Google Scholar
  294. 294.
    Moriarty, R. M., K. B. White, and A. Chin: Ozonation of Ketenes. Nature of Intermediates. J. Amer. Chem. Soc. 100, 5582 (1978).Google Scholar
  295. 295.
    Yang, N. C., and J. Libman: Ozonation of Acetylenes and Related Compounds in the Presence of Tetracyanoethylene and Pinacolone. J. Org. Chem. 39, 1782 (1974).Google Scholar
  296. 296.
    Keay, R. E., and G. A. Hamilton: Alkene Epoxidation by Intermediates Formed During the Ozonation of Alkynes. J. Amer. Chem. Soc. 98, 6578 (1976).Google Scholar
  297. 297.
    Antholine, W. E., and D. H. Petering: On the Reaction of Iron Bleomycin with Thiols and Oxygen. Biochem. Biophys. Res. Commun. 90, 384 (1979).Google Scholar
  298. 298.
    Ohmoro, M., and M. Takagi: Polarography of a-Keto Acids in Aqueous and Nonaqueous Solutions. Bull. Chem. Soc. (Japan). 50, 773 (1977).Google Scholar
  299. 299.
    Hobza, P., J. Hurych, and R. Zahradnik: Quantum Chemical Study of the Mechanism of Collagen Proline Hydroxylation. Biochim. Biophys. Acta 304, 466 (1973).Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • C. W. Jefford
    • 1
  • P. A. Cadby
    • 1
  1. 1.Department of Organic ChemistryUniversity of GenevaSwitzerland

Personalised recommendations