Advertisement

Abstract

Secondary metabolites containing the phenalenone nucleus, or having structures which can be reasonably presumed to have been derived from an intact phenalenone, are rarely found in nature. The first compounds were isolated in 1955 and their occurrence seems to be restricted to one family of higher plants (Haemodoraceae), four genera of Hyphomycetes (Fungi Imperfecti), and one genus (Roesleria) within the class Discomycetes (Ascomycotina). The plant and fungal phenalenones are structurally quite different and are derived from unrelated biosynthetic pathways. Different numbering systems have traditionally been used for the two classes of compounds and we have retained this dichotomy in the present review.

Keywords

Dimethyl Ether Absolute Configuration Methyl Ether Colouring Matter Monomethyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stodola, F. H., K. B. Raper, and D. I. Fennell: Pigments of Pénicillium herquei. Nature 167, 773 (1951).CrossRefGoogle Scholar
  2. 2.
    Galarraga, J. A., K. G. Neill, and H. Raistrick: The Colouring Matters of Pénicillium herquei Bainier and Sartory. Biochem. J. 61, 456 (1955).Google Scholar
  3. 3.
    Harman, R. E., J. Cason, F. H. Stodola, and A. L. Adkins: Structural Features of Herqueinone, a Red Pigment from Pénicillium herquei. J. Organ. Chem. (USA) 20, 1260 (1955).CrossRefGoogle Scholar
  4. 4.
    Barton, D. H. R., P. De Mayo, G. A. Morrison, and H. Raistrick: The Constitutions of Atrovenetin and Some Related Herqueinone Derivatives. Tetrahedron 6, 48 (1959).CrossRefGoogle Scholar
  5. 5.
    Neill, K. G., and H. Raistrick: Metabolites of Pénicillium atrovenetum G. Smith, I. Atrovenetin, A New Crystalline Colouring Matter. Biochem. J. 65, 166 (1957).Google Scholar
  6. 6.
    Narasimhachari, N., and L. C. Vining: Studies on the Pigments of Pénicillium herquei. Canad. J. Chem. 41, 641 (1963).CrossRefGoogle Scholar
  7. 7.
    Kriegler, A. P., and R. Thomas: 5th International Symposium on the Chemistry of Natural Products, London. Abstract C 67, p. 172 (1968).Google Scholar
  8. 8.
    Brooks, J. S., and G. A. Morrison: Naturally Occurring Compounds Related to Phenalenone. The Structure of Herqueinone and Norherqueinone and their Relationships with Isoherqueinone and Isonorherqueinone. J. Chem. Soc. (London) Perkin 1 421 (1972).CrossRefGoogle Scholar
  9. 9.
    Narasimhachari, N., and L. C. Vining: Herqueichrysin, a New Phenalenone Antibiotic from Pénicillium herquei. J. Antibiotics 25, 155 (1972).Google Scholar
  10. 10.
    Frost, D. A., D. D. Halton, and G. A. Morrison: Naturally Occurring Compounds Related to Phenalenone. Structure and Synthesis of Demethylherqueichrysin. J. Chem. Soc. (London) Perkin 1 2443 (1977).CrossRefGoogle Scholar
  11. 11.
    Rossi, C., and R. Ubaldi: Characterization of a Pigment Produced by Fusicoccum putrefaciens. Ann. 1st. Super. Sanita 9, 320 (1973).Google Scholar
  12. 12.
    Van Eijk, G. W.: A Naphtho[l,2-b]furan Derivative from the Fungus Roesleriapallida. Phytochem. 10, 3263 (1971).CrossRefGoogle Scholar
  13. 13.
    Shibata, S., Y. Ogihara, N. Tokutake, and O. Tanaka: Duclauxin, A Metabolite of Pénicillium duclauxi. Tetrahedron Letters 1287 (1965); Y. Ogihara, O. Tanaka, and S. Shibata. Tetrahedron Letters 2867 (1966).Google Scholar
  14. 14.
    Kuhr, I., J. Fuska, P. Sedmera, M. Podojil, J. Vokoun, and Z. Vanëk: An Antitumor Antibiotic Produced by Pénicillium stipitatum; its Identity with Duclauxin. J. Antibiotics 26, 535 (1973).Google Scholar
  15. 15.
    ME Corkindale, N. J., A. Mcritchie, and S. A. Hutchinson: Lamellicolic Anhydride - a Heptaketide Naphthalic Anhydride from Verticillium lamellicola. Chem. Commun. 108 (1973).Google Scholar
  16. 16.
    Chexal, K. K., C. Tamm, K. Hirotsu, and J. Clardy: Gilmaniellin and Dechlorogilmaniellin, Two Novel Dimeric Oxaphenalenones. Helv. Chim. Acta 62, 1785 (1979).CrossRefGoogle Scholar
  17. 17.
    Paul, I. C., and G. A. Sim: Fungal Metabolites. III. The Structure of Atrovenetin: X-ray Analysis of Atroventin Orange Trimethyl Ether Ferrichloride. J. Chem. Soc. (London) 1097 (1965).Google Scholar
  18. 18.
    Narasimhachari, N., and B. S. Ramaswami: Pigments from Pénicillium herquei. Current Sci. (India) 66 (1966).Google Scholar
  19. 19.
    Narasimhachari, N., V. B. Joshi, and S. Krishnan: Photolytic Decomposition of Perinaphthenone Derivatives. Experientia 24, 538 (1968).CrossRefGoogle Scholar
  20. 20.
    Barton, D. H. R., P. De Mayo, G. A. Morrison, W. H. Schaeppi, and H. Raistrick: Some Observations on the Constitutions of Herqueinone and Related Compounds. Chem. and Ind. 552 (1956).Google Scholar
  21. 21.
    Turner, A. B.: Quinone Methides in Nature. Fortschr. Chem. Organ. Naturstoffe 24 288 (1966).Google Scholar
  22. 22.
    Brooks, J. S., and G. A. Morrison: Absolute Configuration of Atrovenetin and Related Compounds. Chem. Commun. 1359 (1971).Google Scholar
  23. 23.
    Cason, J., J. S. Correia, R. B. Hutchinson, and F. Porter: The Structure of Trimethylherqueinone B. Tetrahedron 18, 839 (1962).CrossRefGoogle Scholar
  24. 24.
    Cason, J., C. W. Koch, and J. S. Correia: The Structure of Herqueinone, Iso- herqueinone, and Norherqueinone. J. Organ. Chem. (USA) 35, 179 (1970).CrossRefGoogle Scholar
  25. 25.
    Brooks, J. S., and G. A. Morrison: The Constitution of Herqueinone and its Relationship to Isoherqueinone. Tetrahedron Letters 963 (1970).Google Scholar
  26. 26.
    Halton, D. D., and G. A. Morrison: The Structure and Synthesis of Desmethyl- herqueichrysin. Tetrahedron Letters 1443 (1975).Google Scholar
  27. 27.
    Simpson, T. J.: Carbon-13 Nuclear Magnetic Resonance Structural and Biosynthetic Studies on Deoxyherqueinone and Herqueichrysin, Phenalenone Metabolites of Pénicillium herquei. J. Chem. Soc. (London) Perkin 1 1233 (1979).CrossRefGoogle Scholar
  28. 28.
    Ogihara, Y., Y. Iitaka, and S. Shibata: X-Ray Study of Monobromoduclauxin. Tetrahedron Letters 1289 (1965).Google Scholar
  29. 29.
    Crystal and Molecular Structure of Monobromoduclauxin. Acta Crystallogr. 24B, 1037 (1968).Google Scholar
  30. 30.
    Shibata, S.: Chemistry and Biosynthesis of some Fungal Metabolites. Chem. in Britain 110(1967).Google Scholar
  31. 31.
    Bycroft, B. W., and A. J. Eglington: Synthetic Approaches to Some Naturally Occurring Phenalenones and Related Compounds. Chem. Commun. 72 (1968).Google Scholar
  32. 32.
    Frost, D. A., and G. A. Morrison: Naturally Occurring Compounds Related to Phenalenone. Part VI. Synthesis of Atrovenetin and Related Compounds. J. Chem. Soc. (London) Perkin 1 2388 (1973).CrossRefGoogle Scholar
  33. 33.
    Thomas, R.: Studies in the Biosynthesis of Fungal Metabolites. Biochem. J. 78 807 (1961).Google Scholar
  34. 34.
    Thomas, R.: Biosynthesis of Phenalenones. Pure and Applied Chem. 34, 515 (1973).CrossRefGoogle Scholar
  35. 35.
    Kriegler, A. B., and R. Thomas: Biosynthetic Interrelationships of Fungal Phenalenones. Chem. Commun. 738 (1971).Google Scholar
  36. 36.
    Gandhi, R. N.: Biosynthesis of the Methyl Carbonate Unit in 4-O-Carbomethoxyl- amellicolic Anhydride. Indian J. Chem. 15B, 482 (1977).Google Scholar
  37. 37.
    Sankawa, U., H. Taguchi, Y. Ogihara, and S. Shibata: Biosynthesis of Duclauxin. Tetrahedron Letters 2883 (1966).Google Scholar
  38. 38.
    Narasimachari, N., K. S. Gopalkrishnan, R. H. Haskins, and L. C. Vining: Production of the Antibiotic Atrovenetin by a Strain of Pénicillium herquei Bainier and Sartory. Canad. J. Microbiol. 9, 134 (1963).CrossRefGoogle Scholar
  39. 39.
    Narasimachari, N., B. N. Vasavada, and S. Viswanathan: Antibiotic Activity of Deoxyherqueinone. Experientia 21, 376 (1965).CrossRefGoogle Scholar
  40. 40.
    Fuskovä, A., B. Proksa, and J. Fuska: In vitro Effect of Duclauxin and Derivatives of Coumarin on Nucleic Acid and Protein Synthesis in Ehrlich’s Ascites Carcinoma (EAC). Pharmazie. 32, 291 (1977).Google Scholar
  41. 41.
    Thomas, R.: Personal communication.Google Scholar
  42. 42.
    Hutchinson, J.: The Families of Flowering Plants, 3rd ed. Oxford: Clarendon Press. 1973.Google Scholar
  43. 43.
    Edwards, J. M., J. A. Churchill, and U. Weiss: A Chemical Contribution to the Taxonomic Status of Lophiola americana. Phytochem. 9, 1563 (1970).CrossRefGoogle Scholar
  44. 44.
    Hegnauer, R.: Chemotaxonomie der Pflanzen, Vol. 2, p. 228. Basel und Stuttgart: Birkhäuser Verlag. 1963.Google Scholar
  45. 45.
    Cooke, R. G., and R. L. Thomas: Colouring Matters of Australian Plants. XVIII. Constituents of Anigozanthos rufus. Austral. J. Chem. 28, 1053 (1975).CrossRefGoogle Scholar
  46. 46.
    Cooke, R. G., and I. J. Dagley: Colouring Matters of Australian Plants. XX. Synthesis of Hydroxyanigorufone and Related Phenalenones. Austral. J. Chem. 31, 193 (1978).CrossRefGoogle Scholar
  47. 47.
    Cooke, R. G. etal.: Unpublished data.Google Scholar
  48. 48.
    Edwards, J. M., and U. Weiss: Perinaphthenone Pigment from Fruit Capsules of Lachnanthes tinctoria. Phytochem. 9, 1653 (1970).CrossRefGoogle Scholar
  49. 49.
    Edwards, J. M.: Phenylphenalenones from Wachendorfia Species. Phytochem. 13, 290 (1974).Google Scholar
  50. 50.
    Laundon, B., G. A. Morrison, and J. S. Brooks: Naturally Occurring Compounds Related to Phenalenone I. The Synthesis of Lachnanthocarpone. J. Chem. Soc. (London) C. 36 (1971).Google Scholar
  51. 51.
    Forte, G. J., J. A. Zito, and J. M. Edwards: The Synthesis of Lachnanthocarpone. Lloydia 39, 192 (1976).Google Scholar
  52. 52.
    Bazan, A. C., J. M. Edwards, and U. Weiss: Synthesis of Lachnanthocarpone [9-Phenyl-2,6-dihydroxyphenalen-l-(6)-one] by Intramolecular Diels-Alder Cyclization of a 1,7-Diarylheptanoid Orthoquinone; Possible Biosynthetic Significance of Diels- Alder Reactions. Tetrahedron 34, 3005 (1978).CrossRefGoogle Scholar
  53. 53.
    Edwards, J. M., and U. Weiss: Phenalenone Pigments of the Root System of Lachnanthes tinctoria. Phytochem. 13, 1597 (1974).CrossRefGoogle Scholar
  54. 54.
    Cooke, R. G., and W. Segal: Colouring Matters of Australian Plants IV. Haemo- corin: A Unique Glycoside from Haemodorum corymbosum. Vahl. Austral. J. Chem. 8, 107 (1955).CrossRefGoogle Scholar
  55. 55.
    Cooke, R. G., and W. Segal: Colouring Matters of Australian Plants V. Haemocorin: The Chemistry of the Aglycone. Austral. J. Chem. 8, 413 (1955).CrossRefGoogle Scholar
  56. 56.
    Cooke, R. G., B. L. Johnson, and W. Segal: Colouring Matters of Australian Plants VI. Haemocorin: The Structure of the Aglycone. Austral. J. Chem. 11, 930 (1958).Google Scholar
  57. 57.
    Edwards, J. M., M. Mangion, J. B. Anderson, M. Rapposch, and G. Hite: Lachnanthospirone, A Dimeric 9-Phenylphenalenone from the Seeds of Lachnanthes tinctoria Ell. Tetrahedron Letters 4453 (1979).Google Scholar
  58. 58.
    Laundon, B., and G. A. Morrison: Naturally Occurring Compounds Related to Phenalenone II. The Synthesis of Haemocorin Aglycone. J. Chem. Soc. (London) C. 1694 (1971).Google Scholar
  59. 59.
    Cooke, R. G., and I. J. F.Ainbow: Colouring Matters of Australian Plants XIX. Haemocorin: Unequivocal Synthesis of the Aglycone and Some Derivatives. Austral. J. Chem. 30, 2241 (1977).CrossRefGoogle Scholar
  60. 60.
    Bick, I. R. C., and A. J. Blackman: Haemodorin - A Phenalenone Pigment from Haemodorum distichophyllum Hook. Austral. J. Chem. 26, 1377 (1973).CrossRefGoogle Scholar
  61. 61.
    Cremona, T. L., and J. M. Edwards: Xiphidone, the Major Phenalenone Pigment of Xiphidium caeruleum. Lloydia 37, 112 (1974).Google Scholar
  62. 62.
    Cooke, R. G., and I. J. Dagley: Colouring Matters of Australian Plants XXL Naphthoxanthenones in the Haemodoraceae. Austral. J. Chem. 32, 1841 (1979).CrossRefGoogle Scholar
  63. 63.
    Bazan, A. C., and J. M. Edwards: Phenalenone Pigments of the Flowers of Lachnanthes tinctoria. Phytochem. 15, 1413 (1976).CrossRefGoogle Scholar
  64. 64.
    Cooke, R. G.: Phenylnaphthalene Pigments of Lachnanthes tinctoria. Phytochem. 9, 1103 (1970).CrossRefGoogle Scholar
  65. 65.
    Cooke, R. G., and R. A. H. Fletcher: Phenylnaphthalene Pigments of Lachnanthes tinctoria II. Synthesis of Two Phenylnaphthalides. Austral. J. Chem. 24, 873 (1971).CrossRefGoogle Scholar
  66. 66.
    Edwards, J. M., and U. Weiss: Quinone Methides Derived from 5-Oxa- and 5-Aza- 9-Phenyl-l-Phenalenone in the Flowers of Lachnanthes tinctoria. Tetrahedron Letters 1631 (1972).Google Scholar
  67. 67.
    Highet, R. J., and J. M. Edwards: Analysis of the Carbon-13 NMR Spectrum of Phenalenones. J. Mag. Res. 17, 336 (1975).Google Scholar
  68. 68.
    Harmon, A. D., J. M. Edwards, and R. J. Highet: The Biosynthesis of 2,5,6- Trihydroxy-9-Phenylphenalenone by Lachnanthes tinctoria. Incorporation of 1-13C- Phenylalanine. Tetrahedron Letters 4471 (1977).Google Scholar
  69. 69.
    Weiss, U., and J. M. Edwards: Pigments of Lachnanthes tinctoria Ell. (Haemodoraceae) I. Isolation and Photolysis of some 9-Phenylperinaphthenones. Tetrahedron Letters 4325 (1969).Google Scholar
  70. 70.
    Cooke, R. G., and I. J. Dagley: Synthesis and Spectroscopic Properties of 1H- Naphtho[2,l,8-ra«a]xanthen-l-one and its 8-Methoxy Derivative. Tetrahedron Letters 637 (1978).Google Scholar
  71. 71.
    Cooke, R. G., B. K. Merrett, G. J. O’loughlin, and G. A. Pietersz: Colouring Matters of Australian Plants XXIII. A New Synthesis of Arylphenalenones and Naphthoxanthenones. Austral. J. Chem. 33, 2317 (1980).CrossRefGoogle Scholar
  72. 72.
    Reid, D. H.: The Chemistry of the Phenalenes Quart. Rev. (Chem. London) 19, 274 (1965).CrossRefGoogle Scholar
  73. 73.
    Darwin, C.: The Origin of Species, 13, 14. New York: Appleton and Company. 1895.Google Scholar
  74. 74.
    Kornfeld, J. M., and J. M. Edwards: An Investigation of the Photodynamic Pigments in Extracts of Lachnanthes tinctoria. Biochim. Biophys. Acta 286, 88 (1972).CrossRefGoogle Scholar
  75. 75.
    Webb, L. J.: Guide to the Medicinal and Poisonous Plants of Queensland, Bulletin No. 232, Council Sci. Indust. Res., Melbourne (1948).Google Scholar
  76. 76.
    Schwenk, E.: Tumor Action of Some Quinonoid Compounds in the Cheekpouch Test. Arzneim. Forsch. 12, 1143 (1962).Google Scholar
  77. 77.
    Narasimhachari, N., V. B. Joshi, S. Krishnan, M. V. Panse, and M. N. WamBurkar: Antibacterial Properties of Perinaphthenone Derivatives. Current Sci. (India) 37, 288 (1968).Google Scholar
  78. 78.
    Thomas, R.: Studies in the Biosynthesis of Fungal Metabolites. Biochem. J. 78, 807 (1961).Google Scholar
  79. 79.
    Thomas, R.: The Biosynthesis of Phenalenones. Pure and Applied Chem. 34, 515 (1973).CrossRefGoogle Scholar
  80. 80.
    Edwards, J. M., R. C. Schmitt, and U. Weiss: Biosynthesis of a 9-Phenylperinaphthenone by Lachnanthes tinctoria. Phytochem. 11, 1717 (1972).CrossRefGoogle Scholar
  81. 81.
    Thomas, R.: The Biosynthesis of the Plant Phenalenone Haemocorin. Chem. Commun. 739 (1971).Google Scholar
  82. 82.
    Roughley, P. J., and D. A. Whiting: Experiments in the Biosynthesis of Curcumin. J. Chem. Soc. (London) Perkin 1 2379 (1973).CrossRefGoogle Scholar
  83. 83.
    Denniff, P., and D. A. Whiting: Biosynthesis of [6]-Gingerol, Pungent Principle of Zingiber officinale. Chem. Commun. 711 (1976).Google Scholar
  84. 84.
    Macleod, I., and D. A. Whiting: Stages in the Biosynthesis of [6]-Gingerol in Zingiber officinale. Chem. Commun. 1152 (1979).Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • R. G. Cooke
    • 1
  • J. M. Edwards
    • 2
  1. 1.Chemistry DepartmentUniversity of MelbourneParkvilleAustralia
  2. 2.Pharmacy SchoolUniversity of ConnecticutStorrsUSA

Personalised recommendations