The homoisoflavanones belong to a small family of natural products whose first member was isolated by Boehler and Tamm in 1967 from bulbs of Eucomis bicolor Bak. (9). Their discovery resulted from a systematic chemical analysis of Liliaceae for cardiac glycosides. However, unlike the botanically closely related Urginea maritima (L.) Bak. (Squill) and some species of Scilla, Ornithogalum and Dipcadi (33), Eucomis plants did not contain even traces of these compounds.


Petroleum Ether Nuclear Magnetic Resonance Spectrum Potassium Carbonate Raney Nickel Alkaline Hydrogen Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andermatt, P.: Beitrag zur Kenntnis der Biogenese der Spirostanole und Untersuchungen über die Biogenese der Homo-Isoflavone. Ph. D. Thesis, Basel 1971.Google Scholar
  2. 2.
    Andrieux, J., D. H. R. Barton, and H. Patin: Rhodium-catalyzed Isomerization of Some Unsaturated Organic Substrates. J. C. S. Perkin I, 1977, 359.Google Scholar
  3. 3.
    Antenuis, M., and D. TA Vernier: New Models for Conformational Analysis by Nuclear Magnetic Resonance. Tetrahedron Letters 1964, 3949.Google Scholar
  4. 4.
    Audier, H.: Etude des Composés Flavoniques par Spectrométrie de masse. Bull. Soc. Chim. France 1966, 2892.Google Scholar
  5. 5.
    Baldwin, R. M., C. D. Snyder, and H. Rapoport: Biosynthesis of Menaquinones. Dissymmetry in the Napththalenic Intermediate. J. Amer. Chem. Soc. 95, 276 (1973).CrossRefGoogle Scholar
  6. 6.
    Barker, S. A., J. Homer, M. C. Keith, and L. F. Thomas: Proton Resonance Studies of Methoxy and Acetoxy Derivatives of Pyranose Molecules Applied to the Conformation of Methyl 3-O-Carbamoyl-a- and -ß-L-novioside. J. Chem. Soc. 1963, 1538.Google Scholar
  7. 7.
    Bass, R. J.: Synthesis of Chromones by Cyclization of 2-Hydroxyphenyl Ketones with Boron Trifluoride-Diethyl Ether and Methanesulphonyl Chloride. J. C. S. Chem. Commun. 1976, 78.Google Scholar
  8. 8.
    Boehler, P.: Isolierung und Strukturaufklärung der Homo-Isoflavone Eucomol und Eucomin. Ph. D. Thesis, Basel 1967.Google Scholar
  9. 9.
    Boehler, P., and CH. Tamm: The Homo-Isoflavones: A New Class of Natural Products. Isolation and Structure of Eucomin and Eucomol. Tetrahedron Letters 1967, 3479.Google Scholar
  10. 10.
    Budzikiewicz, H., C. Djerassi, and D. H. Williams: “Mass Spectrometry of Organic Compounds”, p. 470. San Francisco, Cambridge, London, Amsterdam: Holden-Day. 1967.Google Scholar
  11. 11.
    Caldicott, A. B., and G. Eglinton: Surface Waxes in “Phytochemistry” (ed. L. P. Miller), Vol. 3, p. 162. New York, Cincinnati, Toronto, London, Melbourne: Van Nostrand Reinhold. 1973.Google Scholar
  12. 12.
    Chari, V. M., and H. Wagner: Advances in the Spectroscopy of Plant Phenolics. Recent Adv. Phytochemistry 12, 29 (1979).Google Scholar
  13. 13.
    Chatterjea, J. N., S. C. Shaw, and J. N. Singh: A Synthesis of Anhydrobrazilic Acid. Isomerization of Arylidenechroman-4-ones to Homoisoflavones. J. Indian Chem. Soc. 51, 281 (1974).Google Scholar
  14. 14.
    Craig, J. C., A. R. Naik, R. Pratt, E. Johnson, and N. S. Bhacca: Nuclear Magnetic Resonance Spectra and Stereochemistry of the Antibacterial Principle from Haematoxylon braziletto. J. Org. Chemistry 30, 1573 (1965).CrossRefGoogle Scholar
  15. 15.
    Dann, O., and H. Hofmann: Die Epoxydation von 3-Benzylidenchromanonen-(4) zu 3,a-Oxido-3-benzyl-chromanonen-(4). Chem. Ber. 95, 1446 (1962).CrossRefGoogle Scholar
  16. 16.
    Dann, O.:Die Synthese von (±)-Haematoxylin. Chem. Ber. 98, 1498 (1965).CrossRefGoogle Scholar
  17. 17.
    Deulofeu, V., and T. J. Guerrero: N-Methyl-3.4-Dihydroxyphenylalanine. Org. Synth. Coll. Vol. 3, 586 (1955).Google Scholar
  18. 18.
    Dewick, P. M.: Biosynthesis of the 3-Benzylchroman-4-one Eucomin. J. C. S. Chem. Commun. 1973, 438.Google Scholar
  19. 19.
    Dewick, P. M.: Biosynthesis of the 3-Benzylchroman-4-one Eucomin in Eucomis bicolor. Phytochemistry 14, 983 (1975).CrossRefGoogle Scholar
  20. 20.
    Donnelly, D. M. X.: Neoflavonoids in “The Flavonoids” (eds. J. B. Harborne, T. J. Mabry, and H. Mabry), p. 801. London: Chapman and Hall. 1975.Google Scholar
  21. 21.
    Drewes, S. E.: Chroman and Related Compounds. Vol. 2 of Progress in Mass Spectroscopy (ed. H. Budzikiewicz ). Weinheim/Bergstrasse: Verlag Chemie. 1974.Google Scholar
  22. 22.
    Duddeck, H., G. Snatzke, and S. S. Yemul: 13C NMR and CD of Some 3,8-Bi- flavonoids from Garcinia Species and of Related Flavanones. Phytochemistry 17, 1369 (1978).CrossRefGoogle Scholar
  23. 23.
    Farkas, L., A. Gottsegen, and M. Nogradi: Synthesis of Eucomin and (±)- Eucomol. Tetrahedron Letters 1968, 4099.Google Scholar
  24. 24.
    Farkas, L., A. Gottsegen, and M. Nogradi: The Synthesis of Eucomin and (+)-Eucomol. Tetrahedron 26, 2787 (1970).CrossRefGoogle Scholar
  25. 25.
    Farkas, L., A. Gottsegen, M. Nogradi, and J. Strelisky: Synthesis of Homoisoflavanones-II. Constituents of Eucomis autumnalis and E. punctata. Tetrahedron 27, 5049 (1971).CrossRefGoogle Scholar
  26. 26.
    Finckh, R. E.: Isolierung und Strukturaufklärung homoisoflavonoider Verbindungen aus Eucomis punctata L’Herit. Ph. D. Thesis, Basel 1970.Google Scholar
  27. 27.
    Finckh, R. E., and CH. Tamm: The Homoisoflavones III. Isolation and Structure of Punctatin, 3,9-Dihydropunctatin, 4-0-Methyl-3,9-dihydropunctatin, 4-Demethyl- eucomin, and 4-Demethyl-5-0-methyl-3,9-dihydroeucomin. Experientia 26, 472 (1970).CrossRefGoogle Scholar
  28. 28.
    Friend, J.: Phenolic Substances and Plant Disease. Recent Adv. Phytochemistry 12, 557 (1979).Google Scholar
  29. 29.
    Grisebach, H.: Personal communication.Google Scholar
  30. 30.
    Grisebach, H., and J. Ebel: Phytoalexine, chemische Abwehrstoffe höherer Pflanzen? Angew. Chem. 90, 668 (1978).Google Scholar
  31. 31.
    Grisebach, H., and W. D. Ollis: Biogenetic Relationship Between Coumarins, Flavonoids, Isoflavonoids, and Rotenoids. Experientia 17, 4 (1961).CrossRefGoogle Scholar
  32. 31.
    a. Gross, D.: Phytoalexine und verwandte Pflanzenstoffe. Fortschr. Chem. Org. Naturst. 34, 187 (1977). Wien, New York: Springer.Google Scholar
  33. 32.
    Hahlbrock, K., and H. Grisebach: Biosynthesis of Flavonoids in “The Flavonoids” (eds. J. B. Harborne, T. J. Mabry, and H. Mabry), p. 905. London: Chapman and Hall. 1975.Google Scholar
  34. 33.
    Hegnauer, R.: Chemotaxonomie der Pflanzen, Vol. 2, p. 329. Basel und Stuttgart: Birkhäuser. 1963.Google Scholar
  35. 34.
    Heller, W.: Über einige Inhaltsstoffe von Eucomis punctata L’Herit. Isolierung, Konstitution und Synthese von (-)-R-Eucominsäure. Ph. D. Thesis, Basel 1973.Google Scholar
  36. 35.
    Heller, W., and CH. TAMM: Unpublished results.Google Scholar
  37. 36.
    Heller, W., and CH. TAMM: Isolierung, Konstitution und Synthese der (R)-(-)-Eucominsäure. Helv. Chim. Acta 57, 1766 (1974).CrossRefGoogle Scholar
  38. 37.
    5,7-Dihydroxy-8-methoxychroman-4-on aus dem Zwiebelwachs von Eucomis comosa. Helv. Chim. Acta 61, 1257 (1978).CrossRefGoogle Scholar
  39. 38.
    Heller, W., P. Andermatt, W. A. Schaad, and CH. Tamm: Homoisoflavanone IV. Neue Inhaltsstoffe der Eucomin-Reihe von Eucomis bicolor. Helv. Chim. Acta 59, 2048 (1976).CrossRefGoogle Scholar
  40. 39.
    Jay, M., J.-F. Gönnet, E. Wollenweber, and B. Voirin: Sur L’Analyse Qualitative des Aglycones Flavoniques dans une Optique Chimitaxonomique. Phytochemistry 14, 1605 (1975).CrossRefGoogle Scholar
  41. 40.
    Kirby, G. W., and L. Ogunkoya: Deuterium and Tritium Exchange Reactions of Phenols and the Synthesis of Labelled 3,4-Dihydrophenylalanines. J. Chem. Soc. 1965, 6914.Google Scholar
  42. 41.
    Kirkiacharian, B. S.: Sur une Nouvelle Synthèse de la (+)-Triméthylbraziline. C. R. Acad. Sei. Ser. C 274, 2096 (1972).Google Scholar
  43. 42.
    Kirkiacharian, B. S.: Hydroborations: New Routes to Isoflavanones and Homoisoflavanones. J. C. S. Chem. Commun. 1975, 162.Google Scholar
  44. 43.
    Kirkiacharian, B. S., and M. Garnier: Hydroborations. Sur une Nouvelle Synthèse de la (±)-Tétraméthylhématoxyline. C. R. H. Acad. Sei. Ser. C 277, 1037 (1973).Google Scholar
  45. 44.
    Kouno, I., T. Komori, and T. Kawasaki: Zur Struktur der neuen Typen Homo-isoflavanone aus Bulben von Scilla scilloides Druce. Tetrahedron Letters 1973, 4569.Google Scholar
  46. 45.
    Krishnamurty, H. G., B. Parkash, and I. R. Seshadri: Synthesis of Eucomin, 4,-Demethyleucomin and 5,7-Di-O-methyleucomol. Indian J. Chemistry 12, 554 (1974).Google Scholar
  47. 46.
    Mcomie, J. F. W., M. L. Watts, and D. D. West: Demethylation of Aryl Methyl Ethers by Boron Tribromide. Tetrahedron 24, 2289 (1968).CrossRefGoogle Scholar
  48. 47.
    Markham, K. R.: Gentian Pigments-II. Xanthones from Gentiana bellidifolia. Tetra-hedron 21, 1449 (1965).CrossRefGoogle Scholar
  49. 48.
    Markham, K. R., and T. J. Mabry: Ultraviolet-Visible and Proton Magnetic Resonance Spectroscopy of Flavonoids in “The Flavonoids” (eds. J. B. Harborne, T. J. Mabry, and H. Mabry), p. 45. London: Chapman and Hall. 1975.Google Scholar
  50. 49.
    Martin, J. T.: Studies on the Natural Protective Covering of Plants: I. Plant Wax in Relation to Resistance to Infection by Fungi. Ann. Rep. Long Ashton Res. Sta. for 1956. 1957, 94.Google Scholar
  51. 50.
    Martin, J. T., and R. F. Batt: Studies on Plant Cuticule. I. The Waxy Coverings of Leaves. Ann. Appl. Biol. 46, 375 (1958).CrossRefGoogle Scholar
  52. 51.
    Masayuki, S., D. Difeo JR., N. Nakatani, B. Timmermann, and T. J. Mabry: Flavonoid Methyl Ethers on the External Leaf Surface of Larrea tridentata and L. divaricata. Phytochemistry 15, 727 (1976).Google Scholar
  53. 52.
    Massicot, J., and J.-P. Marthe: Résonance magnétique nucléaire de produits naturels. III. - Etude de quelques dérivés flavoniques et substances apparentées. Bull. Soc. Chim. France 1962, 1962.Google Scholar
  54. 53.
    Matthews, J. S.: Steroids-CCXXIII. Color Reagent for Steroids in Thin-Layer Chromatography. Biochim. Biophys. Acta 69, 163 (1963).CrossRefGoogle Scholar
  55. 54.
    Morsingh, F., and R. Robinson: The Synthesis of Brazilin and Haematoxylin. Tetrahedron 26, 281 (1970).CrossRefGoogle Scholar
  56. 55.
    Nielsen, H., and P. Arends: Structure of the Xantholignoid Kielcorin. Phytochemistry 17, 2040 (1978).CrossRefGoogle Scholar
  57. 56.
    Pelter, A., P. Stainton, and M. Barber: The Mass Spectra of Oxygen Heterocycles. II. The Mass Spectra of Some Flavonoids. J. Heterocyclic Chemistry 2, 262 (1965).CrossRefGoogle Scholar
  58. 57.
    Pelter, A., R. S. Ward, and R. J. Bass: The Carbon-13 Nuclear Magnetic Resonance Spectra of Isoflavones. J. C. S. Perkin 1 1978, 666.CrossRefGoogle Scholar
  59. 58.
    Pfeiffer, P., E. Breith, and H. Hoyer: Oxy-benzyl-chromanone. 11. Mitteilung zur Brasilin- und Haematoxylinfrage. J. prakt. Chemie 237, 31 (1931).CrossRefGoogle Scholar
  60. 59.
    Pratt, R., and Y. Yuzuriha: Antibacterial Activity of the Heartwood of Haematoxylon braziletto. J. Amer. Pharm. Assoc. 48, 69 (1959).CrossRefGoogle Scholar
  61. 60.
    Ravise, A., and B. S. Kirkiacharian: Influence de la structure de composés phénoliques sur l’inhibition du Phytophthora parasitica et d’enzymes participant aux processus parasitaires. III. Homoisoflavanones. Phythopath. Z. 92, 36 (1978), and references therein.Google Scholar
  62. 61.
    Reyneke, W. F.: N Monografiese Studie va die Genus Eucomis L’Hérit. in Suid- Afrika. M. Sc. Thesis, Pretoria 1972.Google Scholar
  63. 62.
    Robinson, R.: Chemistry of Brazilin and Haematoxylin. Bull. Soc. Chim. Fr. 1958, 125.Google Scholar
  64. 63.
    Robinson, R.: Brazilin and Haematoxylin in “Chemistry of Carbon Compounds” (ed. E. H. Rodd), Vol. IV, part B, p. 1005. New York: Elsevier. 1959.Google Scholar
  65. 64.
    Schaad, W.: Isolierung und Ermittlung der Konstitution neuer Homoisoflavanone aus Eucomis bicolor Bäk., Ph. D. Thesis, Basel 1977.Google Scholar
  66. 65.
    Sidwell, W. T. L., and CH. Tamm: The Homo-Isoflavones II: Isolation and Structure of 4’-0-Methylpunctatin, Autumnalin and 3,9-Dihydroautumnalin. Tetrahedron Letters 1970, 475.Google Scholar
  67. 66.
    Speta, F.: Über Chionodoxa Boiss., ihre Gliederung und Zugehörigkeit zu Scilla L., Naturk. Jahrb. Stadt Linz 1975, 21, 9 (1976).Google Scholar
  68. 67.
    Stahl, E.: Dünnschicht-Chromatographie, 2nd ed. p. 671. Berlin Heidelberg New York: Springer. 1967.Google Scholar
  69. 68.
    Stoessl, A.: Antifungal Compounds Produced by Higher Plants. Recent Adv. Phyto- chemistry 3, 143 (1970).Google Scholar
  70. 69.
    Tamm, CH.: Die Homo-isoflavone, eine neue Klasse von Naturstoffen. Arzneim. Forsch. (Drug Res.) 22, 1776 (1972).Google Scholar
  71. 70.
    Tronchet, J.: Flavone Derivatives of Fruits. Localization, Distribution and Evolution. Bull. Soc. Bot. Fr. 119, 25 (1972).Google Scholar
  72. 71.
    Tronchet, J.: Role of Protection and Control of Surface Flavonic Derivatives. First Experimental Results. Bull. Liaison, Groupe Polyphénols 48, 18 (1973).Google Scholar
  73. 72.
    Wagner, H., and L. Farkas: Synthesis of Flavonoids in “The Flavonoids” (eds. J. B. Harborne, T. J. Mabry, and H. Mabry), p. 202. London: Chapman and Hall. 1975.Google Scholar
  74. 73.
    Watt, J., and M. G. Breyer-Brandwijk: Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd edn., p. 298. Edinbourgh, London: E. S. Livingstone. 1962.Google Scholar
  75. 74.
    Weber, H. P., W. Heller, and CH. Tamm: Homoisoflavanones. V. Crystal and Molecular Structure of (-)-7-0-(p-Bromophenacyl)eucomol. The Absolute Configuration of (-)-Eucomol. Helv. Chim. Acta 60, 1388 (1977).Google Scholar
  76. 75.
    Wilson, R. G., J. H. Bowie, and D. H. Williams: Solvent Effects in NMR Spectroscopy. Solvent Shifts of Methoxyl Resonances in Flavones Induced by Benzene; an Aid in Structure Elucidation. Tetrahedron 24, 1407 (1968).CrossRefGoogle Scholar
  77. 76.
    Windholz, M. (ed.): The Merck Index, 9th edn. Rathway: Merck. 1976.Google Scholar
  78. 77.
    Wollenweber, E.: Flavonoidmuster als systematisches Merkmal in der Gattung Populus. Biochem. Syst. Ecol. 3, 35 (1975).CrossRefGoogle Scholar
  79. 78.
    Wollenweber, E.: Flavonoidexkret der Betulaceen. Biochem. Syst. Ecol. 3, 47 (1975).CrossRefGoogle Scholar
  80. 79.
    Wollenweber, E.: Einige Neufunde externer Flavonoide bei amerikanischen Farnen. Flora 168, 138 (1979).Google Scholar
  81. 80.
    Wollenweber, E., P. Lebreton, and M. Chandeson: Flavonoids in Bud Excretions of Prunus and Rhamnus Species. Z. Naturforsch. 27 b, 567 (1972).Google Scholar
  82. 81.
    Ziegler, R., and CH. Tamm: Isolation and Structure of Eucosterol and 16ß-Hydro- xyeucosterol, Two Novel Spirocyclic Nortriterpenes and of a New 24-Nor-5a-chola- 8,16-diene-23-oic Acid from Bulbs of Several Eucomis Species. Helv. Chim. Acta 59, 1997 (1976).Google Scholar
  83. 82.
    Recent Studies on Homoisoflavanones in “Flavonoids and Bioflavonoids”. Proc. 5th Hung. Biflavonoid Symposium, Matrafüred, Hungary, May 25–27, 1977, p. 95. Amsterdam, Oxford, New York: Elsevier Scientific Publ. Company. 1977.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • W. Heller
    • 1
  • Ch. Tamm
    • 1
  1. 1.Institut für Organische ChemieUniversität BaselSwitzerland

Personalised recommendations