Control of Cell Expansion in the Nitella Internode

  • L. Taiz
  • J.-P. Métraux
  • P. A. Richmond
Part of the Cell Biology Monographs book series (CELLBIOL, volume 8)


Members of the giant-celled, freshwater Characeae, particularly the ecorticate species of Chara and Nitella, have figured prominently in classical studies on ion transport, water permeability and cytoplasmic Streaming (see Hope and Walker 1975). These algae are characterized by erect, branched coenocytic filaments, differentiated into nodes and internodes, each node bearing a whorl of specialized lateral internodes (Fig. 1). Since the early work of Green on Nitella (e.g., Green 1954, 1958 a, 1960), the usefulness of this alga as a model system for studying cell expansion has been generally recognized. The plant is derived from divisions of a single apical cell and its immediate progeny. The internode cell, initially a shortened disk 20 microns in length, eventually undergoes dramatic elongation and a small amount of lateral expansion to produce a slender cylinder about 6 cm long and 0.5 mm wide at maturity (Green 1958 a, 1963 a). The two fundamental cytomorphogenetic questions which have been studied most extensively are the determination of cell shape and the regulation of cell elongation.


Cell Expansion Cellulose Microfibril Turgor Pressure Wall Extension Base Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albersheim, P., nevins, D. J., English, P. D., Karr, A., 1967: A method for the analysis of sugars in plant cell wall Polysaccharides by gas-liquid chromatography. Carbohyd. Res. 5, 340–345.CrossRefGoogle Scholar
  2. Albersheim, P., Nevins, D. J., English, P. D., Karr, A., Bonner, J., 1959: Metabolism and hormonal control of pectic substances. J. Biol. Chem. 234, 3105–3108.PubMedGoogle Scholar
  3. Anderson, D. M. W., King, N. J., 1961: Polysaccharides of the Characeae. II. The carbohydrate content of Nitella translucens. Biochim. Biophys. Acta 52, 441–449PubMedCrossRefGoogle Scholar
  4. Arens, K., 1936: Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. II. Die Ca(HCO3)2-Assimilation. Jahrb. Wiss. Bot. 83, 513.Google Scholar
  5. Bennet-Clark, T. A., 1955: A hypothesis on salt accumulation and the mode of action of auxin. In: The chemistry and mode of action of plant growth substances (Wain, R. L., Wightman, F., eds.), pp. 284–294. London: ButterworthsGoogle Scholar
  6. Bonner, J., 1934: The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21, 406–423.CrossRefGoogle Scholar
  7. Bonner, J., 1935: Zum Mechanismus der Zellstreckung auf Grund der Micellarlehre. Jahrb. Wiss. Botan. 82, 377–412.Google Scholar
  8. Boyd, J. D.,Foster, R. C.,1975: Microfibrils in primary and secondary wall growth develop trellis configurations. Can. J. Bot. 53, 2687–2701CrossRefGoogle Scholar
  9. Boyer, J. S., Wu, G., 1978: Auxin increases the hydraulic conductivity of auxin-sensitive hypocotyl tissue. Planta 139, 227–237 CrossRefGoogle Scholar
  10. Brown, R. M.,Montezinos, D.,1976: Cellulose microfibrils: visualization of the biosynthetic and orienting complexes of the plasma membrane. Proc. Nat. Acad. Sci. U.S.A. 73, 143–147.CrossRefGoogle Scholar
  11. Brown, R. M., Montezinos, D., Willison, J. H. M., 1977: Golgi apparatus and plasma membrane involvement in secretion and cell surface deposition with special emphasis on cellulose biogenesis. In: International cell biology 1976–1977 (Brinkley, B. R., Porter, K. R., eds.), pp. 267–283. New York: The Rockefeller University Press.Google Scholar
  12. Burke, D., Kaufman, P. B., Mcneil, M., Albersheim, P., 1974: The structure of plant cell walls. VI. A survey of the walls of suspension-cultured monocots. Plant Physiol. 54, 109–115.PubMedCrossRefGoogle Scholar
  13. Byers, E. F., Snyder, R. D., 1975: Engineering mechanics of deformable bodies, pp. 161–166. New York: Intext Educational Publishers.Google Scholar
  14. Castle, E. S., 1973: Membrane tensions and orientation of structure in the plant cell wall. J. Cell Comp. Physiol. 10, 113–121.CrossRefGoogle Scholar
  15. Castle, E. S., 1955: The mode of growth of epidermal cells of theAvena coleoptile. Proc. Nat. Acad. Sci. U.S.A. 41, 197–199.CrossRefGoogle Scholar
  16. Cleland, R. E., 1971: Cell wall extension. Annu. Rev. Plant Physiol. 22, 197–222.CrossRefGoogle Scholar
  17. Cleland, R. E., 1973: Kinetics of hormone-induced H+ extrusion. Plant Physiol. 58, 210–213.CrossRefGoogle Scholar
  18. Cleland, R. E., Rayle, D. L., 1978: Auxin, H+-excretion and cell elongation. Bot. Mag. Tokyo Special Issue 1, 125–139.Google Scholar
  19. Cornsweet, T. M.,1970: Advanced composite materials. Science 168, 433–438.PubMedCrossRefGoogle Scholar
  20. Dainty, J., Hope, A. B., 1959: Ionic relations of cells of Cbara australis. Austr. J. Biol. Sci. 12, 395–411.Google Scholar
  21. Erickson, R. O.,1980: Microfibrillar structure of growing plant cells walls. In: Lecture notes in biomathematics (Levin, S., ed.), Vol. 33: Mathematical modeling in biology and ecology (GETZ, W. J., ed.), pp. 192–212. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  22. Evans, M. L., Ray, P. M., 1969: Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. Gen. Physiol. 53, 1–20PubMedCrossRefGoogle Scholar
  23. Mulkey, T. J., 1981: Geotropism in com roots: evidence for its mediation by differential acid efflux. Science 212, 70–71PubMedCrossRefGoogle Scholar
  24. Frey-Wyssling, A., 1976: The plant cell wall. In: Handbuch der Pflanzenanatomie (Zimmerman, M., Carlquist, S., Wulff, H. D., eds.), Vol. 4. Berlin: Gebrüder Borntraeger.Google Scholar
  25. Fry, S. C., 1980: Gibberellin-controlled pectinic acid and protein secretion in growing cells. Phytochem. 19, 735–740CrossRefGoogle Scholar
  26. Gertel, E. T., Green, P. B., 1977: Cell growth pattern and wall microfibrillar arrangement. Experiments with Nitella. Plant Physiol. 60, 247–254PubMedCrossRefGoogle Scholar
  27. Giddings, T. H., Brower, D. L., Staehelin, L. A., 1980: Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol. 84, 327–339PubMedCrossRefGoogle Scholar
  28. Green, P. B., 1954: The spiral growth pattern of the cell wall in Nitella axillaris. Am. J. Bot. 41, 403–409.CrossRefGoogle Scholar
  29. Green, P. B., 1958 a: Structural characteristics of developing Nitella internodal cell walls. J. Biophys. Biochem. Cytol. 4, 505–516.PubMedCrossRefGoogle Scholar
  30. Green, P. B., 1958 b: Concerning the site of addition of new cell wall substances to the elongating Nitella cell wall. Am. J. Bot. 45, 111–116.CrossRefGoogle Scholar
  31. Green, P. B., 1960: Multinet growth in the cell wall of Nitella. J. Biophys. Biochem. Cytol. 7, 289–297.PubMedCrossRefGoogle Scholar
  32. Green, P. B., 1962: Mechanism for plant cellular morphogenesis. Science 138, 1404–1404.PubMedCrossRefGoogle Scholar
  33. Green, P. B., 1963 a: Cell walls and the geometry of plant growth. In: Meristems and differentiation. Brookhaven Symp. Biol., Vol. 16, pp. 203–217. Upton, N.Y.: Brookhaven National Laboratory.Google Scholar
  34. Green, P. B., 1963 b: On mechanisms of elongation. In: Cytodifferentiation and macromolecular synthesis (Locke, M., ed.), pp. 203–234. New York: Academic Press.Google Scholar
  35. Green, P. B., 1965: Anion exchange resin spheres as marking material for wet cell surfaces. Exp. Cell Res. 40, 195–196.PubMedCrossRefGoogle Scholar
  36. Green, P. B., 1968: Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micromanometer technique for turgor pressure. Plant Physiol. 43, 1169–1184.PubMedCrossRefGoogle Scholar
  37. Green, P. B., 1968: Cell morphogenesis. Ann. Rev. Plant Physiol. 20, 365–394.CrossRefGoogle Scholar
  38. Green, P. B., 1980: Organogenesis-a biophysical view. Ann. Rev. Plant Physiol. 31, 51–82.CrossRefGoogle Scholar
  39. Green, P. B., Chapman, G. B., 1955: On the development and structure of the cell wall in Nitella. Am. J. Bot. 42, 485–693.CrossRefGoogle Scholar
  40. Green, P. B., Erickson, R. O., Richmond, P. A., 1970: On the physical basis of cell morphogenesis. Ann. N.Y. Acad. Sci. 175, 712–731.CrossRefGoogle Scholar
  41. Buggy, J., 1971: Metabolie and physical control of cell elongation rate. In vitro studies inNitella. Plant Physiol. 47, 423–430.PubMedCrossRefGoogle Scholar
  42. Green, P. B., Bauer, K., Cummins, W. R., 1977: Biophysical model for plant cell expansion: Auxin effects. In: Water relations in membrane transport in plants and animals (Jungreis, A. M., Hodges, T. K., Kleinzeller, A., Schultz, S. G., eds.), pp. 30–45. New York: Academic Press.Google Scholar
  43. Hager, A., Menzel, H., Krauss, A., 1971: Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100, 47–75.CrossRefGoogle Scholar
  44. Haugton, P. M., Sellen, D. B., Preston, R. D., 1968: Dynamic mechanical properties of the cell wall of Nitella opaca. J. Exp. Bot. 19, 1–11.CrossRefGoogle Scholar
  45. Hearmon, R. F. S., 1961: Applied anisotropic elasticity. London: Oxford University Press.Google Scholar
  46. Heath, I. B., 1974: A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. Theor. Biol. 48, 445–449.PubMedCrossRefGoogle Scholar
  47. Hepler, P. K., Fosket, D. E., 1971: The role of microtubules in vessel member differentiation in Coleus. Protoplasma 72, 213–236.CrossRefGoogle Scholar
  48. Hepler, P. K., Fosket, D. E., Palevitz, B. A., 1974: Microtubules and microfilaments. Annu. Rev. Plant Physiol. 25, 309–362.CrossRefGoogle Scholar
  49. Hogetsu, T., Shibaoka, H., 1978: Effects of colchicine on cell shape and on microfibril arrangement in the cell wall ofClosterium acerosum. Planta (Berl.) 140, 15–18.CrossRefGoogle Scholar
  50. Hope, A. B., Walker, N. A., 1975: The physiology of giant algal cells. London-New York: Cambridge University Press.Google Scholar
  51. Jaccard, M., Pilet, P. E., 1977: Extensibility and rheology of collenchyma. II. Low-pH effect on the extenion of collocytes isolated from high- and low-growing material. Plant Cell Physiol. 18, 883–891.Google Scholar
  52. Jacobs, M., Ray, P. M., 1975: Promotion of xyloglucan metabolism by acid pH. Plant Physiol. 56, 373–376.PubMedCrossRefGoogle Scholar
  53. Jacobs, M., Ray, P. M., 1976: Rapid auxin-induced decrease in the free-space pH and its relationship to auxin-induced growth in maize and pea. Plant Physiol. 58, 203–209.PubMedCrossRefGoogle Scholar
  54. Kamiya, N., Tazawa, M., Takata, T., 1963: The relation of turgor pressure to cell volume in Nitella with special reference to the mechanical properties of the wall. Protoplasma 57, 501–521.CrossRefGoogle Scholar
  55. Keegstra, K., Talmadge, K. W., Bauer, W. D.,Albersheim, P., 1973: The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188–197.PubMedCrossRefGoogle Scholar
  56. Keifer, D. W., Spanswick, R. M., 1979: Correlation of adenosine triphosphate levels in Chara corallina with the activity of the electrogenic pump. Plant Physiol. 64, 165–168.PubMedCrossRefGoogle Scholar
  57. Kitasato, H.,1968: The influence of H+ on the membrane potential and ion fluxes of Nitella. J. Gen. Physiol. 52, 60–87.PubMedCrossRefGoogle Scholar
  58. Labavitch, J. M., Ray, P. M., 1974: Relationship between promotion of xyloglucan metabolism and induction of elongation by IAA. Plant Physiol. 54, 499–502.PubMedCrossRefGoogle Scholar
  59. Lockhart, J. A., 1965: Cell extension. In: Plant biochemistry (Bonner, J., Varner, J. E., eds.), pp. 827–849. New York: Academic Press.Google Scholar
  60. Lockhart, J. A., 1967: Physical nature of irreversible deformation of plant cells. Plant Physiol. 42, 1545–1552.PubMedCrossRefGoogle Scholar
  61. Lucas, W. J., 1976: Plasmalemma transport of HC03~ and OH- in Chara corallina. J. Exp. Bot. 27, 19–31.CrossRefGoogle Scholar
  62. Lucas, W. J., Dainty, J., 1977: Spatial distribution of functional OH~ carriers along a Characean internodal cell: Determined by the effect of cycochalasin B on HC03 _ assimilation. J. Membrane Biol. 32, 75–92.CrossRefGoogle Scholar
  63. Lucas, W. J., Smith, F. A., 1973: The formation of alkaline and acid regions at the surface of Chara corallina cells. J. Exp. Bot. 24, 15–28.CrossRefGoogle Scholar
  64. Masuda, Y., 1978: Auxin-induced cell wall loosening. Bot. Mag. Tokyo Special Issue 1, 103–123.Google Scholar
  65. Metraux, J.-P., 1979: Studies on the regulation of cell expansion in Nitella. Ph.D. dissertation, University of California, Santa Cruz.Google Scholar
  66. Metraux, J.-P., 1981: Changes in cell wall composition of growing Nitella internodes. Plant Physiol. Supplement 67, 127.Google Scholar
  67. Metraux, J.-P., Richmond, P. A., Taiz, L., 1980: Control of cell elongation in Nitella by endogenous cell wall pH gradients. Multiaxial extensibility and growth studies. Plant Physiol. 65, 204–210.PubMedCrossRefGoogle Scholar
  68. Metraux, J.-P., Taiz, L., 1977: Cell wall extension in Nitella as influenced by acid and ions. Proc. Nat. Acad. Sci. U.S.A. 74, 1565–1569.CrossRefGoogle Scholar
  69. Metraux, J.-P., Taiz, L., 1978: Transverse viscoelastic extention in Nitella. I. Relationship to growth rate. Plant Physiol. 61, 135–138.PubMedCrossRefGoogle Scholar
  70. Metraux, J.-P., Taiz, L., 1979: Transverse viscoelastic extention in Nitella. II. Effect of acid and ions. Plant Physiol. 63, 657–659.PubMedCrossRefGoogle Scholar
  71. Monro, J. A., Bailey, P. W., Penny, D., 1974: Cell wall hydroxyproline-polysaccharide associations in Lupinus hypocotyls. Phytochemistry 13, 375–382.CrossRefGoogle Scholar
  72. Moor, H., 1959: Platin-Kohle-Abdruck-Technik angewandt auf den Feinbau der Milchröhren. J. Ultrastruct. Res. 2, 393–422.CrossRefGoogle Scholar
  73. Morikawa, H., 1975: Studies on the ultrastructure of the plant cell wall in Nitella. Ph.D. dissertation, University of Kyoto, Japan.Google Scholar
  74. Morikawa, H., Senda, M., 1974 a: Effects of acids and ions on mechanical properties of Nitella cell walls. The 15th Annual Meeting of Japanese Society of Plant Physiologists, 6–8 April, Abstr., p. 107.Google Scholar
  75. Morikawa, H., Senda, M., 1974 b: Nature of the bonds holding pectic substance inNitella walls. Agr. Biol. Chem. 38, 1955–1980.CrossRefGoogle Scholar
  76. Mueller, S. C., Brown, R. M., 1980: Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84, 315–326.PubMedCrossRefGoogle Scholar
  77. Newcomb, E. H., 1969: Plant microtubules. Ann. Rev. Plant. Physiol. 20, 253–288.CrossRefGoogle Scholar
  78. Palevitz, B. A., Hepler, P. K., 1976: Cellulose microfibril orientation and cell shaping in developing guard cells ofAllium: the rate of microtubules and ion accumulation. Planta (Berl.) 132, 71–93.CrossRefGoogle Scholar
  79. Peng, H. B., Jaffe, L. F., 1976: Cell wall formation in Pelvetia embryos. A freeze-fracture study. Planta (Berl.) 133, 57–71.CrossRefGoogle Scholar
  80. Pickett-HEAPS, J. D., 1967: The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplasmic microtubules. Devel. Biol. 15, 206–236.CrossRefGoogle Scholar
  81. Pickett-Heaps, J. D., 1975: Green algae. Sunderland, Mass.: Sinauer.Google Scholar
  82. Preston, R. D.,1974: The physical biology of plant cell walls. London: Chapman and Hall.Google Scholar
  83. Preston, R. D., 1979: Polysaccharide conformation and cell wall function. Ann. Rev. Plant Physiol. 30, 55–78.CrossRefGoogle Scholar
  84. Probine, M. C., Barber, N. F., 1966: The structure and plastic properties of the cell wall of Nitella in relation to extension and growth. Aust. J. Biol. Sci. 19, 439–457.Google Scholar
  85. Probine, M. C., Barber, N. F., Preston, R. D., 1961: Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca. I. Wall structure and growth. J. Exp. Bot. 12, 261–282.CrossRefGoogle Scholar
  86. Probine, M. C., Barber, N. F., 1962: Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opaca. Mechanical properties of the walls. J. Exp. Bot. 13, 111–127.CrossRefGoogle Scholar
  87. Ray, P. M., 1967: Radioautographic study of cell wall deposition in growing plant cells. J. Cell. Biol. 35, 659–674.PubMedCrossRefGoogle Scholar
  88. Ray, P. M., 1969: The action of auxin on cell enlargement in plants. Dev. Biol. Suppl. 3, 172–205.Google Scholar
  89. Ray, P. M., Abdul-Baki, A. A., 1968: Regulation of cell wall synthesis in response to auxin. In: Biochemistry and physiology of plant growth substances (Wightman, F., Setterfield, G., eds.), pp.647–658. Ottawa: Runge Press.Google Scholar
  90. Ray, P. M., Green, P. B., Cleland, R. E., 1972: Role of turgor in plant cell growth. Nature 239, 163–164.CrossRefGoogle Scholar
  91. Rayle, D. L., Cleland, R., 1970: Enhancement of wall loosening and elongation by acid Solution. Plant Physiol. 46, 250–253.PubMedCrossRefGoogle Scholar
  92. Rayle, D. L., Cleland, R., 1972: The in vitro acid-growth response: Relation to in vivo growth response and auxin action. Planta 104, 282–296.CrossRefGoogle Scholar
  93. Rayle, D. L., Haughton, P. M., Cleland, R., 1970: An in vitro system that stimulates plant cell extension growth. Proc. Nat. Acad. Sci. U.S.A. 67, 1814–1817.CrossRefGoogle Scholar
  94. Rees, D. A.,1977: Polysaccharide shapes. Outline studies in botany series. London: Chapman and Hall; New York: Wiley.Google Scholar
  95. Richmond, P. A., 1977: Control of plant cell morphogenesis by the cell wall: analysis in Nitella. Ph.D. thesis, University of Pennsylvania, Philadelphia.Google Scholar
  96. Richmond, P. A., Metraux, J.-P., Taiz, L., 1980: Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol. 65, 211–217.PubMedCrossRefGoogle Scholar
  97. Robinson, D. G., 1977: Plant cell wall synthesis. Adv. Bot. Res. 5, 89–151.CrossRefGoogle Scholar
  98. Roelofsen, P. A., 1965: Ultrastructure of the wall in growing cells and its relation to the direction of growth. Adv. Bot. Res. 2, 69–149.CrossRefGoogle Scholar
  99. Roelofsen, P. A., Houwink, A. L., 1953: Architecture and growth of the primary cell wall in some plant hairs and in thePhycomyces sporangiophore. Acta Bot. Neerl. 2, 218–225.Google Scholar
  100. Roland, J. C., Vian, B., 1979: The wall of the growing plant cell: its three-dimensional Organization. Int. Rev. Cytol. 61, 129–166.CrossRefGoogle Scholar
  101. Roland, J. C., Vian, B., Reis, D., 1975: Observations with cytochemistry and ultracryotomy on the fine structure of the expanding walls in actively elongating plant cells. J. Cell Sci. 19, 239–259.PubMedGoogle Scholar
  102. Roland, J. C., Vian, B., Reis, D., 1977: Further observations on cell wall morphogenesis and Polysaccharide arrangement during plant growth. Protoplasma 91, 125–141.CrossRefGoogle Scholar
  103. Rubery, P. H., Sheldrake, A. R., 1973: Effect of pH and surface charge on cell uptake of auxin. Nature New Biol. 244, 285–288.PubMedGoogle Scholar
  104. Sand AN, T., Ogura, T., 1957: Physiological studies on growth and morphogenesis of isolated plant cell cultured in vitro. III. The effects of pH, auxin and metabolic inhibitors. Bot. Mag. Tokyo 70, 125–130.Google Scholar
  105. Selvendram, R. R.,1975: Cell wall glycoproteins and Polysaccharides of parenehyma of Phaseolus coccineus. Phytochemistry 14, 2175–2180.CrossRefGoogle Scholar
  106. Shimmen, T.,Tazawa, M., 1977: Control of membrane potential and excitability of Chara cells with ATP and Mg2+. J. Membr. Biol. 37, 167–192.CrossRefGoogle Scholar
  107. Spanswick, R. M.,1972: Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochim. Biophys. Acta 288, 73–89.PubMedCrossRefGoogle Scholar
  108. Spear, D. G., Barr, J. K., Barr, C. E., 1969: Localization of hydrogen ions and chloride fluxes in Nitella. J. Gen. Physiol. 54, 397–414.PubMedCrossRefGoogle Scholar
  109. Stanton, F. W.,1970: A null method for the measurement of turgor pressure and the study of osmoregulation in growing Nitella cells. Masters Thesis, University of Pennsylvania, Philadelphia.Google Scholar
  110. Stoddart, R. W., Northcote, D. H., 1967: Metabolic relationships of the isolated fractions of the pectic substances of actively growing sycamore cells. Biochem. J. 105, 45–59.PubMedGoogle Scholar
  111. Strugger, S., 1932: Die Beeinflussung des Wachstums und des Geotropismus durch die Wasserstoffionen. Ber. dtsch. bot. Ges. 50, 77–92.Google Scholar
  112. Stuart, D. A., Jones, R. L., 1978: The role of acidification in gibberellic acid- and fusicoccin-induced elongation growth of lettuce hypocotyl sections. Planta 142, 135–142.CrossRefGoogle Scholar
  113. Tagawa, T., Bonner, J.,1957: Mechanical properties of the Avena coleoptile as related to auxin and to ionic interactions. Plant Physiol. 32, 207–312.PubMedCrossRefGoogle Scholar
  114. Talmadge, K. W., Keegstra, K., Bauer, W. D.,Albersheim, P., 1973: The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic Polysaccharides. Plant Physiol. 51, 158–173.PubMedCrossRefGoogle Scholar
  115. Tazawa, M.,Kamiya, N.,1965: Water relations of Characean internodal cell. Ann. Rep. Scient. Works, Fac. Sci. Osaka University 13, 123–157.Google Scholar
  116. Tazawa, M., Kamiya, N., Fujii, S., Kikuyama, M., 1979: Demonstration of light-induced potential change in Chara cells lacking tonoplast. Plant and Cell Physiol. 20, 271–280.Google Scholar
  117. Tepfer, M., Cleland, R. E., 1979: A comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles. Plant Physiol. 63, 898–902.PubMedCrossRefGoogle Scholar
  118. Thompson, E. W., Preston, R. D., 1967: Proteins in the cell walls of some green algae. Nature 213, 684–685.CrossRefGoogle Scholar
  119. Thompson, E. W., Preston, R. D., 1968: Evidence for a structural role of protein in algal cell walls. J. Exp. Bot. 19, 690–697.CrossRefGoogle Scholar
  120. Wainwright, S. A., Biggs, W. D., Currey, J. D., Gosline, J. M., 1976: Mechanical design in organisms. London: Edward Arnold.Google Scholar
  121. Wardrop, A., 1955: The mechanism of surface growth in parenchyma of Avena coleoptiles. Aust. J. Bot. 3, 137–148.CrossRefGoogle Scholar
  122. Weisenseel, M. H., Dorn, A., Jaffe, L. F., 1979: Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 64, 512–518.PubMedCrossRefGoogle Scholar
  123. Wilson, K., 1957: Extension growth in primary cell walls with special reference to Elodea canadensis. Ann. Bot. 21, 1–11.Google Scholar
  124. Wuytacket, R., Gillet, C., 1978: Nature des liaisons de l’ion calcium dans la paroi de Nitella flexilis. Can. J. Bot. 56, 1439–1443.CrossRefGoogle Scholar
  125. Yamagata, Y., Yamamoto, R., Masuda, Y., 1974: Auxin and hydrogen ion actions on light-grown pea epicotyl segments. II. Effect of hydrogen ions on extension of the isolated epidermis. Plant Cell Physiol. 15, 833–841.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • L. Taiz
    • 1
  • J.-P. Métraux
    • 2
  • P. A. Richmond
    • 3
  1. 1.Division of Natural Sciences, Thimann LaboratoriesUniversity of CaliforniaSanta CruzUSA
  2. 2.Department of BotanyUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Biological SciencesUniversity of the PacificStocktonUSA

Personalised recommendations