Morphogenesis and Biochemistry of Diatom Cell Walls

  • Anna-Maria M. Schmid
  • M. A. Borowitzka
  • B. E. Volcani
Part of the Cell Biology Monographs book series (CELLBIOL, volume 8)


Within the plants diatoms occupy a special position because of their diploidy and their dependence on silicon1 for growth (Richter 1906, Lewin 1955) which they require not only for formation of their siliceous cell wall, one of the most fascinating creations of single-celled organisms, but for cellular metabolism in general (for reviews see Werner 1977, 1978, Volcani 1978), including DNA replication (Darley and Volcani 1969, Sullivan and Volcani 1973, 1976, Okita and Volcani 1973, 1980).


Central Nodule Phaeodactylum Tricornutum Centric Diatom Diatom Cell Diatom Frustule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O. R., 1977: Cytoplasmic fine structure of nassellarian Radiolaria. Mar. Micro- paleontol. 2, 251–264.Google Scholar
  2. — — — 1981: Radiolarian fine structure and silica deposition. In: Silicon and siliceous structures in biological systems (Simpson, T. L., Volcani, B. E., eds.). New York: Springer. In press.Google Scholar
  3. Anonymous1975: Proposais for a standardization in diatom terminology and diagnoses. Nova Hedwigia Beih. 53, 323–354.Google Scholar
  4. Bachrach, E., Lefevre, M., 1929: Contribution a l’etude du role de la silice chez les etres vivants. Observations sur la biologie des Diatomees. J. Phys. Path. gen. 27, 241–249.Google Scholar
  5. Booth, B., Harrison, P. J., 1979: Effect of Silicate limitation on valve morphology in Thalassiosira andCoscinodiscus. J. Phycol. 15, 326–329.Google Scholar
  6. Borowitzka, M. A., Chiappino, M. L., Volcani, B. E., 1977: Ultrastructure of a chain- forming diatomPhaeodactylum tricornutum. J. Phycol. 13, 162–170.Google Scholar
  7. — — — Volcani, B. E., 1978: The polymorphic diatom Phaeodactylum tricornutum: Ultrastructure of its morphotypes. J. Phycol. 14, 10–21.Google Scholar
  8. Brown, R. M., Romanovicz, D. K., 1976: Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. I. Role of the endomembrane system in scale assembly and exo- cytosis. Appl. Polym. Symp. 28, 537–585.Google Scholar
  9. Chiappino, M. L., Volcani, B. E., 1977: Studies on the biochemistry and fine structure of silica shell formation in diatoms. VII. Sequential cell wall development in the pennate Nav’cula pelliculosa. Protoplasma 93, 205–221.Google Scholar
  10. — — — Azam, F., Volcani, B. E., 1977: Effect of germanic acid on developing cell walls of diatoms. Protoplasma 93, 191–204.Google Scholar
  11. Cooksey, K. E., Cooksey, B., 1974: Calcium deficiency can induce the transformation from oval to fusiform cell in cultures of Phaeodactylum tricornutum, Bohlin. J. Phycol. 10, 89–90.Google Scholar
  12. Coombs, J., Lauritis, J. A., Darley, W. M., Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silica shell formation in diatoms. V. Effects of colchicine on wall formation in Navicula pelliculosa (Breb.) Hilse. Z. Pflanzenphysiol. 59, 124–152.Google Scholar
  13. — — — Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silica-shell formation in diatoms. Chemical changes in the wall of Navicula pelliculosa during its formation. Planta 82, 280–292.Google Scholar
  14. Cotton, F., Wilkinson, G., 1966: Advanced inorganic chemistry, p. 468. New York: Inter- science.Google Scholar
  15. Crawford, R. M., 1973: The organic component of the cell wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. Br. Phycol. J. 8, 257–266.Google Scholar
  16. — — — 1974 a: The structure and formation of the siliceous wall of the diatom Melosira nummuloides (Dillw.) C. Ag. Nova Hedwigia, Beih. 45, 131–141.Google Scholar
  17. — — — 1974 b: The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. Br. Phycol. J. 9, 9–20.Google Scholar
  18. Darley, W. M., Volcani, B. E., 1969: Role of silicon in diatom metabolism. A silicon requirement for desoxyribonucleic acid synthesis in the diatomCylindrotheca fusijormis Reimann and Lewin. Exp. Cell Res. 58, 334–343.PubMedGoogle Scholar
  19. Darragh, P. J., Gaskin, A. J., Terrell, B. C., Sanders, J. V., 1966: Origin of precious opal. Nature 209, 12–16.Google Scholar
  20. Dawson, P., 1973: Observations on the structure of some forms ofGomphonema parvulum Kütz. III. Frustule formation. J. Phycol. 9, 353–365.Google Scholar
  21. Drebes, G., 1967: Bacteriastrum solitarum Mangin, a stage in the life history of the centric diatom Bacteriastrum hyalinum. Mar. Biol. 1, 40–42.Google Scholar
  22. — — — 1977: Sexuality. In: The biology of diatoms (Werner, D., ed.), pp. 250–283. (Botanical Monographs, Vol. 13.) Oxford: Blackwell.Google Scholar
  23. Drum, R. W., 1964: Notes on Iowa diatoms. VI. Frustular aberrations inSurirella ovalis. J. Iowa Acad. Sci. 71, 51–55.Google Scholar
  24. — — — Pankratz, H. S., 1964: Post mitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res. 10, 217–223.PubMedGoogle Scholar
  25. — — — Stoermer, E. F., 1966: Electron microscopy of diatom cells. In: Diatomeenschalen im elektronenmikroskopischen Bild, VI (Helmcke, J. G., Krieger, W., eds.). Lehre: Cramer Verlag.Google Scholar
  26. Duke, E. L., Reimann, B. E. F., 1977: The ultrastructure of the diatom cell. In: The biology of diatoms (Werner, D., ed.), pp. 65–109. (Botanical Monographs, Vol. 13.) Oxford: Blackwell.Google Scholar
  27. Ford, C. W., Percival, E., 1965: Carbohydrates ofPhaeodactylum tricornutum. Part II. A sulphated glucuronomannan. J. Chem. Soc. 7042–7046.Google Scholar
  28. Fryxell, G. A., Hasle, G. R., 1972: Thalassiosira eccentrica (Ehrb.) Cl., T. symmetrica sp. nov., and some related centric diatoms. J. Phycol. 8, 297–317.Google Scholar
  29. Fuhrmann, J. A., Chisholm, S. W., Guillard, R. R. L., 1978: Marine algaPlatymonas sp. accumulates silicon without apparent requirement. Nature 272, 244–245Google Scholar
  30. Garrone, R., Simpson, T. S., Pottu-Boumendil, J., 1981: Ultrastructure and deposition of silica in sponges. In: Silicon and siliceous structures in biological systems (Simpson, T. L., Volcani, B. E., eds.). New York: Springer. In press.Google Scholar
  31. Geissler, U., 1970 a: Die Schalenmerkmale der Diatomeen. Ursachen ihrer Variabilität und Bedeutung für die Taxonomie. Nova Hedwigia, Beih. 31, 511–535.Google Scholar
  32. — — — 1970 b: Die Variabilität der Schalenmerkmale bei den Diatomeen. Nova Hedwigia Beih. 19, 623–773.Google Scholar
  33. Geitler, L., 1932: Der Formwechsel der pennaten Diatomeen (Kieselalgen). Arch. Protistenk. 78, 1–226.Google Scholar
  34. — — — 1963: Alle Schalenbildungen der Diatomeen treten als Folge der Zell- oder Kernteilung auf. Ber. dtsch. bot. Ges. 75, 393–396.Google Scholar
  35. — — — 1979: On some peculiarities in the life history of pennate diatoms hitherto overlooked. Amer. J. Bot. 66, 91–97.Google Scholar
  36. Green, P. B., 1962: Mechanism for plant cellular morphogenesis. Science 138, 1404–1405.PubMedGoogle Scholar
  37. Gross, F., 1940: The development of isolated resting spores into auxospores in Ditylum brightwelli (West.). J. Mar. Biol. Ass. U.K. 24, 375–380.Google Scholar
  38. Hasle, G. R., 1974: The “mucilage pore” of pennate diatoms. Nova Hedwigia Beih. 45, 167–186.Google Scholar
  39. — — — Heimdal, B. R., Fryxell, G. A., 1971: Morphologie variability in fasciculated diatoms as exemplified by Thalassiosira tumida (Janisch) Hasle, comb. nov. Antarct. Res. Ser. 17, 313–333.Google Scholar
  40. Hecky, R. E., Mopper, K., Kilham, P., Degens, E. T., 1973: The amino acid and sugar composition of diatom cell-walls. Mar. Biol. 19, 323–331.Google Scholar
  41. Hemmingsen, B. B., 1971: A mono-silicic acid stimulated adenosintriphosphatase from protoplasts of the apochlorotic diatom Nitzschia alba. Ph.D. thesis, University of California, San Diego.Google Scholar
  42. Hepler, P. K., Newcomb, E. H., 1964: Microtubules and fibrils in the cytoplasm ofColeus cells undergoing secondary wall deposition. J. Cell Biol. 20, 529–533.PubMedGoogle Scholar
  43. Heurck, H. van, 1899: Traite des Diatomees. Anvers.Google Scholar
  44. Hibberd, D. J., 1977: Ultrastructure of cyst formation in Ochromonas tuberculata (Chrysophyceae). J. Phycol. 13, 309–320.Google Scholar
  45. — — — 1978: The fine structure of Synura sphagnicola (Korsh.) Korsh. (Chrysophyceae). Br. Phycol. J. 13, 403–412.Google Scholar
  46. Holmes, R. W., 1967: Auxospore formation in two marine clones of the diatom genus Coscinodiscus. Amer. J. Bot. 54, 163–168.Google Scholar
  47. — — — Reimann, B. E. F., 1966: Variation in valve morphology during the life cycle of the marine diatom Coscinodiscus concinnus. Phycologia 5, 233–244.Google Scholar
  48. Holt, P. F., Yates, D. M., 1953: Tissue silicon: a study of the ethanolsoluble fraction, using 31Si. Biochem. J. 54, 300–305.PubMedGoogle Scholar
  49. Hoops, H. J., Floyd, G. L., 1979: Ultrastructure of the centric diatom Cyclotella meneghiniana: vegetative cell and auxospore development. Phycologia 18, 424–435.Google Scholar
  50. Hostetter, H. P., Hoshaw, R. W., 1972: Asexual development patterns of the diatom Stauroneis aneeps in culture. J. Phycol. 8, 289–296.Google Scholar
  51. — — — R. W., Rutherford, K. D., 1976: Polymorphism of the diatom Pinnularia brebissonii in culture and a field collection. J. Phycol. 12, 140–146.Google Scholar
  52. Hustedt, F., 1930: Die Kieselalgen. In: Rabenhorsts Kryptogamenflora. Leipzig: Akad. Verlagsgesellschaft mbH.Google Scholar
  53. Iler, R. K., 1979: The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York: J. Wiley.Google Scholar
  54. Kamatani, A., 1971: Physical and chemical characteristics of biogenous silica. Mar. Biol. 8, 89–95.Google Scholar
  55. Kates, M., Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silicon shell formation in diatoms. Lipid components of the cell walls. 2. Pflanzenphysiol. 60, 19–29.Google Scholar
  56. Kaufmann, P. B., Dayanandan, P., Takeoka, Y., Srinivasan, J., Lau, E., Bigelow, W. C., Jones, J., Iler, R. K., la Croix, J. D., Ghoshah, N. S., 1981: Silica in shoots of higher plants. In: Silicon and siliceous structures in biological systems (Simpson, T. L., Volcani, B. E., eds.). New York: Springer. In press.Google Scholar
  57. Kiermayer, O., 1968: Hemmung der Kern- und Chloroplastenmigration von Micrasterias durch Colchicin. Naturw. 55, 299–300.Google Scholar
  58. Lauritis, J. A., Coombs, J., Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silica shell formation in diatoms. IV. Fine structure of the apochlorotic diatom Nitzschia alba Lewin and Lewin. Arch. Microbiol. 62, 1–16.Google Scholar
  59. Lauterborn, R., 1896: Untersuchungen über Bau, Kernteilung und Bewegung der Diatomeen. Leipzig: W. Engelmann.Google Scholar
  60. Leadbeater, B. S. C., 1979: Developmental studies on the loricate choanoflagellate Ste- phanoeca diplocostata Ellis. I. Ultrastructure of the non-dividing cell and costal strip production. Protoplasma 98, 241–262.Google Scholar
  61. Ledbetter, M. C., Porter, K. R., 1963: A “microtubule” in plant fine structure. J. Cell Biol. 19, 239–250.PubMedGoogle Scholar
  62. Lee, J. J., Mcenery, M. E., Shilo, M., Reiss, Z., 1979: Isolation and cultivation of diatom symbionts from larger foraminifera (protozoa). Nature 280, 57–58.Google Scholar
  63. Lee, R. E., 1978: Formation of scales in Paraphysomonas vestita and the inhibition of growth by germanium dioxide. J. Protozool. 25, 163–166.Google Scholar
  64. Lewin, J. C., 1955: Silicon metabolism in diatoms. II. Sources of silicon for growth of Navicula pelliculosa. Plant Physiol. 30, 129–134.PubMedGoogle Scholar
  65. — — — 1958: The taxonomic position of Phaeodactylum tricornutum. J. Gen. Microbiol. 18, 427–432.PubMedGoogle Scholar
  66. — — — 1962: Silicification. In: Physiology and biochemistry of algae (Lewin, R. A., ed.), pp. 445–455. New York: Academic Press.Google Scholar
  67. Li, C. W., Chiang, Y. M., 1979: A euryhaline and polymorphic new diatom, Proteucylindrus taiwanensis gen. et sp. nov. Br. Phycol. J. 14, 377–384.Google Scholar
  68. Liebisch, W., 1928: Amphitetras antediluviana Ehrb., sowie einige Beiträge zum Bau und zur Entwicklung der Diatomeenzelle. 2. Bot. 20, 225–271.Google Scholar
  69. — — — 1929: Experimentelle und kritische Untersuchungen über die Pektinmembran der Diatomeen unter besonderer Berücksichtigung der Auxosporenbildung und der Kratikular- zustände. 2. Bot. 22, 1–65.Google Scholar
  70. Lowe, R. L., Crang, R. E., 1972: The ultrastructure and morphological variability of the frustule of Stephanodiscus invisitatus Hohn and Hellermann. J. Phycol. 8, 256–259.Google Scholar
  71. Mangin, M. L., 1908: Observations sur les Diatomees. Ann. Sci. Nat. Bot. 9, 117–219.Google Scholar
  72. Mann, D. G., 1981: A note on valve formation and homology in the diatom genus Cymbella. Ann. Bot. 47, 267–269.Google Scholar
  73. Manton, I., Harris, K., 1966: Observations on the microanatomy of the brown flagellate Sphaleromantis tetragona Skuja with special reference to the flagellar apparatus and scales. J. Linn. Soc. (Bot.) 59, 397–403.Google Scholar
  74. — — — Leedale, G. F., 1961: Observations on the fine structure of Paraphysomonas vestita, with special reference to the Golgi apparatus and the origin of scales. Phycologia 1, 37–57.Google Scholar
  75. Nakajima, T., Volcani, B. E., 1969: 3,4-Dihydroxyproline: a new amino acid in diatom cell walls. Science 164, 1400–1406.Google Scholar
  76. — — — 1970: 8-N-Trimethyl-L-δ-hydroxylysine phosphate and its nonphosphorylated Compound in diatom cell walls. Biochem. Biophys. Res. Comm. 39, 28–33.Google Scholar
  77. Oey, J. L., Schnepf, E., 1970: Über die Auslösung der Valvenbildung bei der Diatomee Cyclotella cryptica. Versuche mit Colchicin, Actinomycin-D und Fluordesoxyuridin (FUDR). Arch. Mikrobiol. 71, 199–213.Google Scholar
  78. Okita, T. W., Volcani, B. E., 1978: Role of silicon in diatoms. IX. Differential synthesis of DNA polymerases and DNA-binding proteins during Silicate starvation and recovery in Cylindrotheca fusiformis. Biochim. Biophys. Acta 519, 76–86.PubMedGoogle Scholar
  79. — — — 1980: Role of silicon in diatom metabolism. X. Polypeptide labelling patterns during the cell cycle, Silicate starvation and recovery inCylindrotheca fusiformis. Exp. Cell Res. 125, 471–481.PubMedGoogle Scholar
  80. Paasche, E., Johansson, S., Evensen, D. L., 1975: An effect of osmotic pressure on the valve morphology of the diatom Skeletonema subsalsum (A. Cleve) Bethge. Phycologia 14, 205–211.Google Scholar
  81. Peragallo, H., 1907: Sur la division cellulaire du Biddulphia mobiliensis. Soc. sci. d’Arcachon Stat. Biol. Trav. des lab. 10, 1–26.Google Scholar
  82. Percival, E., Mcdowell, R. H., 1967: Chemistry and enzymology of marine algal Polysaccharides, p. 188. London-New York: Academic Press.Google Scholar
  83. Pickett-Heaps, J. D., Mcdonald, K. L., Tippit, D. H., 1975: Cell division in the pennate diatom Diatoma vulgare. Protoplasma 86, 205–242.PubMedGoogle Scholar
  84. — — — Tippit, D. H., Andreozzi, J. A., 1979 a: Cell division in the pennate diatom Pinnularia. III. The valve and associated cytoplasmic organelles. Biol. Cellulaire 35, 195–198.Google Scholar
  85. — — — 1979 b: Cell division in the pennate diatom Pinnularia. IV. Valve morphogenesis. Biol. Cellulaire 35, 199–203.Google Scholar
  86. Pienaar, R. N., 1976: The microanatomy of Sphaleromantis marina sp. nov. (Chrysophyceae). Br. Phycol. J. 9, 273–283.Google Scholar
  87. Reimann, B., 1960: Bildung, Bau und Zusammenhang der Bacillariophyceenschalen (elektronenmikroskopische Untersuchungen). Nova Hedwigia 2, 349–373.Google Scholar
  88. Reimann, B. E. F., 1964: Deposition of silica inside a diatom cell. Exp. Cell Res. 34, 605– 608.PubMedGoogle Scholar
  89. — — — Lewin, J. C., 1964: The diatom genus Cylindrotheca Rabenhorst. J. Roy. Microsc. Soc. 83, 283–296.Google Scholar
  90. — — — J. C., Volcani, B. E., 1965: Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis Reiman and Lewin. J. Cell Biol. 24, 39–55.PubMedGoogle Scholar
  91. — — — 1966: Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall ofNavicula pelliculosa (Breb.) Hilse. J. Phycol. 2, 74–84.Google Scholar
  92. — — — Volcani, B. E., 1968: Studies on the biochemistry and fine structure of silica shell formation in diatoms. III. The structure of the cell wall of Phaeodactylum tricornutum. J. Ultrastruct. Res. 21, 182–193.Google Scholar
  93. Richter, A., 1906: Zur Physiologie der Diatomeen (I. Mitteilung). Sitzungsber. österr. Akad. Wiss., Math.-naturw. Kl. 115, 27–119.Google Scholar
  94. — — — 1911: Die Ernährung der Algen. Intern. Revue Ges. Hydrobiol. Hydrograph., Monographien und Abhandlungen 2, 1–193.Google Scholar
  95. Roemer, S. C., Rosowski, J. R., 1980: Valve and band morphology of some freshwater diatoms. III. Pre- and postauxospore frustules and the initial cell ofMelosira roeseana. J. Phycol. 16, 399–411.Google Scholar
  96. Roth, L. E., de Francisco, A., 1977: The marine diatom, Striatella unipunetata. II. Siliceous structures and the formation of intercalary bands. Cytobiologie 14, 207–221.Google Scholar
  97. Round, F. E., 1972 a: The formation of girdle, intercalary bands and septa in diatoms. Nova Hedwigia 23, 449–463.Google Scholar
  98. — — — 1972 b: The problem of reduetion of cell size during diatom cell division. Nova Hedwigia 23, 291–303.Google Scholar
  99. Sangster, A. G., Parry, D. W., 1981: Ultrastructure of silica deposition on higher plants. In: Silicon and siliceous structures in biological systems (Simpson, T. L., Volcani, B. E., eds.). New York: Springer. In pressGoogle Scholar
  100. Schmid, A. M., 1976 a: Morphologische und physiologische Untersuchungen an Diatomeen des Neusiedler Sees: I. Methodik der Analyse der Schalenmorphologie von Cylindrotheca gracilis (Breb.) Grun. Mikroskopie 32, 81–89.Google Scholar
  101. — — — 1976 b: Morphologische und physiologische Untersuchungen an Diatomeen des Neusiedler Sees: II. Licht- und rasterelektronenmikroskopische Schalenanalyse der umweltabhängigen Zyklomorphose von Anomoneoneis sphaerophora (Kg.) Pfitzer. Nova Hedwigia 28, 309– 351.Google Scholar
  102. — — — 1979 a: The development of structure in the shells of diatoms. Nova Hedwigia Beih. 64, 219–236.Google Scholar
  103. — — — 1979 b: Influence of environmental factors on the development of the valve of diatoms. Protoplasma 99, 99–115.Google Scholar
  104. — — — 1979 c: Wall morphogenesis in diatoms: the role of microtubules during pattern formation. Europ. J. Cell Biol. 20, 125.Google Scholar
  105. — — — 1979 d: Wall morphogenesis in diatoms: the antimicrotubule action of osmotic pressure. Europ. J. Cell Biol. 20, 134.Google Scholar
  106. — — — 1980: Valve morphogenesis in diatoms: a pattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure. Nova Hedwigia 33 (in press).Google Scholar
  107. — — — Schulz, D., 1979: Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100, 267–288.Google Scholar
  108. Schnepf, E., Deichgräber, G., 1969: Über die Feinstruktur von Synura petersenii unter besonderer Berücksichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma 68, 85–106.Google Scholar
  109. — — — Drebes, G., 1977: The structure of the frustule of Attheya decora West (Bacillariophyceae, Biddulphiineae) with special reference to the organic Compounds. Br. Phycol. J. 12, 145–154.Google Scholar
  110. — — — Deichgräber, G., Drebes, G., 1980: Morphogenetic process in Attheya decora (.Bacillariophyceae, Biddulphiineae). Plant Syst. Evol. 135, 265–277.Google Scholar
  111. Schultz, M., 1971: Salinity-related polymorphism in the brackish-water diatom Cyclotella cryptica. Canad. J. Bot. 49, 1285–1289.Google Scholar
  112. Simpson, T. L., Vaccaro, C. A., 1974: An ultrastructural study of silica deposition in the freshwater spongeSpongilla lacustris. J. Ultrastruct. Res. 47, 296–309.PubMedGoogle Scholar
  113. Stoermer, E. F., Pankratz, H. S., Bowen, C. C., 1965: Fine structure of the diatom Amphipleura pellucida. II. Cytoplasmic fine structure and frustule formation. Amer. J. Bot. 52, 1067–1078.Google Scholar
  114. — — — 1967: Polymorphism in Mastogloia. J. Phycol. 3, 73–77.Google Scholar
  115. Stosch, H. A. von, 1942: Form und Formwechsel der Diatomee Achnanthes longipes in Abhängigkeit von der Ernährung. Mit besonderer Berücksichtigung der Spurenstoffe. Ber. dtsch. bot. Ges. 60, 2–15.Google Scholar
  116. — — — 1967: Diatomeen. In: Vegetative Fortpflanzung, Parthenogenese und Apogamie bei Algen (Ruhland, W., Hrsg.). (Handbuch der Pflanzenphysiologie, Bd. 18.) Berlin-Heidelberg- New York: Springer.Google Scholar
  117. S— — — 1975: An amended terminology of the diatom girdle. Nova Hedwigia Beih. 53, 1–28.Google Scholar
  118. — — — 1977: Observations on Bellerochea and Strephtotheca, including descriptions of three new planktonic diatom species. Nova Hedwigia Beih. 54, 113–166.Google Scholar
  119. — — — Kowallik, D., 1969: Der von L. Geitler aufgestellte Satz über die Notwendigkeit einer Mitose für jede Schalenbildung von Diatomeen. Beobachtungen über die Reichweite und Überlegungen zu einer zellmechanischen Bedeutung, österr. Bot. Z. 116, 454–474.Google Scholar
  120. — — Reimann, B. E. F., 1970: Suhsilicea fragilarioides gen. et spec. nov., eine Diatomee (Fragilariaceae) mit vorwiegend organischer Membran. Nova Hedwigia Beih. 31, 1–36.Google Scholar
  121. Sullivan, C. W., 1979: Diatom mineralization of silicic acid. IV. Kinetics of soluble Si pool formation in exponentially growing and synchronizedNavicula pelliculosa. J. Phycol. 15, 210–216.Google Scholar
  122. Sullivan, C. W., Volcani, B. E., 1973: Role of silicon in diatom metabolism. III. The effects of silicic acid on DNA polymerase, TMP kinase and DNA synthesis inCylindrotheca fusiformis. Biochim. Biophys. Acta 308, 212–219.PubMedGoogle Scholar
  123. — — — 1976: Role of silicon in diatom metabolism. VII. Silicic acid-stimulated DNA synthesis in toluene-permeabilized cells ofCylindrotheca fusiformis. Exp. Cell Res. 98, 23–30.PubMedGoogle Scholar
  124. Sydow, B. v., Christenhuss, R., 1972: Rasterelektronenmikroskopische Untersuchungen der Hohlräume in der Schalenwand einiger zentrischer Kieselalgen. Arch. Protistenk. 114, 256–271.Google Scholar
  125. Tippit, D. H., Mcdonald, K. L., Pickett-Heaps, J. D., 1975: Cell division in the centric diatom Melosira varians. Cytobiologie 12, 52–73.Google Scholar
  126. — — — Pickett-Heaps, J. D., 1977: Mitosis in the pennate diatom Surirella ovalis. J. Cell Biol. 73, 705–727.PubMedGoogle Scholar
  127. Voigt, M., 1943: Sur certaines irregularites dans la structure des Diatomees. Notes Bot. chin. 4, 1–50.Google Scholar
  128. — — — 1956: Sur certaines irregularites dans la structure des Diatomees. Revue algol., N. S. 2, 85–97.Google Scholar
  129. Volcani, B. E., 1978: Role of silicon in diatom metabolism and silicification. In: Biochemistry of silicon and related problems (Bendz, G., Lindqvist, I., eds.), pp. 177–204. New York: Plenum Press.Google Scholar
  130. — — — 1981: Cell wall formation in diatoms: morphogenesis and biochemistry. In: Silicon and siliceous structures in biological systems (Simpson, T. L., Volcani, B. E., eds.). New York: Springer. In press.Google Scholar
  131. Werner, D., 1977: The biology of diatoms. (Botanical Monographs, Vol. 13.) Oxford: Blackwell.Google Scholar
  132. — — — 1978: Regulation of metabolism by Silicate in diatoms. In: Biochemistry of silicon and related problems (Bendz, G., Lindqvist, I., eds.), pp. 149–176. New York: Plenum Press.Google Scholar
  133. Wujek, D. E., Kristiansen, J., 1978: Observations on bristle- and scale-production in Mallomonas caudata (Chrysophyceae). Arch. Protistenk. 120, 213–221.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • Anna-Maria M. Schmid
    • 1
  • M. A. Borowitzka
    • 2
  • B. E. Volcani
    • 3
  1. 1.Botanical InstituteUniversity of SalzburgSalzburgAustria
  2. 2.Roche Research Institute of Marine PharmacologyDee WhyAustralia
  3. 3.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations