Role of Lipid Self-Assembly in Subcellular Morphogenesis

  • P. Sitte
Part of the Cell Biology Monographs book series (CELLBIOL, volume 8)


Every living organism can be characterized by its particular structure. At all levels of complexity, its structure is the basis for its specific functional activities. Since most of these structures change during development, one of the problems in biology is to understand how these structures are established. In dealing with morphogenesis at the subcellular level, it is advisable to differentiate between the processes of synthesis and Organization. The molecular building blocks, as synthesized by the metabolic machinery, must become organized in order to form more complex functional entities such as organelles. Mitochondria or plastids are not just “synthesized”. Whereas synthesis means the formation of covalent bonds by specific enzymes, any supramolecular Organization comes about (and depends on) weak interactions among identical or different molecular components. As these interactions are not mediated by enzymes, the formation of supramolecular entities in living cells is not an immediate consequence of genetic activity. Most (eu-)cellular structures are formed outside the nucleus. Genes, although highly “organized” structurally and functionally, act as scalars in cellular life, not as vectors. Supramolecular structures, on the other hand, are invariably manifestations of vectors.


Liquid Crystal Lipid Molecule Juglans Regia Lipid Globule Lipid Inclusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C. F., Good, P., Mollenhauer, H. H., Totten, C., 1971: Studies on seeds IV. Lipid composition of bean cotyledons. J. Cell Biol. 48, 542–546.PubMedGoogle Scholar
  2. Appelqvist, L. Å., 1975: Biochemical and structural aspects of storage and membrane lipids in developing oil seeds. In: Recent advances in the chemistry and biochemistry of plant lipids (Gaillard, T., Mercer, E. L, eds.), pp. 247–286. London-New York- San Francisco: Academic Press.Google Scholar
  3. Bahr, G. F., 1954: Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Exper. Cell Res. 7, 457–479.Google Scholar
  4. Baker, E. A., Parsons, E., 1971: Scanning electron microscopy of plant cuticles. J. Microscopie 94, 39–49.Google Scholar
  5. Bancher, E., Washüttl, J., Goller, H.-J., 1972: Untersuchungen der Lipide in den Sphaerosomen- und Mitochondrienfraktionen -y-bestrahlter Samen von Erdnuß (Arachis hypogaea) und Walnuß (Juglans regia). 2. Pflanzenphysiol. 67, 399–403.Google Scholar
  6. Bangham, A. D., 1972: Lipid bilayers and biomembranes. Annu. Rev. Biochem. 41, 753–776.PubMedGoogle Scholar
  7. Bangham, A. D., Hörne, R. W., 1964: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 8, 660–668.PubMedGoogle Scholar
  8. Beament, J. W. L., 1968: The insect cuticle and membrane structure. Brit. med. Bull. 24/2, 130–134.PubMedGoogle Scholar
  9. Beck, J. S., 1980: Biomembranes. Fundamentals in relation to human biology. Washington- New York-London: Hemisphere Publ. Corp.Google Scholar
  10. Bergelson, L. D., Barsukov, L. I., 1977: Topological asymmetry of phospholipids in membranes. Science 197, 224–230.PubMedGoogle Scholar
  11. Bergfeld, R., Hong, Y.-N., Kühnl, T., Schopfer, P., 1978: Formation of oleosomes (storage lipid bodies) during embryogenesis and their breakdown during seedling development in cotyledons ofSinapsis alba L. Planta 143, 297–307.Google Scholar
  12. Bittar, E. E. (ed.), 1980: Membrane structure and function. New York: J. Wiley.Google Scholar
  13. Boschke, F. L. (ed.), 1980: Micelles. (Topics in Curr. Chem., Vol. 87.) Berlin-Heidelberg- New York: Springer.Google Scholar
  14. Branton, D., Bullivant, S., Gulila, N. B., Karnovsky, M. J., Moor, H., Mühlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin L. A., Steere, R. L., Weinstein, R. S., 1975: Freeze-etching nomenclature. Science 190, 54–56.PubMedGoogle Scholar
  15. Brown, G. H., Wolken, J. J., 1979: Liquid crystals and biological structures. New York- San Francisco-London: Academic Press.Google Scholar
  16. Celis, J. E., Gressmann, A., Loyter, A. (eds.), 1980: Transfer of cell constituents into eukaryotic cells. New York-London: Plenum Press.Google Scholar
  17. Cherry, R. J., 1979: Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559, 289–320.PubMedGoogle Scholar
  18. Cohen, C., 1977: Protein assemblies and cell form. TIBS 2, 51–55.Google Scholar
  19. Colley, C. M., Ryman, B. E., 1976: The liposome: from membrane model to therapeutic agent. TIBS 1, 203–205.Google Scholar
  20. Conrad, M. J., Singer, S. J., 1979: Evidence for a large internal pressure in biological membranes. Proc. Natl. Acad. Sei. U.S.A. 76, 5202–5206.Google Scholar
  21. Cullis, P. R., De Kruijff, B., 1979: Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399–420.PubMedGoogle Scholar
  22. Deckelbaum, R. J., Shipley, G. G., Small, D. M., 1977: Structure and interactions of lipids in human plasma low density lipoproteins. J. Biol. Chem. 252, 744–754.PubMedGoogle Scholar
  23. De Gennes, P. G., 1974: The physics of liquid crystals. Oxford: Clarendon Press.Google Scholar
  24. De Kruijff, B., Cullis, P. R., Verkleij, A. J., 1980: Non-bilayer lipid structures in model and biological membranes. TIBS 5, 79–81.Google Scholar
  25. Dustin, P., 1978: Microtubules. Berlin-Heidelberg-New York: Springer.Google Scholar
  26. Egger, K., 1964: Vergleichende Untersuchung der Xanthophyllveresterung in Blüten, Früchten und Herbstlaub. Ber. dtsch. bot. Ges. 77, (145)–(150).Google Scholar
  27. Eigen, M., 1971: Selforganization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523.PubMedGoogle Scholar
  28. Eigen, M., Schuster, P., 1979: The hypercycle. Berlin-Heidelberg-New York: Springer.Google Scholar
  29. Eisenberg, M., McLaughlin, S., 1976: Lipid bilayers as models of biological membranes. BioScience 26, 436–443.Google Scholar
  30. Finean, J. B., Coleman, R., Michell, R. H., 1978: Membranes and their cellular funetions, 2nd ed. Oxford-London-Edinburgh-Melbourne: Blackwell.Google Scholar
  31. Folsome, C. E., 1976: Synthetic organic microstructures and the origins of cellular life. Naturwiss. 63, 303–306.Google Scholar
  32. Frey-Wyssling, A., Grieshaber, E., Mühlethaler, K., 1963: Origin of spherosomes in plant cells. J. Ultrastruct. Res. 8, 506–516.Google Scholar
  33. Friberg, S. (ed.), 1976: Lyotropic liquid crystals (Adv. Chem. Ser. No. 152). Washington, D.C.: Amer. Chem. Soc.Google Scholar
  34. Frosch, S., Jabben, M., Bergfeld, R., Kleinig, H., Mohr, H., 1979: Inhibition of carotenoid biosynthesis by the herbizide SAN 9789 and its consequences for the action of phytochrome on plastogenesis. Planta 145, 497–505.Google Scholar
  35. Gray, G. W., 1962: Molecular structure and the properties of liquid crystals. London-New York: Academic Press.Google Scholar
  36. Gregoriadis, G., Allison, A. C. (eds.), 1980: Liposomes in biological systems. Chichester: J. Wiley.Google Scholar
  37. Grieshaber, E., 1964: Entwicklung und Feinbau der Sphärosomen in Pflanzenzellen. Vierteljahresschrift naturforsch. Ges. Zürich 109, 1–23.Google Scholar
  38. Hadley, N. F., 1980: Surface waxes and integumentary permeability. Amer. Scientist 68, 546–553.Google Scholar
  39. Hahn, C. W., 1972: Composite protostruetures: an exercise in model building. J. Polymer Sei. C 39, 331–335.Google Scholar
  40. Haken, H., 1978: Synergetics. An introduction. Nonequilibrium phase transitions and self-organization in physics, chemistry and biology, 2nd ed. Berlin-Heidelberg-New York: Springer.Google Scholar
  41. Hansmann, P., 1980: Isolierung und Charakterisierung der Globuli aus Chromoplasten von Viola tricolor. Dipl.-Work, Univ. Freiburg/Br.Google Scholar
  42. Hanstein, J. v., 1880: Biologie des Protoplasmas. Bot. Abhdlg. Morph. Physiol. 4/2, Bonn.Google Scholar
  43. Holmes, K. C., 1975: Selbstorganisation biologischer Strukturen. Klin. Wochenschr. 53, 997–1005.PubMedGoogle Scholar
  44. Huang, C., Wheeldon, L., Thompson, T. E., 1964: The properties of lipid bilayer membranes separating two aqueous phases: formation of a membrane of simple composition. J. Mol. Biol. 8, 148–160.PubMedGoogle Scholar
  45. Jacks, T. J., Yatsu, L. Y., Altschul, A. M., 1967: Isolation and characterization of peanut spherosomes. Plant Physiol. 42, 585–597.PubMedGoogle Scholar
  46. Johnson, J. F., Porter, R. S., 1970: Liquid crystals and ordered fluids. New York-London: Plenum Press.Google Scholar
  47. Kates, M., Kuksis, A. (eds.), 1980: Membrane fluidity. Biophysical techniques and cellular regulation. Clifton, N.J.: Humana Press.Google Scholar
  48. Kelker, H., Hätz, R., 1980: Handbook of liquid crystals. Weinheim: Verlag Chemie.Google Scholar
  49. Kesselmeier, J., Budzikiewicz, H., 1979: Identification of saponins as structural building units in isolated prolamellar bodies from etioplasts of Avena sativa L. Z. Pflanzen- physiol. 91, 333–344.Google Scholar
  50. Kesselmeier, J., Ruppel, H. G., 1979: Relations between saponin concentration and prolamellar body structure in etioplasts ofAvena sativa during greening and re-etiolating and in etioplasts ofHordeum vulgare and Pisum sativum. Z. Pflanzenphysiol. 93, 171–184.Google Scholar
  51. King, L. J., 1969: Biocrystallography—an interdisciplinary challenge. BioScience 19, 505–518.Google Scholar
  52. Kleinig, H., Steinki, C., Kopp, C., Zaar, K., 1978: Oleosomes (spherosomes) from Daucus carota suspension culture cells. Planta 140, 233–237.Google Scholar
  53. Kobale, M., Krüger, H., 1975: Flüssige Kristalle. Physik in uns. Zeit 6, 66–77.Google Scholar
  54. Kuhn, H., 1976: Model consideration for the origin of life. Naturwiss. 63, 68–80.PubMedGoogle Scholar
  55. Kühn, K., 1974: Struktur und Biochemie des Kollagens. Chemie in uns. Zeit 8, 97–103.Google Scholar
  56. Kwiatkowska, M., 1973: Half unit membranes surrounding osmiophilic granules (lipid droplets) of the so-called lipotubuloid in Ornithogalum. Protoplasma 77, 473–476.Google Scholar
  57. Lee, A. G., 1977: Annular events: lipid-protein interactions. TIBS 2, 231–233.Google Scholar
  58. Lichtenthaler, H. K., 1968: Plastoglobuli und die Feinstruktur der Piastiden. Endeavour 27, 144–149.Google Scholar
  59. Liedvogel, B., Falk, H., 1980: Leucoplasts mimicking membraneous chromoplasts. Z. Pflanzenphysiol. 98, 371–375.Google Scholar
  60. Liedvogel, B., Kleinig, H., Thompson, J. A., Falk, H., 1978: Chromoplasts of Tropaeolum majus L.: Lipid synthesis in whole organelles and subfractions. Planta 141, 303–309.Google Scholar
  61. Liu, T.-P., 1974: Ultrastructure of the lipid inclusions of the yolk in the freeze-etched oocyte of an insect. Cytobiol. 8, 412–420.Google Scholar
  62. Ljubesic, N., 1973: Transformations of plastids in white pumpkin fruits. Acta Bot. Croat. 32, 59–62.Google Scholar
  63. Lucy, J. A., Glauert, A. M., 1964: Structure and assembly of macromolecular lipid complexes composed of globular micelles. J. Mol. Biol. 8, 727–748.PubMedGoogle Scholar
  64. Lütz, C., 1978: Separation and composition of prolamellar bodies and prothylakoids of etioplasts fromAvena sativa L. In: Chloroplast development (Akoyunoglou, G., et al eds.), pp. 481–488. Amsterdam: Elsevier/North-Holland Biomed. Press.Google Scholar
  65. Lütz, C., Klein, S., 1979: Biochemical and cytological observations on chloroplast development VI. Chlorophylls and saponins in prolamellar bodies and prothylakoids from etioplasts of etiolatedAvena sativa L. leaves. Z. Pflanzenphysiol. 95, 227–237.Google Scholar
  66. Lütz, C., Kesselmeier, J., Ruppel, H. G., 1977: Idem IV. Reaggregations of solubilized prolamellar bodies from etioplasts of Avena sativa L. Z. Pflanzenphysiol. 85, 327–340.Google Scholar
  67. Luzzati, V., Husson, F., 1962: The structure of the liquid-crystalline phases of lipid- water systems. J. Cell Biol. 12, 207–219.PubMedGoogle Scholar
  68. Malkoff, D., Strehler, B., 1963: The ultrastructure of isolated and in situ human cardiac age pigment. J. Cell Biol. 16, 611–616.PubMedGoogle Scholar
  69. Martin, J. T., Juniper, B. E., 1970: The cuticles of plants. London: Edward Arnold.Google Scholar
  70. Merida, T., Schönherr, J., Schmidt, H. W., 1981: Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticle of Clivia miniata Reg. leaves. Planta (in press).Google Scholar
  71. Miller, E. J., Matukas, V. J., 1974: Biosynthesis of collagen. Fed. Proc. 33, 1197–1204.PubMedGoogle Scholar
  72. Mittal, K. L. (ed.), 1977: Micellization, solubilization and microemulsions, Vols. 1 and 2. New York: Plenum Press.Google Scholar
  73. Mollenhauer, H. H., Totten, C., 1971: Studies on seeds III. Isolation and structure of lipid-containing vesicles. J. Cell Biol. 48, 533–541.PubMedGoogle Scholar
  74. Moor, H., Mühlethaler, K., 1963: Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628.PubMedGoogle Scholar
  75. Norton, G., Harris, J. F., 1975: Compositional changes in developing rape seed (Brassicanapus L.). Planta 123, 163–174.Google Scholar
  76. Op den Kamp, J. A. F., 1979: Lipid asymmetry in membranes. Annu. Rev. Biochem. 48, 47–71.Google Scholar
  77. Papahadjopoulos, D., Miller, N., 1967: Phospholipid model membranes I. Structural characteristics of hydrated liquid crystals. Biochim. Biophys. Acta 135, 624–638.PubMedGoogle Scholar
  78. Patton, S., Keenan, T. W., 1975: The milk fat globule membrane. Biochim. Biophys. Acta 415, 273–309.PubMedGoogle Scholar
  79. Perner, E. S., 1958: Die Sphärosomen der Pflanzenzelle. (Protoplasmatologia III/A/2.) Wien: Springer.Google Scholar
  80. Peters, R., 1980: Translational diffusion in the plasma membrane of sea urchin eggs. Hoppe-Seyler’s 2. physiol. Chem. 361, 1605.Google Scholar
  81. Poste, G., Nicolson, G. L. (eds.), 1978: Membrane fusion. (Cell Surface Rev., Vol. 5.) Amsterdam: North-Holland.Google Scholar
  82. Precht, D., 1979: Die Mikrostruktur der Butter. Naturwiss. Rundschau 32, 315–321.Google Scholar
  83. Reiss-Husson, F., 1967: Structure des phases liquide-cristallines de differents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence l’eau. J. Mol. Biol. 25, 363–382.PubMedGoogle Scholar
  84. Rockstein, M. (ed.), 1974: The physiology of insecta, Vol. VI. (See, in particular, chapters 2–4, pp. 123–343.) New York-London: Academic Press.Google Scholar
  85. Ruppel, H. G., Kesselmeier, J., Lütz, C., 1978: Bicchemical and cytological observations on chloroplast development V. Reaggregations of prolamellar body tubules without proteins participation. 2. Pflanzenphysiol. 90, 101–110.Google Scholar
  86. Ruska, C., Ruska, H., 1969: Molekulare Schichtung in Tropfen von Speicherfett. Naturwiss. 56, 332–333.PubMedGoogle Scholar
  87. Sandermann Jr., H., 1978: Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515, 209–237.PubMedGoogle Scholar
  88. Saupe, A., 1968: Neuere Ergebnisse auf dem Gebiet der flüssigen Kristalle. Angew. Chem. 80, 99–106.Google Scholar
  89. Sauter, J. J., 1967: Untersuchungen zur zytochemischen Oxydase-Lokalisation in Sphärosomen verschiedener Gewebe vonPopulus. 2. Pflanzenphysiol. 57, 352–367.Google Scholar
  90. Sauter, J. J., 1968: Cytochemischer Nachweis von Redoxfermenten in Fetttropfen-assoziierten „Sphärosomen“. Naturwiss. 55, 351.Google Scholar
  91. Scanu, A. M., 1972: Structural studies in serum lipoproteins. Biochim. Biophys. Acta 265, 471–508.Google Scholar
  92. Scanu, A. M., 1978: Plasma lipoproteins: structure, function, and regulation. TIBS 3, 202–205.Google Scholar
  93. Schönherr, J., 1976: Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131, 159–164.Google Scholar
  94. Schumacher, G., Sandermann, Jr., H., 1976: Solubility of phospholipid polar group model Compounds in water. Biochim. Biophys. Acta 448, 642–644.PubMedGoogle Scholar
  95. Schuster, P., 1972: Vom Makromolekül zur primitiven Zelle — die Entstehung biologischer Funktion. Chemie in uns. Zeit 6, 1–16.Google Scholar
  96. Schwarzenbach, A. M., 1971: Observations on spherosomal membranes. Cytobiol. 4, 145–147.Google Scholar
  97. Seybold, A., 1942: Pflanzenpigmente und Lichtfeld als physiologisches, geographisches und landwirtschaftliches Problem. Ber. dtsch. bot. Ges. 60, (64)–(85).Google Scholar
  98. Sheetz, M. P., Singer, S. J., 1974: Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sei. U.S.A. 71, 4457–4461.Google Scholar
  99. Shen, B. W., Scanu, A. M., Kezdy, F. J., 1977: Structure of human serum lipoproteins inferred from compositional analysis. Proc. Natl. Acad. Sei. U.S.A. 74, 837–841.Google Scholar
  100. Sitte, P., 1962: Zum Feinbau der Suberinschichten im Flaschenkork. Protoplasma 54, 555–559.Google Scholar
  101. Sitte, P., 1963: Hexagonale Anordnung der Globuli in Moos-Chloroplasten. Protoplasma 56, 197–201.Google Scholar
  102. Sitte, P., 1974: Plastiden-Metamorphose und Chromoplasten bei Chrysosplenium. Z. Pflanzenphysiol. 73, 243–265.Google Scholar
  103. Sitte, P., 1975: Die Bedeutung der molekularen Lamellen-Bauweise von Korkzellwänden. Biochem. Physiol. Pflanzen 168, 287–297.Google Scholar
  104. Sitte, P., 1976 a: Elektronenmikroskopie und Biologie — Schicksal einer Symbiose. Mikroskopie 32, 145–190.Google Scholar
  105. Sitte, P., 1976 b: Zur chemischen Fixierung von Lipidstrukturen. Mikroskopie 32, 208–209.Google Scholar
  106. Sitte, P., 1977: Functional Organization of biomembranes. In: Lipids and lipid polymers in higher plants (Tevini, M., Lichtenthaler, H. K., eds.), pp. 1–28. Berlin-Heidelberg-New York: Springer.Google Scholar
  107. Sitte, P., 1979: General principles of cellular compartmentation. In: Cell compartmentation and metabolic channeling (Nover, L., Lynen, F., Mothes, K., eds.), pp. 17–32. Jena: VEB G. Fischer Verlag and Amsterdam: Elsevier/North-Holland Biomed. Press.Google Scholar
  108. Sitte, P., 1980 a: Electron microscopy and the understanding of life. In: Electron microscopy, Vol. 2 (Brederoo, P., De Priester, W., eds.), pp. 818–825. Leiden.aaaGoogle Scholar
  109. Sitte, P., 1980 b: Nematic liquid crystals of lipid pigments in chromoplasts. Eur. J. Cell Biol. 22, 280.Google Scholar
  110. Sitte, P., Falk, H., Liedvogel, B., 1980: Chromoplasts. In: Pigments in plants, 2nd ed. (Czygan, F.-C, ed.), pp. 117–148. Stuttgart-New York: G. Fischer.Google Scholar
  111. Small, D. M., 1970: Surface and bulk interactions of lipids and water with a Classification of biologically active lipids based on these interactions. Fed. Proc. 29, 1320–1326.PubMedGoogle Scholar
  112. Smellie, R. M. S. (ed.), 1971: Plasma lipoproteins. London-New York: Academic Press.Google Scholar
  113. Smith, C. G., 1974: The ultrastructural development of spherosomes and oil bodies in the developing embryo of Crambe abysslnica. Planta 119, 125–142.Google Scholar
  114. Sorokin, H. P., 1967: The spherosomes and the reserve fat in plant cells. Amer. J. Bot. 54, 1008–1016.Google Scholar
  115. Steinsträsser, R., Pohl, L., 1973: Chemie und Verwendung flüssiger Kristalle. Angew. Chem. 85, 706–720.Google Scholar
  116. Stoeckenius, W., 1959: An electron microscopic study of myelin figures. J. Biophys. Biochem. Cytol. 5, 491–500.PubMedGoogle Scholar
  117. Stoeckenius, W., 1962: Some electron microscopical observations on liquid-crystalline phases in lipid-water systems. J. Cell Biol. 12, 221–229.PubMedGoogle Scholar
  118. Stoeckenius, W., Schulman, J. H., Prince, L. M., 1960: The structure of myelin figures and micro- emulsions as observed with the electron microscope. Kolloid-Z. 169, 170–180.Google Scholar
  119. Tanford, C., 1973: The hydrophobic effect: formation of micelles and biological membranes. New York: J. Wiley.Google Scholar
  120. Stoeckenius, W., 1978: The hydrophobic effect and the Organization of living matter. Science 200, 1012–1018.Google Scholar
  121. Thomson, W. W., Platt, K., 1973: Plastid ultrastructure in the barrel cactus, Echinocactus acanthodes. New Phytol. 72, 791–797.Google Scholar
  122. Träuble, H., 1971: Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen. Naturwiss. 58, 277–284.PubMedGoogle Scholar
  123. Turro, N. J., Grätzel, M., Braun, A. M., 1980: Photophysikalische und photochemische Prozesse in micellaren Systemen. Angew. Chem. 92, 712–734.Google Scholar
  124. Wanner, G., Theimer, R. R., 1978: Membraneous appendices of spherosomes (oleosomes). Planta 140, 163–169.Google Scholar
  125. Wanner, G., Formanek, H., Theimer, R. R., 1981: The ontogeny of lipid bodies (spherosomes) in plant cells. Planta 151, 109–123.Google Scholar
  126. Wehrmeyer, W., 1965: Zur Kristallgitterstruktur der sogenannten Prolamellarkörper in Piastiden etiolierter Bohnen, I–III. Z. Naturforsch. 20 b, 1270–1296.Google Scholar
  127. Weinstock, M., Leblond, C. P., 1974: Formation of collagen. Fed. Proc. 33, 1205–1218.PubMedGoogle Scholar
  128. Wieser, W. (ed.), 1973: Effects of temperature on ectothermic organisms. Berlin-Heidelberg- New York: Springer.Google Scholar
  129. Williams, M. C., 1977: Conversion of lamellar body membranes into tubulär myelin in alveoli of fetal rat lungs. J. Cell Biol. 72, 260–277.PubMedGoogle Scholar
  130. Winkenbach, F., Falk, H., Liedvogel, B., Sitte, P., 1976: Chromoplasts of Tropaeolum majus L.: Isolation and characterization of liproprotein elements. Planta 128, 23–28.Google Scholar
  131. Wuttke, H.-G., 1976: Chromoplasts in Rosa rugosa: Development and chemical characterization of tubulär elements. Z. Naturforsch. 31 c, 456–460.Google Scholar
  132. Yatsu, L. Y., Jacks, T. J., 1972: Spherosome membranes. Half unit-membranes. Plant Physiol. 49, 937–943.PubMedGoogle Scholar
  133. Yatsu, L. Y., Jacks, T. J., Hensarling, T. P., 1971: Isolation of spherosomes (oleosomes) from onion, cabbage, and cottonseed tissues. Plant Physiol. 48, 675–682.PubMedGoogle Scholar
  134. Zwaal, R. F. A., Demel, R. A., Roelofsen, B., van Deenen, L. L. M., 1976: The lipid bilayer concept of cell membranes. TIBS 1, 112–114.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • P. Sitte
    • 1
  1. 1.Institute for Biology IIUniversity of Freiburg i. Br.Freiburg i. Br.Federal Republic of Germany

Personalised recommendations