Ionic Currents as Control Mechanism in Cytomorphogenesis

  • M. H. Weisenseel
  • Rosalinde M. Kicherer
Part of the Cell Biology Monographs book series (CELLBIOL, volume 8)


As plant cells develop into multicellular organisms, three-dimensional patterns are formed without the cells possessing genetically laid down plans for these patterns. Therefore, a cell needs additional information for its proper spatial development to indicate, for instance, in which direction it should grow or in which plane it should divide. This information generally comes from external physical factors such as light, gravity, or pressure or from chemical factors such as ion or hormone gradients. Some examples of the effects of such factors on the morphogenesis of plant cells are illustrated in Figs. 1 and 2. When, for instance, zygotes of the brown algae Fucus and Pelvetia, which are practically nonpolar cells, are exposed to light from one side or only partly illuminated or exposed to a K+ gradientthey grow on the side turned away from the light or at the shaded side or on the side with the higher K+ concentration, respectively (Bentrup 1971, Bentrup et al. 1967, Jaffe 1968). When the tip-growing tubes of the yellow-green alga Vaucheria are locally irradiated with blue light, an additional growth zone is formed on this spot, which leads to branching within a few hours (Kicherer and Weisenseel, unpublished).


Pollen Tube Root Hair Ionic Current Grow Pollen Tube Negative Electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åberg, H., 1978: Light and branch formation in the alga Vaucheria dichotoma (Xanthophyceae). Physiol. Plant. 44, 224–230.CrossRefGoogle Scholar
  2. Achenbach, F., Weisenseel, M. H., 1981: Ionic currents traverse the slime mould Physarum. Cell Biology International Reports 5, 375–379.PubMedCrossRefGoogle Scholar
  3. Bentrup, F.-W., 1968: Die Morphogenese pflanzlicher Zellen im elektrischen Feld. Z. Pflanzenphysiol. 59, 309–339.Google Scholar
  4. Bentrup, F.-W., 1971: Räumliche Zelldifferenzierung. Umschau 10, 335–339.Google Scholar
  5. Bentrup, F.-W., Sand an, T., Jaffe, L. F., 1967: Induction of polarity inFucus eggs by potassium ion gradients. Protoplasma 64, 254–266.CrossRefGoogle Scholar
  6. Blatt, M. R., Briggs, W. R., 1980: Blue-light-induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga Vaucheria sessilis. Planta 147, 355–362.CrossRefGoogle Scholar
  7. Blatt, M. R., Wessells, N. K., Briggs, W. R., 1980: Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis. Planta 147, 363–375.CrossRefGoogle Scholar
  8. Bosch, F., El Goresy, A., Herth, W., Martin, B., Nobiling, R., Povh, B., Reiss, H.-D., Traxel, K., 1980: The Heidelberg proton microprobe. Nuclear Science Applications 1, 33–55.Google Scholar
  9. Brower, D. L., McIntosh, J. R., 1980: The effects of applied electric fields on Micrasterias. I. Morphogenesis and the pattern of cell wall deposition. J. Cell Sci. 42, 261–211.PubMedGoogle Scholar
  10. Brower, D. L., Giddings, T. H., 1980: The effects of applied electric fields on Micrasterias. II. The distributions of cytoplasmic and plasma membrane components. J. Cell Sci. 42, 279–290.PubMedGoogle Scholar
  11. Brunt, J. Van, Harold, F. M., 1980: Ionic control of germination of Blastocladiella emersonii zoospores. J. Bacteriol. 141, 735–744.PubMedGoogle Scholar
  12. Chen, T.-H., Jaffe, L. F., 1979: Forced calcium entry and polarized growth of Funaria spores. Planta 144, 401–406.CrossRefGoogle Scholar
  13. Cohen, R. J., 1974: cAMP levels in Phycomyces during a response to light. Nature 251, 144–146.Google Scholar
  14. Geddes, L. A., Hoff, H. E., 1971: The discovery of bioelectricity and current electricity. IEEE Spectrum 8, 38–46.CrossRefGoogle Scholar
  15. Haupt, W., 1957: Die Induktion der Polarität bei der Spore von Equisetum. Planta 49, 61–90.CrossRefGoogle Scholar
  16. Hodgkin, A. L., Keynes, R. D., 1957: Movements of labelled calcium in squid giant axons. J. Physiol. 138, 253–281.PubMedGoogle Scholar
  17. Jaffe, L. A., Weisenseel, M. H., Jaffe, L. F., 1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 67, 488–492.PubMedCrossRefGoogle Scholar
  18. Jaffe, L. F., 1966: Electrical currents through the developing Fucus egg. Proc. Nat. Acad. Sci. U.S.A. 56, 1102–1109.CrossRefGoogle Scholar
  19. Jaffe, L. F., 1968: Localization in the developing Fucus egg and the general role of localizing currents. Advan. Morphog. 7, 295–328.Google Scholar
  20. Jaffe, L. F., 1969: On the centripetal course of development, the Fucus egg, and self-electrophoresis. Develop. Biol. Suppl. 3, 83–111.Google Scholar
  21. Jaffe, L. F., 1977: Electrophoresis along cell membranes. Nature 265, 600–602.PubMedCrossRefGoogle Scholar
  22. Jaffe, L. F., 1980: Control of plant development by steady ionic currents. In: Plant membrane transport: current conceptual issues (Spanswick, R. M., Lucas, W. J., Dainty, J., eds.), pp. 381–388. Elsevier/North-Holland: Biomedical Press.Google Scholar
  23. Jaffe, L. F., Nuccitelli, R., 1974: An ultrasensitive vibrating probe for measuring steady extra- cellular currents. J. Cell Biol. 63, 614–628.PubMedCrossRefGoogle Scholar
  24. Jaffe, L. F., Nuccitelli, R., 1977: Electrical controls of development. Ann. Rev. Biophys. Bioeng. 6, 445–476.CrossRefGoogle Scholar
  25. Janistyn, B., Drumm, H., 1972: Light-mediated changes of concentration of cAMP in mustard seedlings. Naturwissenschaften 59, 218.CrossRefGoogle Scholar
  26. Kataoka, H., 1975: Phototropism in Vaucheria geminata II. The mechanism of bending and branching. Plant Cell Physiol. 16, 439–448.Google Scholar
  27. Kataoka, H., 1977: Phototropic sensitivity in Vaucheria geminata regulated by 3/,5/-cyclic AMP. Plant Cell Physiol. 18, 431–440.Google Scholar
  28. Lovett, J. S., 1975: Growth and differentiation of the water mold Blastocladiella emersonii: Cytodifferentiation and the role of ribonucleic acid and protein synthesis. Bacteriol. Reviews 39, 345–404.Google Scholar
  29. Lund, E. J., 1923: Electrical control of organic polarity in the egg of Fucus. Botan. Gaz. 76, 288–301.CrossRefGoogle Scholar
  30. Marsh, G., Beams, H. W., 1945: The orientation of pollen tubes of Vinca in the electric current. J. Cell. Comp. Physiol. 25, 195–204.Google Scholar
  31. Noväk, B., Bentrup, F.-W., 1972: An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108, 227–244.CrossRefGoogle Scholar
  32. Nuccitelli, R., 1978: Oöplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Develop. Biol. 62, 13–33.PubMedCrossRefGoogle Scholar
  33. Nuccitelli, R., Jaffe, L. F., 1974: Spontaneous current pulses through developing fucoid eggs. Proc. Nat. Acad. Sci. U.S.A. 71, 4855–4859.CrossRefGoogle Scholar
  34. Peng, H. B., Jaffe, L. F., 1976: Polarization of fucoid eggs by steady electrical fields. Develop. Biol. 53, 277–284.PubMedCrossRefGoogle Scholar
  35. Poo, M.-M., Robinson, K. R., 1977: Electrophoresis of concanavalin A reeeptors along embryonic muscle cell membrane. Nature 265, 602–605.PubMedCrossRefGoogle Scholar
  36. Reiss, H.-D., Herth, W., 1978: Visualization of the Ca2+-gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97, 373–377.CrossRefGoogle Scholar
  37. Reiss, H.-D., Herth, W., 1979 a: Calcium ionophore A 23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145, 225–232.Google Scholar
  38. Reiss, H.-D., Herth, W., 1979 b: Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta 146, 615–621.CrossRefGoogle Scholar
  39. Reissig, J. L., 1977: The divalent cation ionophore A 23187 induces branching in Neurospora. J. Cell Biol. 75, 30 a.Google Scholar
  40. Robinson, K. R., Jaffe, L. F., 1975: Polarizingfucoid eggs drive a calcium current through themselves. Science 187, 70–72.PubMedCrossRefGoogle Scholar
  41. Robinson, K. R., Cone, R., 1980: Polarization of fucoid eggs by a calcium ionophore gradient. Science 207, 77–78.PubMedCrossRefGoogle Scholar
  42. Sand, O., 1973: On orientation of rhizoid outgrowth of Ulva mutabilis by applied electric fields. Exp. Cell Res. 76, 444–446.PubMedCrossRefGoogle Scholar
  43. Schmiedel, G., Schnepf, E., 1980: Polarity and growth of caulonema tip cells of the moss Funaria hygrometrica. Planta 147, 405–413.CrossRefGoogle Scholar
  44. Weisenseel, M. H., 1979: Induction of polarity. In: Encyclopedia of plant physiology, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 485–505. Berlin-Heidelberg-New York: Springer.Google Scholar
  45. Weisenseel, M. H., Nuccitelli, R., Jaffe, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567.PubMedCrossRefGoogle Scholar
  46. Weisenseel, M. H., Jaffe, L. F., 1976: The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133, 1–7.CrossRefGoogle Scholar
  47. Weisenseel, M. H., Dorn, A., Jaffe, L. F., 1979: Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 64, 512–518.PubMedCrossRefGoogle Scholar
  48. Wohlfarth-Bottermann, K. E., Stockem, W., 1970: Die Regeneration des Plasmalemms von Physarum polycephalum. W. Roux’ Archiv 164, 321–340.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • M. H. Weisenseel
    • 1
  • Rosalinde M. Kicherer
    • 2
  1. 1.Botanical InstituteTechnical University of KarlsruheKarlsruheGermany
  2. 2.Institute for Botany and Pharmaceutical BiologyUniversity of ErlangenErlangenFederal Republic of Germany

Personalised recommendations