Morphogenesis and Polarity of Tubular Cells with Tip Growth

  • A. Sievers
  • E. Schnepf
Part of the Cell Biology Monographs book series (CELLBIOL, volume 8)


Morphogenesis of a plant cell, as treated in this chapter, is, in general, morphogenesis of the cell wall with an emphasis on growth. The reason for this specialized treatment of cell morphogenesis is best explained through an examination of tip growth, the locally restricted enlargement of a cell that usually has a tubulär shape (Frey-Wyssling 1959). Tip growth is associated with polar, local secretion of wall material and represents a conspicuous example of cell polarity. Usually, cells with tip growth show unipolar growth. There are also, however, examples of a bipolar tip growth-phloem (Schoch-Bodmer and Huber 1951) and xylem (Bosshard 1952) fibers. Sometimes there are cells with multipolar growth, i.e., branched systems of coenocytic fungi or algae, stellately armed parenchyma cells, and nonarticulated laticifers. Even the morphogenesis of cells with a complicated shape like the cells of Micrasterias (see p. 147 f.) can be regarded as multipolar growth.


Pollen Tube Root Hair Tubular Cell Cytoplasmic Streaming Golgi Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumaitre, M.-P., Larpent-GOURGAUD, M., 1971: Action de quelques inhibiteurs de syntheses nucleiques et proteiniques sur la croissance et la ramification du protonema de Ceratodon purpureus (Hedw.) Brid. cultive in vitro ä l’obscurite. C. R. Acad. Sci. Paris 272, 1503–1506.Google Scholar
  2. Auvity, M., Fevre, M., Larpent-GOURGAUD, M., Larpent, J.P., 1974: Mecanismes de la ramification des systemes filamenteux chez les vegetaux inferieurs. C. R. Soc. Biol. 168, 1344–1349.Google Scholar
  3. Bean, B., 1979: Chemotaxis in unicellular eukaryotes. In: Encyclopedia of plant physiology, New Series, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 335–354. Berlin-Heidelberg-New York: Springer.Google Scholar
  4. Bentrup, F. W., 1963: Vergleichende Untersuchungen zur Polaritätsinduktion durch das Licht an der Equisetum-Spore und der FUCHS-Zygote. Planta 59, 472–491.Google Scholar
  5. Bentrup, F. W., 1964: Zur Frage eines Photoinaktivierungs-Effektes bei der Polaritätsinduktion in Equisetumsporen und Fucuszygoten. Planta 63, 356–365.Google Scholar
  6. Bentrup, F.W., 1968 a: Die Morphogenese pflanzlicher Zellen im elektrischen Feld. Z. Pflanzenphysiol. 59, 303–339.Google Scholar
  7. Bentrup, F.W., 1968 b: Zur Funktion der Zellmembran bei der Cytomorphogenese. Ber. Dtsch. Bot. Ges. 81, 311–314.Google Scholar
  8. Bentrup, F. W., Jaffe, L. F., 1968: Analyzing the “group effect”: rheotropic responses of developing Fucus eggs. Protoplasma 65, 25–35.PubMedGoogle Scholar
  9. Bentrup, F. W. Sandan, T., Jaffe, L. F., 1967: Induction of polarity in Fucus eggs by potassium ion gradients. Protoplasma 64, 254–266Google Scholar
  10. Bloch, R., 1965: Polarity and gradients in plants: a survey. In: Handbuch der Pflanzenphysiologie, XV/1 (Lang, A., ed.), pp. 234–274. Berlin-Heidelberg-New York: Springer.Google Scholar
  11. Bonnett, Jr., H. T., Newcomb, E. H., 1966: Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma 62, 59–75.Google Scholar
  12. Bopp, M., Fell, J., 1976: Manifestation der Cytokinin-abhängigen Morphogenese bei der Induktion von Moosknospen. Z. Pflanzenphysiol. 79, 81–87.Google Scholar
  13. Bopp, M., Fell, J., Knoop, B., 1974: Regulation de la differenciation chez le protonema des Mousses. Bull. Soc. Bot. Fr. 171, 145–152.Google Scholar
  14. Bosch, F., El Goresy, A., Herth, W., Martin, B., Nobiling, R., Povh, B., Reiss, H. D., Traxel, K., 1980: The Heidelberg proton microprobe. Nuclear Science Applications 1, 1–39.Google Scholar
  15. Bosshard, H. H., 1952: Elektronenmikroskopische Untersuchungen im Holz von Fraxinus excelsior L. Ber. Schweiz. Bot. Ges. 62, 482–508.Google Scholar
  16. Brown, D. L., Bouck, G. B., 1973: Microtubule biogenesis and cell shape in Ochromonas. II. The role of nucleating sites in shape development. J. Cell Biol. 56, 360–378.PubMedGoogle Scholar
  17. Brunswik, H., 1924: Untersuchungen über die Geschlechts- und Kern Verhältnisse bei der HymenomyzetengattungCoprinus. Bot. Abhandlungen 5, 1–152.Google Scholar
  18. Buder, J.,1961: Der Geotropismus der Charazeenrhizoide. Ber. Dtsch. Bot. Ges. 74, (14)-(23).Google Scholar
  19. Bünning, E., 1952: Morphogenesis in plants. Surv. Biol. Prog. 2, 105–140.Google Scholar
  20. Bünning, E., 1958: Polarität und inäquale Teilung des pflanzlichen Protoplasten. Protoplasmatologia VIII, 9 a. Wien: Springer.Google Scholar
  21. Burgeff, H., 1924: Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Bot. Abhandlungen 4, 1–135.Google Scholar
  22. Busby, C. H., Gunning, B., 1980: Observations on pre-prophase bands of microtubules in uniseriate hairs, stomatal complexes of sugarcane, and Cyperus root meristems. Europ. J. Cell Biol. 21, 214–223.PubMedGoogle Scholar
  23. Chandler, D., Williams, J. A., 1978: Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. J. Cell Biol. 76, 386–399.PubMedGoogle Scholar
  24. Chen, T.-H., Jaffe, L. F., 1979: Forced calcium entry and polarized growth of Funaria spores. Planta 144, 401–406.Google Scholar
  25. Cutter, E. G., Feldman, L. J.,1970 a: Trichoblasts in Hydrocharis: I. Origin, differentiation, dimensions and growth. Amer. J. Bot. 57, 190–201.Google Scholar
  26. Cutter, E. G., Feldman, L. J., 1970 b: Trichoblasts in Hydrocharis: II. Nucleic acids, proteins and a consideration of cell growth in relation to endopolyploidy. Amer. J. Bot. 57, 202–211.Google Scholar
  27. Dall’olio, G., Vannini, G. L., 1979: Coumarin-induced disturbances of morphological development and cell wall formation inTrichophyton mentagrophytes. Cytobiol. 18, 390–397.Google Scholar
  28. Dashek, W. V., Rosen, W. G.,1966: Electron microscopical localization of chemical components in the growth zone of lily pollen tubes. Protoplasma 61, 192–204.PubMedGoogle Scholar
  29. Demaggio, A. E., Stetler, D. A., 1977: Protonemal Organization and growth in the moss Dawsonia superha: ultrastructural characteristics. Amer. J. Bot. 64, 449–454.Google Scholar
  30. Dennison, D. S., 1979: Phototropism. In: Encyclopedia of plant physiology, New Series, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 506–566. Berlin-Heidelberg-New York: Springer.Google Scholar
  31. Etzold, H., 1965: Der Polaritropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta 64, 254–280.Google Scholar
  32. Falk, H., Steiner, A. M., 1968: Phytochrome-mediated polarotropism: An electron microscopical study. Naturwiss. 55, 500.PubMedGoogle Scholar
  33. Fevre, M., 1979: Glucanases, glucan synthases and wall growth in Saprolegnia monoica. In: Fungal walls and hyphal growth (Burnett, Trince, eds.), pp. 225–263. Cambridge: University Press.Google Scholar
  34. Franke, W. W., Herth, w., van der woude, W. J., Morre, D. J.,1972: Tubulär and filamentous structures in pollen tubes: possible involvement as guide elements in protoplasmic Streaming and vectorial migration of secretory vesicles. Planta 105, 317–341.Google Scholar
  35. Frey-WYSSLING, A.,1959: Die pflanzliche Zellwand. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  36. Frey-Wyssling, A., Mühlethaler, K., 1949: über den Feinbau der Zellwand von Wurzelhaaren. Mikroskopie (Wien) 4, 257–320.Google Scholar
  37. Giddings, Jr., T. H., Brower, D. L., Staehelin, L. A., 1980: Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol. 84, 327–339.PubMedGoogle Scholar
  38. Girbardt, M.,1968: Ultrastructure and dynamics of the moving nucleus. In: Aspects of cell motility. 22. Symp. Soc. Exp. Biol., Oxford (Miller, P. L., ed.), pp. 249–259. Cambridge: University Press.Google Scholar
  39. Girbardt, M., 1969: Die Ultrastruktur der Apikairegion von Pilzhyphen. Protoplasma 67, 413–441.Google Scholar
  40. Glenk, H. O., Wagner, W., Schimmer, O., 1971: Can Ca++ ions act as a chemotropic factor in Oenothera fertilization? In: Pollen: development and physiology (Heslop-HARRISON, J., ed.), pp. 255–261. London: Butterworths.Google Scholar
  41. Green, P. B., Erickson, P. O., Richmond, P. A., 1970: On the physical basis of cell morphogenesis. Ann. N.Y. Acad. Sci. 175, 712–731.Google Scholar
  42. Grove, S. N., Bracker, C. E., Morre, D. J., 1970: An ultrastructural basis for hyphal tip growth in Pythium ultimum. Amer. J. Bot. 57, 245–266.Google Scholar
  43. Hartmann, K. M., Menzel, H., Mohr, H., 1965: Ein Beitrag zur Theorie der polarotropischen und phototropischen Krümmung. Planta 64, 363–375.Google Scholar
  44. Haupt, W., 1957: Die Induktion der Polarität bei der Spore von Equisetum. Planta 49, 61–90.Google Scholar
  45. Haupt, W., 1962: Die Entstehung der Polarität in pflanzlichen Keimzellen, insbesondere die Induktion durch Licht. Ergeb. Biol. 25, 1–32.Google Scholar
  46. Heitz, E.,1940: Die Polarität keimender Moossporen. Verh. Schweiz, naturf. Ges. (Locarno) 1940, 168–170.Google Scholar
  47. Hejnowicz, Z., Heinemann, B., Sievers, A., 1977: Tip growth: patterns of growth rate and stress in the Chara rhizoid. Z. Pflanzenphysiol. 81, 409–424.Google Scholar
  48. Hejnowicz, Z., Heinemann, B., Sievers, A., Sievers, A., 1971: Mathematical model of geotropically bending Chara rhizoids. Z. Pflanzenphysiol. 66, 34–48.Google Scholar
  49. Hejnowicz, Z., 1981: Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108, 117–137.PubMedGoogle Scholar
  50. Herth, W., 1978: Ionophore A 23 187 stops tip growth, but not cytoplasmic Streaming, in pollen tubes ofLilium longiflorum. Protoplasma 96, 275–282.Google Scholar
  51. Herth, W., Franke, W. W., Van Der Woude, W. J., 1972: Cytochalasin stops tip growth in plants. Naturwiss. 59, 38–39.Google Scholar
  52. Heuser, J., Evans, L.,1980: Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583.PubMedGoogle Scholar
  53. Heyder, L., 1975: Feinstrukturelle Untersuchungen zum Spitzenwachstum von Farnchloronemen und -rhizoiden. Diplomarbeit, Botanisches Institut der Universität Bonn.Google Scholar
  54. Howard, R. J.,1981: Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J. Cell Sci. 48, 89–103.PubMedGoogle Scholar
  55. Howard, R. J., Aist, J. R.,1977: Effects of MBC on hyphal tip Organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D 2O. Protoplasma 92, 195–210.PubMedGoogle Scholar
  56. Ishizawa, K., Enomoto, S.,Wada, S.,1979: Germination and photo-induetion of polarity in the spherical cells regenerated from protoplasma fragments of Boergesenia forhesii. Bot. Mag. Tokyo 92, 173–186.Google Scholar
  57. Ishizawa, K., Wada, S., 1979 a: Growth and phototropic bending in Boergesenia rhizoid. Plant and Cell Physiol. 20, 973–982.Google Scholar
  58. Ishizawa, K., Wada, S., 1979 b: Action spectrum of negative phototropism in Boergesenia forbesii. Plant and Cell Physiol. 20, 983–987.Google Scholar
  59. Iwanami, Y., 1980: Stimulation of pollen tube growth in vitro by dicarboxylic acids. Protoplasma 102, 111–115.Google Scholar
  60. Jaffe, L. F.,1956: Effect of polarized light on polarity of Fucus. Science 123, 1081–1082.PubMedGoogle Scholar
  61. Jaffe, L. F., 1958: Tropistic response of zygotes of the Fucaceae to polarized light. Exp. Cell Res. 15, 282–299.PubMedGoogle Scholar
  62. Jaffe, L. F., 1968: Localization in the developing Fucus egg and the general role of localizing currents. Adv. Morphogen. 7, 295–328.Google Scholar
  63. Jaffe, L. F., Etzold, H., 1962: Orientation and locus of tropic photoreceptor molecules in spores of Botrytis and Osmunda. J. Cell Biol. 13, 13–31.PubMedGoogle Scholar
  64. Jaffe, L. F.,Neuscheler, W.,1969: On the mutual polarization of nearby pairs of Fucaceous eggs. Dev. Biol. 19, 549–565.PubMedGoogle Scholar
  65. JAFFE, L. A., Weisenseel, M. H., JAFFE, L. F.,1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 67, 488–492.PubMedGoogle Scholar
  66. Kane, B. E., Reiskind, J. B., Mullins, J. T., 1973: Hormonal control of sexual morphogenesis in Achlya: dependence on protein and ribonucleic acid synthesis. Science 180, 1192–1193.PubMedGoogle Scholar
  67. Kinzel, H.,1956: Untersuchungen über Bau und Chemismus der Zellwände von Anti- thamnion cruciatum (Ag.) Näg. Protoplasma 46, 445–474.Google Scholar
  68. Knox, R. B.,Heslop-HARRISON, J.,1970: Pollen-wall proteins: localization and enzymic activity. J. Cell Sci. 6, 1–27.PubMedGoogle Scholar
  69. Knox, R. B.,Heslop-HARRISON, J., 1971: Pollen-wall proteins: electron-microscopic localization of acid phosphatase in the intine of Crocus vernus. J. Cell Sci. 8, 727–733.PubMedGoogle Scholar
  70. Larpent-GOURGAUD, M.,1969: Determinisme de la ramification et du bourgeonnement chez le protonema de Bryales. Ann. Sci. Nat., Bot. Biol. Veget. 12. Ser., 10, 1–102.Google Scholar
  71. Larpent-GOURGAUD, M., Aumaitre, M.-P., 1976: Proteines, enzymes et morphogenese comparees de deux especes de Bryales. Phyton (Argent.) 34, 45–49.Google Scholar
  72. Larson, D. A., 1965: Fine-structural changes in the cytoplasm of germinating pollen. Amer. J. Bot. 52, 139–154.Google Scholar
  73. Macnar, R. M., 1979: Chemotaxis in bacteria. In: Encyclopedia of plant physiology, New Series, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 310–334. Berlin-Heidelberg-New York: Springer.Google Scholar
  74. Mascarenhas, J. P., 1978: Sexual Chemotaxis and chemotropism in plants. In: Receptors and recognition, Series B, Vol. 5; Taxis and behavior, elementary sensory systems in biology (Hazelbauer, G., ed.), pp. 169–203. London: Chapman and Hall.Google Scholar
  75. Mascarenhas, J. P., Machlis, L., 1962: The pollen-tube chemotropic factor fromAntirrhinum majus: Bio- assay, extraction, and partial purification. Amer. J. Bot. 49, 482–489.Google Scholar
  76. Miller, J. H., Stephani, M. C., 1971: Effects of colchicine and light on cell form in fern gametophytes. Implications for a mechanism of light-induced cell elongation. Physiol. Plant. 24, 264–271.Google Scholar
  77. Moerz, G., 1977: Wachstum der Wurzelhaare. Wiss. Arbeit zum Staatsexamen, Univ. Heidelberg.Google Scholar
  78. Mohr, H., 1956: Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen vom Licht. Planta 47, 127–158.Google Scholar
  79. Molisch, H., 1889: Über die Ursachen der Wachstumsrichtungen bei Pollenschläuchen. Sitz.-Ber. math.-nat. Kl. Akad. Wiss. Wien (Anz. Akad. Wissensch.) 28, 11–13.Google Scholar
  80. Mollenhauer, H. H., Morre, D. J., 1976: Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87, 39–48.PubMedGoogle Scholar
  81. Morre, D. J., Kartenbeck, J., Franke, W. W.,1979: Membrane flow and interconversions among endomembranes. Biochim. Biophys. Acta 559, 71–152.PubMedGoogle Scholar
  82. Morre, D. J., VAN DER Woude, W. J.,1974: Origin and growth of cell surface components. In: Macromolecules regulating growth and development. 30. Symp. Soc. develop. Biol., pp. 81–111. New York-San Francisco-London: Academic Press.Google Scholar
  83. Mueller, S. C., Brown, Jr., R. M., 1980: Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84, 315–326.PubMedGoogle Scholar
  84. Mullins, J. T., 1979: A freeze-fracture study of hormone-induced branching in the fungus Achlya. Tissue Cell 11, 585–595.PubMedGoogle Scholar
  85. Musgrave, A., Loes, E., Scheffer, R.,Oehlers, E.,1977: Chemotropism of Achlya bisexualis germ hyphae to caScin hydrolysate and amino acids. J. Gen. Microbiology 101, 65–70.Google Scholar
  86. Nakazawa, S., 1959: Morphogenesis of the fern protonemata. I. Polar susceptibility to colchicine in Dryopteris varia. Phyton (Argent.) 12, 59–64.Google Scholar
  87. Nebel, B. J., 1968: Action spectra for photogrowth and phototropism in protonemata of the mossPhyscomitrium turbinatum. Planta 81, 287–302.Google Scholar
  88. Nebel, B. J., 1969: Responses of moss protonemata to red and far-red polarized light: evidence for disc-shaped phytochrome photoreceptors. Planta 87, 170–179.Google Scholar
  89. Neuscheler-WIRTH, H., 1970: Photomorphogenese und Phototropismus bei Mougeotia. Z. Pflanzenphysiol. 63, 238–260.Google Scholar
  90. Newcomb, E. H., Bonnett, Jr., H. T., 1965: Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J. Cell Biol. 27, 575–589.PubMedGoogle Scholar
  91. Novotny, A. M.,Forman, M.,1974: The relationship between changes in cell wall composition and the establishment of polarity in Fucus embryos. Develop. Biol. 40, 162–173.PubMedGoogle Scholar
  92. Nuccitelli, R., 1978: Oöplasmic segregation and secretion in the Pehetia egg is ac- companied by a membrane-generated electrical current. Develop. Biol. 62, 13–33.PubMedGoogle Scholar
  93. Ootaki, T.,1963: Modification of the developmental axis by centrifugation in Pteris vittata. Cytologia 28, 21–29.Google Scholar
  94. Ootaki, T., Furuya, M., 1969: Experimentally induced apical dominance in protonemata of Pteris vittata. Embryologia 10, 284–296.PubMedGoogle Scholar
  95. PAGE, R. M.,1968: Phototropism in fungi. In: Photophysiology (Giese, A. C., ed.), Vol. III, pp. 65–90. New York: Academic Press.Google Scholar
  96. PAGE, R. M., Curry, G. M.,1966: Studies on phototropism of young sporangiophores ofPilobolus kleinii. Photochem. Photobiol. 5, 31–40.Google Scholar
  97. Peng, H. B., Jaffe, L. F., 1976: Polarization of fucoid eggs by steady electrical fields. Dev. Biol. 53, 277–284.PubMedGoogle Scholar
  98. Plempel, M., 1960: Die zygotropische Reaktion bei Mucorineen. I. Mitteilung. Planta 55, 254–258.Google Scholar
  99. Plempel, M., 1962: Die zygotropische Reaktion der Mucorineen. III. Mitteilung. Planta 58, 509–520.Google Scholar
  100. PLEMPEL, M., DAWID, W., 1961: Die zygotropische Reaktion bei Mucorineen. II. Mitteilung. Planta 56, 438–446.Google Scholar
  101. Poff, K. L., Whitaker, B. D., 1979: Movement of slime molds. In: Encyclopedia of plant physiology, New Series, Vol. 7 (Haupt, W., Feinleib, M. E., eds.), pp. 355–382. Berlin-Heidelberg-New York: Springer.Google Scholar
  102. Poccia, D. L., Palevitz, B. A., Campisi, J., Lyman, H., 1979: Fluorescence staining of living cells with fluorescamine. Protoplasma 98, 91–113.PubMedGoogle Scholar
  103. Puiseux-DAO, S., Dazy, A.-C., 1970: Plastid structure and the evolution of plastids in Acetabularia. In: Biology of Acetabularia ( BräCHET, J., Bonotto, S., eds.), pp. 111–122. New York-London: Academic Press.Google Scholar
  104. Quatrano, R. S., 1972: An ultrastructural study of the determined site of rhizoid formation in Fucus zygotes. Exp. Cell Res. 70, 1–12.PubMedGoogle Scholar
  105. Quatrano, R. S., 1978: Development of cell polarity. Ann. Rev. Plant Physiol. 29, 487–510.Google Scholar
  106. Raudaskoski, M., 1980: Griseofulvin-induced alterations in site of dividing nuclei and structure of septa in a dikaryon ofScbizophyllum commune. Protoplasma 103, 323–331.Google Scholar
  107. Raudaskoski, M., Koltin, Y., 1973: Ultrastructural aspects of a mutant ofScbizophyllum commune with continuous nuclear migration. J. Bact. 116, 981–988.PubMedGoogle Scholar
  108. Reiss, H.-D., Herth, W.,1978: Visualization of the Ca2+-gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97, 373–377.Google Scholar
  109. Reiss, H.-D., Herth, W., 1979 a: Calcium ionophore A 23 187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145, 225–232.Google Scholar
  110. Reiss, H.-D.,Herth, W., 1979 b: Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta 146, 615–621.Google Scholar
  111. Reiss, H.-D., Herth, W., 1980: Effects of the broad-range ionophore X 537 A on pollen tubes of Lilium longiflorum. Planta 147, 295–301.Google Scholar
  112. Robinson, K. R., Jaffe, L. F., 1975: Polarizing fucoid eggs drive a calcium current through themselves. Science 187, 70–72.PubMedGoogle Scholar
  113. Robinson, K. R., Jaffe, L. F., 1976: Calcium gradients and egg polarity. J. Cell Biol. 70, 37 a.Google Scholar
  114. Rosen, W. G., 1968: Ultrastructure and physiology of pollen. Ann. Rev. Plant Physiol. 19, 435–462.Google Scholar
  115. Rosen, W. G., 1971: Pistil-pollen interactions in Lilium. In: Pollen: Development and physiology ( Heslop-HARRISON, J., ed.), pp. 239–254. London: Butterworths.Google Scholar
  116. Rosen, W. G., Gawlik, S. R., 1966: Fine structure of lily pollen tubes following various fixation and staining procedures. Protoplasma 61, 181–191.PubMedGoogle Scholar
  117. Rosen, W. G., Gawlik, S. R., Dashek, W. V., Siegesmund, K. A., 1964: Fine structure and cytochemistry of Lilium pollen tubes. Amer. J. Bot. 51, 61–71.Google Scholar
  118. Rosenbaum, J. L., Moulder, J. E., Ringo, D. L., 1969: Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J. Cell Biol. 41, 600–619.PubMedGoogle Scholar
  119. Sassen, M. M. A., 1964: Fine structure of Petunia pollen grain and pollen tube. Acta Bot. Neerl. 13, 175–181.Google Scholar
  120. SCHILDKNECHT, H., BENONI, H.,1963: Über die Chemie der Anziehung von Pollenschläuchen durch die Samenanlagen von Oenotheren. Z. Naturforsch. 18 b, 45–54.Google Scholar
  121. Schmiedel, G., Schnepf, E., 1979 a: Side branch formation and orientation in the caulonema of the moss, Funaria hygrometrica: normal development and fine structure. Protoplasma 100, 367–383.Google Scholar
  122. Schmiedel, G., Schnepf, E., 1979 b: Side branch formation and orientation in the caulonema of the moss, Funaria hygrometrica: experiments with inhibitors and with centrifugation. Protoplasma 101, 47–59.Google Scholar
  123. Schmiedel, G., Schnepf, E., 1980: Polarity and growth of caulonema tip cells of the moss, Funaria hygrometrica. Planta 147, 405–413.Google Scholar
  124. Schnepf, E.,1973: Mikrotubulus-Anordnung und -Umordnung, Wandbildung und Zell- morphogenese in jungen Sphagnum-Blättchen. Protoplasma 78, 145–173.Google Scholar
  125. Schnepf, E., 1981: Polarity and gradients in tip growing plant cells. In: International cell biology 1980/1981 (Schweiger, H. G., ed.), pp. 483–488. Berlin-Heidelberg-New York: Springer.Google Scholar
  126. Schnepf, E., DeichgräBER, G., DREBES, G., 1978: Development and ultrastructure of the marine, parasitic oomycete, Lagenisma coscinodisci Drebes (Lagenidiales). The infection. Arch. Microbiol. 116, 133–139.Google Scholar
  127. Schnepf, E., DeichgräBER, G., Drebes, G., 1980: Morphogenetic processes in Attheya decora (Bacillariophyceae, Biddulphiineae). Plant Syst. Evol. 135, 265–277.Google Scholar
  128. Schnepf, E.,Drebes, G.,1977: Über die Entwicklung des marinen parasitischen Phycomyceten Lagenisma coscinodisci (Lagenidiales). Helgol. wiss. Meeresunters. 29, 291–301 Google Scholar
  129. Schnepf, E.,Heinzmann, J.,1980: Nuclear movement, tip growth and colchicine effects in Lagenisma coscinodisci Drebes (Oomycetes, Lagenidiales). Biochem. Physiol. Pfl. 175, 67–76.Google Scholar
  130. Schnepf, E., Röderer, G., Herth, W.,1975: The formation of the fibrils in the lorica of Poteri- ochromonas stipitata: tip growth, kinetics, site, orientation. Planta 125, 45–62.Google Scholar
  131. Scrtoch-Bodmer, H., Huber, P., 1951: Das Spitzenwachstum der Bastfasern bei Linum usitatissimum und L. perenne. Ber. Schweiz. Bot. Ges. 61, 377–404.Google Scholar
  132. SchröTER, K.,1978: Asymmetrical jelly secretion of zygotes of Pelvetia and Fucus: an early polarization event. Planta 140, 69–73.Google Scholar
  133. SchröTER, K., Läuchli, A., Sievers, A.,1975: Mikroanalytische Identifikation von Bariumsulfat- Kristallen in den Statolithen der Rhizoide vonChara fragilis Desv. Planta 122, 213–225.Google Scholar
  134. SchröTER, K.,Rodriguez-GARCIA, M. I., Sievers, A.. 1973: Die Rolle des endoplasmatischen Retikulums bei der Genese der Chara-Statolithen. Protoplasma 76, 435–442.Google Scholar
  135. SchröTER, K., Sievers, A., 1971: Wirkung der Turgorreduktion auf den Golgi-Apparat und die Bildung der Zellwand bei Wurzelhaaren. Protoplasma 72, 203–211.Google Scholar
  136. Schumacher, W.,1936: Untersuchungen über die Wanderung des Fluoresceins in den Haaren von Cucurbita Pepo. Jb. wiss. Bot. 82, 507–533.Google Scholar
  137. SCHUMACHER, W.,1967: Der Transport von Fluorescein in Haarzellen. In: Handbuch der Pflanzenphysiologie, XIII (SCHUMACHER, W., ed.), pp. 17–19. Berlin-Heidelberg-New York: Springer.Google Scholar
  138. Seagull, R. W., Heath, I. B., 1979: The effects of tannic acid on the in vivo preservation of microfilaments. Europ. J. Cell Biol. 20, 184–188.PubMedGoogle Scholar
  139. Seagull, R. W., Heath, I. B., 1980 a: The Organization of cortical microtubule arrays in the radish root hair. Protoplasma 103, 205–229.Google Scholar
  140. Seagull, R. W., Heath, I. B., 1980 b: The differential effects of cytochalasin B on microfilament populations and cytoplasmic Streaming. Protoplasma 103, 231–240.Google Scholar
  141. Sharma, R., Malik, C. P., 1978: Effect of light on pollen germination, tube elongation and IAA-oxidase in Campsis grandiflora. Biochem. Physiol. Pfl. 173, 451–455.Google Scholar
  142. Sievers, A., 1963 a: Beteiligung des Golgi-Apparates bei der Bildung der Zellwand von Wurzelhaaren. Protoplasma 56, 188–192.Google Scholar
  143. Sievers, A., 1963 b: Über die Feinstruktur des Plasmas wachsender Wurzelhaare. Z. Naturforsch. 18 b, 830–836.Google Scholar
  144. Sievers, A., 1964: Zur Feinstrukturanalyse pflanzlicher Zellen mit Spitzenwachstum. Ber. Dtsch. Bot. Ges. 77, 388–390.Google Scholar
  145. Sievers, A., 1965: Elektronenmikroskopisdie Untersuchungen zur geotropischen Reaktion. I. Uber Besonderheiten im Feinbau der Rhizoide von Chara foetida. Z. Pflanzenphysiol. 53, 193–213.Google Scholar
  146. Sievers, A., 1967 a: Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara foetida. Protoplasma 64, 225–253.Google Scholar
  147. Sievers, A., 1967 b: Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. III. Die transversale Polarisierung der Rhizoidspitze von Chara foetida nach 5 bis 10 Minuten Horizontallage. Z. Pflanzenphysiol. 57, 462–473.Google Scholar
  148. Sievers, A., Heinemann, B., Rodriguez-GARCIA, M. I., 1979: Nachweis des subapikalen differen- tiellen Flankenwachstums im C/?dra-Rhizoid während der Graviresponse. Z. Pflanzenphysiol. 91, 435–442.Google Scholar
  149. Sievers, A., SchröTER, K., 1971: Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta 96, 339–353.Google Scholar
  150. Sievers, A., Volkmann, D., 1979: Gravitropism in single cells. In: Encyclopedia of plant physiology, New Series, Vol. 7 ( Haupt, W., Feinleib, M. E., eds.), pp. 567–572. Berlin-Heidelberg-New York: Springer.Google Scholar
  151. Sitte, P.,1978: Die lebende Zelle als System, Systemelement und Übersystem. Nova Acta Leopoldina 47, Nr. 226, 195–216.Google Scholar
  152. Sperber, D., Dransfeld, K., Maret, G., Weisenseel, M. H., 1981: Oriented growth of pollen tubes in strong magnetic fields. Naturwiss. 68, 40–41.Google Scholar
  153. Stadler, U., 1980: Untersuchungen zum Spitzenwachstum bei Achlya (Oomycetes). Wiss. Arbeit zum Staatsexamen, Univ. Heidelberg.Google Scholar
  154. Steiner, A. M.,1967 a: Dose-response curves for polarotropism in germlings of a fern and a liverwort. Naturwiss. 54, 497.Google Scholar
  155. Steiner, A. M., 1967 b: Action spectra for polarotropism in germlings of a fern and a liverworth. Naturwiss. 54, 497–498.Google Scholar
  156. Steudle, E., Läuchli, A., Sievers, A.,1978:X-ray microanalysis of barium and calcium in plant material: significance for the analysis of statoliths. Z. Naturforsch. 33 c, 444–446.Google Scholar
  157. Thomas, D. Des S., Mullins, J. T., 1967: Role of enzymatic wall-softening in plant morphogenesis: hormonal induction in Achlya. Science 156, 84–85.Google Scholar
  158. Thomas, D. Des S., Mullins, J. T., 1969: Cellulase induction and wall extension in the water mold Achlya ambisexualis. Physiol. Plant. 22, 347–353.Google Scholar
  159. Tschermak-WOESS, E., Hasitschka, G., 1953: Über Musterbildung in der Rhizodermis und Exodermis bei einigen Angiospermen und einer Polypodiacee. österr. Bot. Z. 100, 646–651.Google Scholar
  160. Turian, G., 1979: Cytodiemical gradients and mitochondrial exclusion in the apices of vegetative hyphae. Experientia 35, 1164–1166.Google Scholar
  161. Vanderwoude, W. J., Morre, D. J., Bracker, C. E., 1971: Isolation and characterization of secretory vesicles in germinated pollen of Lilium longiflorum. J. Cell Sci. 8, 331–351.PubMedGoogle Scholar
  162. Wada, M., O’brien, T. P., 1975: Observations on the structure of the protonema of Adiantum capillus-veneris L. undergoing cell division following white-light irradiation. Planta 126, 213–227.Google Scholar
  163. Weisenseel, M. H., 1979: Induction of polarity. In: Encyclopedia of plant physiology, New Series, Vol. 7 ( Haupt, W., Feinleib, M. E., eds.), pp. 485–505. Berlin-Heidelberg-New York: Springer.Google Scholar
  164. Weisenseel, M. H., Jaffe, L. F., 1976: The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133, 1–7.Google Scholar
  165. Weisenseel, M. H., Nuccitelli, R., Jaffe, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567.PubMedGoogle Scholar
  166. Wettstein, D. VON, 1953: Beeinflussung der Polarität und undifferenzierte Gewebebildung aus Moossporen. Z. Bot. 41, 199–226.Google Scholar
  167. Wettstein, D. VON, 1965: Die Induktion und experimentelle Beeinflussung der Polarität bei Pflanzen. In: Handbuch der Pflanzenphysiologie, XV/1 (Lang, A., ed.), pp. 275–330. Berlin-Heidelberg-New York: Springer.Google Scholar
  168. Yamasaki, N., 1954: Über den Einfluß von Colchicin auf Farnpflanzen. I. Die jungen Prothallien von Polystichum craspedosorum Diels. Cytologia 19, 249–254.Google Scholar
  169. Ziegler, H., 1962 a: Chemotropismus. In: Handbuch der Pflanzenphysiologie, XVII/2 (Bünning, E., ed.), pp. 396–431. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  170. Ziegler, H., 1962 b: Hydrotropismus. In: Handbuch der Pflanzenphysiologie, XVII/2 (Bünning, E., ed.), pp. 432–450. Berlin-Göttingen-Heidelberg: Springer.Google Scholar

Copyright information

© Springer-Verlag/Wien 1981

Authors and Affiliations

  • A. Sievers
    • 1
  • E. Schnepf
    • 2
  1. 1.Botanical InstituteUniversity of BonnBonnGermany
  2. 2.University of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations