Renormalization Group Analysis of Some Highly Bifurcated Families

  • P. Collet
  • J.-P. Eckmann
  • E. O. Lanford
Conference paper


Using a renormalization group technique, we investigate the sequence of bifurcations occurring in a one parameter family of maps on an interval. This analysis provides a proof of the conjectures of Feigenbaum [F].


Periodic Orbit Renormalization Group Topological Entropy Stable Periodic Orbit Renormalization Group Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B.F.]
    C. Boldrighini, V. Franceschini, A five-dimensional truncation of the plane incompressible Navier-Stokes equations. Preprint University of Modena, (1978)Google Scholar
  2. [C.E.]
    P. Collet, J.-P. Eckmann, A Renormalization Group Analysis pf the Hierarchical Model in Statistical Mechanics. Lecture Notes in Physics No. 74, Springer, Berlin-Heidelberg-New York 1978.Google Scholar
  3. [C.E.L.]
    P. Collet, J.-P. Eckmann, O.E. Lanford III., Universal properties of maps on an interval. To appearGoogle Scholar
  4. [D.G.P.]
    B. Derrida, A. Gervois, Y. Pomeau, Universal metric properties of bifurcations of endomorphisms. Preprint CEN SACLAY, 1978Google Scholar
  5. [F]
    M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. Journal of Stat.Phys. 19, 25–52, (1978)CrossRefMATHADSMathSciNetGoogle Scholar
  6. [H.P.S.]
    M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds. Lecture Notes in Mathematics No. 583, Springer, Berlin- Heidelberg-New York 1977MATHGoogle Scholar
  7. [M.S.S.]
    N. Metropolis, M.L. Stein, P.R. Stein, On finite limit sets for transformations on the unit interval. Journal of Combinatorial Theory (A), 15, 25–44, (1973)CrossRefMATHMathSciNetGoogle Scholar
  8. [M]
    M. Misiurewicz, Invariant measures for continuous transformations of [0,1] with zero topological entropy. Preprint, Warsaw University, (1978)Google Scholar
  9. [N]
    S. Newhouse, The abundance of wild hyperbolic sets and smooth stable sets for diffeomorphisms, Publ.Math. IHES, 50, 101–152 (1979)Google Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • P. Collet
    • 1
  • J.-P. Eckmann
    • 2
  • E. O. Lanford
    • 3
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.University of GenevaSwitzerland
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations