Introduction to Stochastic Differential Calculus

  • Paul-André Meyer
Conference paper


We present an introduction to the recent work on the theory of semimartingales and the stochastic integrals.

This exposition has the goal of explaining the fundamental ideas of stochastic differential calculus by showing how it involves at the foundations a very simple and manageable theory. We have tried to avoid the notion of stopping time, which is some-what difficult to grasp for non professional audience. This forces us to slightly change the accepted terminology so that the words which have a special meaning in this lecture are written with an asterix (*) the first time they appear, for which a short appendix at the end make clear their relation with the usual expression.


Stochastic Differential Equation Continuous Process Wiener Process Langevin Equation Stochastic Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Métivier, Reelle und vektorwertige Quasimartingale und die Theorie der stochastischen Integration. Lecture Notes in M. 607, Springer 1977.Google Scholar
  2. [2]
    A.U. Kussmaul, Stochastic integration and generalized martingales. Research Notes in M. no. 11, Pitman, London, 1977.MATHGoogle Scholar
  3. [3]
    M. Métivier et J. Pellaumail, A basic course on stochastic intégration. Seminaire de Probabilite 1, Université de Rennes 1 (1977).Google Scholar
  4. [4]
    P.A. Meyer, Un cours sur les integrables stochastique. Sém. Prob. X, Universite de Strasbourg. Lecture Notes in M. 511, Springer 1976.Google Scholar
  5. [5]
    K. Ito, Stochastic integral. Proc. Imperial Acad. Tokyo, 20, 1944, p. 519–524.MATHCrossRefGoogle Scholar
  6. [6]
    K. Ito, On stochastic differential equations. Memoirs Amer. M. Soc. no. 4, 1951.Google Scholar
  7. [7]
    J.L. Doob, Stochastic processus. Wiley, NY, 1953.Google Scholar
  8. [8]
    P.A. Meyer, A decomposition theorem for supermartingales. III. J.M. 6, 1962, p. 193–205.MATHGoogle Scholar
  9. Ph. Courrège, Intégrales stochastiques et martingales de carré intégrable. Séminaire Brelot-Choquet-Deny, 1962–63.Google Scholar
  10. [10]
    H. Kunita et S. Watanabe, On Square integrable martingales. Nagoya M.J. 30, 1967, p. 209–245.MATHMathSciNetGoogle Scholar
  11. [11]
    P.W. Miliar, Martingale integrals. Trans. Amer. M. Soc. 133–1, 1968, p. 145–166.CrossRefGoogle Scholar
  12. [12]
    K. Ito et S. Watanabe, Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier 15, 1965, p. 15–30.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P.A. Meyer, Integrales stochastiques I, II, III, IV. Sem. Prob. I, Universite de Strasbourg. Lect. Notes in M. 39, Springer 1967.Google Scholar
  14. [14]
    C. Doléans-Dade et P.A. Meyer, Intégrales stochastiques par rapport aux martingales locales. Sem. Prob. IV, Université de Strasbourg, Lect. Notes in M. 124, Springer 1970.Google Scholar
  15. [15]
    H.P. McKean, Stochastic integrals, Academic Press, 1969.MATHGoogle Scholar
  16. [16]
    I.V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitutions of measures. Teor. Prob. Appl. 5, 1960, p. 285–301.CrossRefGoogle Scholar
  17. [17]
    J.H. van Schuppen et E. Wong, Transformations of local martingales under a change of law. Ann. Prob. 2, 1974, p. 879–888.MATHCrossRefGoogle Scholar
  18. [18]
    J. Jacod et J. Memin, Caracteristiques locales et condition de continuite absolue pour les semimartingales. ZfW 35, 1976. p. 1–37.MATHMathSciNetGoogle Scholar
  19. [19]
    C. Doleans-Dade, Existence and unicity of solutions of stochastic differential equations. ZfW 36, 1976, p. 93–102.MATHMathSciNetGoogle Scholar
  20. [20]
    Ph. Protter, Right continuous solutions of stochastic integral equations. J. of Multivariate analysis, 7, 1977, 204–214.MATHMathSciNetCrossRefGoogle Scholar
  21. M. Emery, Stabilite des solutions des equations differentielles stochastiques. Application aux integrales multiplicatives stochastiques. ZfW 41, 1978, p. 241–262. Voir aussi [26].MATHMathSciNetGoogle Scholar
  22. [22]
    C. Dellacherie, Quelques applications du lemme de Borel-Cantelli a la theorie des semimartingales. Sem. Prob. XII, Lect. Notes 649, Springer 1978, p. 742–745.Google Scholar
  23. [23]
    C. Stricker, Quasimartingales, martingales locales, semimartingales et filtrationnaturelle. ZfW. 39, 1977, p. 55–64.MATHMathSciNetGoogle Scholar
  24. [24]
    E. Lenglart, Transformation des martingales locales par changement absolument continu de probabilites. ZfW 39, 1977, p. 65–70.MATHMathSciNetGoogle Scholar
  25. [25]
    Ph. Protter, Hp-stability of stochastic differential equations. ZfW. 44, 1978, p. 337–352.MathSciNetGoogle Scholar
  26. M. Metivier et J. Pellaumail, On a stopped Doob’s inequality and general stochastic equations. Rapport interne no. 28, Ecole Polytechnique. To appearGoogle Scholar
  27. C. Dellacherie, Un survol de la theorie de 1’integrale stochastique.Google Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • Paul-André Meyer
    • 1
  1. 1.Deptartment of MathematicsUniversity Louis PasteurStrasbourgFrance

Personalised recommendations