Advertisement

Net Cohomology and Its Applications to Field Theory

  • John E. Roberts
Conference paper

Abstract

Nets form a convenient basic mathematical language for field theory and their cohomological invariants can give qualitative information on the field theory under investigation. Emphasis is placed here on computing their low dimensional cohomologies. The results are applied to the 0- and 1-cohomologies of the field nets and observable nets of quantum field theory and the associated superselection structure. The place of soliton sectors in two space-time dimensions is pointed out but no detailed analysis of this exceptional case is presented.

Keywords

Gauge Group Free Field Local Cohomology Cochain Complex Vacuum Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Doplicher, R. Haag, J.E. Roberts: Local Observables and Particle Statistics. I. Commun.Math.Phys. 23, 199–230 (1971)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S. Doplicher, R. Haag, J.E. Roberts: Local Observables and Particle Statistics. II. Commun.Math.Phys. 35, 49–85 (1974).CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    R. Haag: Discussion des “axiomes" et des proprietes asymp- totiques d’une theorie des champs locale avec particules composees. 75. Colloques Internationaux du CNRS, Lille 1957. Paris: CNRS 1959.Google Scholar
  4. [4]
    G. de Rham: Variétés différentiables. Hermann, Paris 1960.MATHGoogle Scholar
  5. [5]
    P. Leyland, J.E. Roberts: The Cohomology of Nets over Minkowski Space. Commun. Math. Phys. 62, 173–189 (1978).CrossRefMATHADSMathSciNetGoogle Scholar
  6. [6]
    J.E. Roberts: Mathematical Aspects of Local Cohomology. Proceedings of the Colloquium on Operator Algebras and their Applications to Mathematical Physics, Marseille 1977. CNRS to appear.Google Scholar
  7. [7]
    R. Lima: Introduction to W*-categories. These Proceedings.Google Scholar
  8. [8]
    J.E. Roberts: A survey of Local Cohomdlogy, Proceedings of the Conference on Mathematical Problems in Theoretical Physics, Rome 1977. Lecture Notes in Physics 80: Springer, 1978.Google Scholar
  9. [9]
    S. Sakai: C*-Algebras and W*-Algebras. Springer, 1971.Google Scholar
  10. [10]
    J.E. Roberts: Cross Products of von Neumann Algebras by Group duals, SymposiaMathematica 22, 335–363, Academic Press 1976.Google Scholar
  11. [11]
    D. Buchholz: Product States for Local Algebras, Commun. Math. Phys. 36, 287–304 (1974).CrossRefMATHADSMathSciNetGoogle Scholar
  12. [12]
    W. Driessler: Duality and Absence of Locally Generated Superselection Sectors for CCR-Type Algebras.Google Scholar
  13. [13]
    H. Araki: Von Neumann Algebras of Local Observables for the free Scalar Field. J. Math. Phys. 5, 1–13 (1964).CrossRefMATHADSMathSciNetGoogle Scholar
  14. [14]
    S. Doplicher, J.E. Roberts: Fields, Statistics and Non- Abelian Gauge Groups, Commun. Math. Phys. 28, 331–348 (1972)CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    H. Araki, R. Haag, D. Kastler, M. Takesaki: Extensions of KMS-States and Chemical Potential, Commun. Math. Phys. 53, 97–134 (1977).CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S. Coleman: Quantum Sine-Gordon equation as the massive Thirring model. Phys. Rev. D11, 2088–2097 (1975).ADSGoogle Scholar
  17. [17]
    R. Haag: Quantum Field Theory. In “Mathematics of Contem- porary Physics”, Ed. R.F. Streater, Academic Press , 1972.Google Scholar
  18. [18]
    J.E. Roberts: Local Cohomology and Superselection Structure, Commun.Math.Phys. 51, 107–1 19 (1976).CrossRefMATHADSGoogle Scholar
  19. [19]
    S. Doplicher, R. Haag, J.E. Roberts: Fields, Observables and Gauge Transformations. I. Commun. Math. Phys. 13, 1–23 (1969).CrossRefMATHADSMathSciNetGoogle Scholar
  20. [20]
    J.E. Roberts: Spontaneously Bröken Gauge Symmetries and Superselection Rules. Proceedings of the International School of Mathematical Physics, Camerino 1974. Universitä di Camerino, 1976.Google Scholar
  21. [21]
    J.J. Bisognano, E.H. Wichmann, On the Duality Condition for Quantum Fields. J. Math. Phys. 17, 303–321 (1976).CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    C. Rigotti: Remarks on the Modular Operator and Local Observables. Commun. Math. Phys. 61, 267–273 (1978).CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • John E. Roberts
    • 1
  1. 1.Fachbereich 5Universität OsnabrückOsnabrückFederal Republic of Germany

Personalised recommendations