Generators of One-Parameter Groups of *-Automorphisms on UHF-Algebras

  • Ola Bratteli
Conference paper


Some results and conjectures on unbounded derivations on C*-algebras are reviewed, with particular emphasis on UHF-algebras. Several conditions ensuring that a derivation is the generator of a one-parameter group of *-automorphisms is exposed, involving analytic elements, linearly increasing surface terms, and approximate commutation.


Semi Group Dissipative Operator Deficiency Index Quantum Lattice System Canonical Anticommutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Batty, C.J.K., Dissipative mappings with approximately invariant subspaces, Preprint.Google Scholar
  2. [2]
    Bratteli, O. and D.W. Robinson, Operator algebras and quantum Statistical mechanics, 2 vols., Texts and Monographs in Physics, Springer Verlag Berlin-Heidelberg-New York, to appear.Google Scholar
  3. [3]
    Bratteli, O., Inductive limits of finite-dimensional C*- algebras, Trans.Americ.Math.Soc. 171, (1972), 195–234.MATHMathSciNetGoogle Scholar
  4. [4]
    Bratteli, O. and G.A. Elliott, Structure spaces of approximately finite-dimensional C*-algebras II, Jour.Func.Anal., 30(1978), 74–82.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Bratteli, O. and D.W. Robinson, Unbounded derivations of C*-algebras II, Comm.Math.Phys. 46,(1976), 11–30.CrossRefMATHADSMathSciNetGoogle Scholar
  6. [6]
    Bratteli, O. and A. Kishimoto, Generation of semigroups, and two-dimensional quantum lattice systems, Jour.Func.Anal., to appear.Google Scholar
  7. [7]
    Bratteli, O., G.A. Elliott and R. Herman, On the possible temperatures of a dynamical system, to appear.Google Scholar
  8. [8]
    Chernoff, P.R., Quasi-analytic vectors and quasianalytic funetions, Bull.Amer.Math.Soc. 81 (1975), 637–646.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Connes, A., Outer Conjugacy classes of automorphisms of factors, Ann. sei. Ec. Norm. Sup., 4e serie, 8,(1975), 383–420.MATHMathSciNetGoogle Scholar
  10. [10]
    Cuntz, J., Simple C*-algebras generated by isometries, Comm.Math.Phys. 57 (1977), 173–185.CrossRefMATHADSMathSciNetGoogle Scholar
  11. [11]
    Effros, E.C. and F. Hahn, Locally compact transformation groups and C*-algebras, Mem.Amer.Math.Soc. 75, (1967).Google Scholar
  12. [12]
    Elliot, G.A., Derivations of matroid C*-algebras, Invent. Math. 9,(1970), 253–269.Google Scholar
  13. [13]
    Glimm, J., On a certain class of operator algebras, Trans. Amer.Math.Soc. 95,(1960), 318–340.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Jorgensen, P.E.T., Trace states and KMS states for approximately inner dynamical one-parameter groups of *-automorphisms, Comm.Math.Phys. 53 (1977), 135–142.Google Scholar
  15. [15]
    Jørgensen, P.E.T., Approximately reducing subspaces for unbounded linear Operators, Jour.Func.Anal. 23, (1976), 392–414.Google Scholar
  16. [16]
    Jørgensen, P.E.T., Essential self-adjointness of semibounded Operators, Math. Ann. 237 (1978), 187–192.Google Scholar
  17. [17]
    Kadison, R.V., Transformation of states in operator theory and dynamics, Topology 3,(1965), 177–198.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Kishimoto, A., Dissipations and derivations, Comm.Math. Phys. 47, (1976), 25–32.CrossRefMATHADSMathSciNetGoogle Scholar
  19. [19]
    Kuntz, T.G., Extensions of Trotter’s operator semigroup approximation theorems, Jour.Func.Anal. 3, (1969), 354–375.CrossRefMATHGoogle Scholar
  20. [20]
    Lumer, G. and R.S. Phillips, Dissipative Operators in a Banach space, Pac. J.Math. 11, (1961), 679–698.MATHMathSciNetGoogle Scholar
  21. [21]
    Olesen, D. and G.K. Pedersen, Some C*-dynamical systems with a Single KMS-state, Math. Scand. 42 (1978), 111–118.MATHMathSciNetGoogle Scholar
  22. [22]
    Olesen, D. and G.K. Pedersen, Groups of automorphisms with spectrum condition and the lifting problem, Comm.Math.Phys. 51, (1976), 85–95.CrossRefMATHADSMathSciNetGoogle Scholar
  23. [23]
    Powers, R., Representations of the canonical anticommutation relations, Thesis, Princeton University, (1967).Google Scholar
  24. [24]
    Powers, R., Representations of uniformely hyperfinite algebras and their associated von Neumann rings, Ann.Math. 86, (1967), 138–171.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    Powers, R. and S. Sakai, Existence of ground states and KMS- states, Comm.Math.Phys. 39, (1975), 273–288.CrossRefMATHADSMathSciNetGoogle Scholar
  26. [26]
    Robinson, D.W., Statistical mechanics of quantum spin systems II, Comm.Math.Phys. 7, (1968), 337–348.CrossRefMATHADSMathSciNetGoogle Scholar
  27. [27]
    Ruelle, D., Statistical mechanics, Benjamin, New York (1969).Google Scholar
  28. [28]
    Sakai, S., On one-parameter groups of *-automorphisms on operator algebras and the corresponding unbounded derivations, Amer.J.Math. 98, (1976), 427–440.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    Sakai, S. The theory of unbounded derivations in C*-algebras, Copenhagen and Newcastle lecture notes (1977).Google Scholar
  30. [30]
    Sewell, G.L., KMS-conditions and local thermodynamic stabil- ity II, Comm.Math.Phys. 55 (1977), 53–61.CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    Yosida, K., Functional analysis, 5th Ed., Springer-Verlag, Berlin-Heidelberg-New York (1978).MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • Ola Bratteli
    • 1
  1. 1.Institute of MathematicsUniversity of OsloNorway

Personalised recommendations