Homogeneous Self-Dual Cones and Jordan Algebras

  • J. Bellissard
  • B. Iochum
Conference paper


It is shown that the category of homogeneous self-dual cones in Hilbert spaces is isomorphic to the category of Jordan Banach algebras with predual (JBW-algebras).


Convex Cone Real Hilbert Space Jordan Algebra Hilbert Algebra Jordan Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Braun and M. Koecher, Jordan algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1966Google Scholar
  2. [2]
    N. Jacobson, “Structure and representations of Jordan algebras”, Amer. Math. Soc. Pub, 39, Providence, 1968Google Scholar
  3. [3]
    E.M. Alfsen, “Compact convex sets and boundary integrals”, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 57, Springer-Verlag, Berlin - Heidelberg - New York, 1971Google Scholar
  4. [4]
    A. Connes, “Caracterisation des espaces vectoriels ordonnes sous-jacents aux algebres de von Neumann”. Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    G. Janssen, “Formal-reelle.Jordanalgebren unendlicher Dimension und verallgemeinert© Positivitätsbereiche”. Journ. reine und angew. Math. 249 (1971), 143–200Google Scholar
  6. [6]
    G. Effros and E. Stürmer, “Positive projections and Jordan Structure in operator algebras”. Preprint Series, Univer- sitetet i Oslo, Mathematics no. 14, Nov. 20 (1978)Google Scholar
  7. [7]
    E. Stürmer, “Jordan algebras of type I”, Acta Math. 115 (1966), 165–184CrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Takesaki, “Tomita’s theory of modular Hilbert Algebras and its applications”, Springer Lecture notes in Mathematics no. 128 (1970)Google Scholar
  9. [9]
    H. Araki, “Some properties of modular conjugation operator of a Von Neumann Algebra- and a non-commutative Radon-Nykodim theorem with a chain-rule”, Pacif. Journ. Math. 50 no. 2 (1974), 309–354MATHMathSciNetGoogle Scholar
  10. [10]
    U. Haagerup, “The Standard form of Von Neumann Algebras”, Math. Scand. 37 (1975), 271–283MathSciNetGoogle Scholar
  11. [11]
    J. Bellissard and B. Iochum, “Homogeneous self-dual cones versus Jordan algebras. The theory revisited”, Ann. Inst. Fourier, Grenoble, 28. no. 1 (1978), 27–67CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    W. Bös, “The structure of finite homogeneous cones and Jordan algebras”, Osnabrück preprint, July 1976Google Scholar
  13. [13]
    E.M. Alfsen, F.W. Schultz and E. Stürmer, “A Gelfand-Neumark theorem for Jordan algebras”, Advances in Math. 28. (1978), 11–56CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    J. Bellissard and B. Iochum, “L’algebre de Jordan d’un cone autopolaire facialement homogene”, Comptes Rend. Acad. Sciences Paris,288 (1979),229–232MATHMathSciNetGoogle Scholar
  15. [15]
    cf. reference [11] and B. Iochum “These d’Etat”, to appear.Google Scholar
  16. [16]
    J. Bellissard and B. Iochum, “Spectral theory for facially homogeneous self-dual cones”, to appear in Math. Scand.Google Scholar
  17. [17]
    U. Haagerup and H. Hanche-Olsen, private communicationGoogle Scholar
  18. [18]
    E.B. Vinberg, “The theory of convex homogeneous cones”, Trans. Moscow Math. Soc. 12 (1963), 340–403MATHGoogle Scholar
  19. [19]
    E.B. Vinberg, “The structure of groups of automorphisms of a homogeneous convex cone”, Trans. Moscow Math. Soc. 14 (1965), 63–93Google Scholar
  20. [20]
    P. Jordan, J. von Neumann and E. Wigner, “On an algebraic generalization of the quantum mechanical formalism”, Ann. of Math. 36 (1934), 29–64CrossRefGoogle Scholar
  21. [21]
    E. Stürmer, “Real structure in the hyperfinite factor”, Oslo preprint Mathematic No. 13, Sept. 1979Google Scholar
  22. [22]
    T. Giordano, to appear (private communication)Google Scholar

Copyright information

© Springer-Verlag/Wien 1980

Authors and Affiliations

  • J. Bellissard
    • 1
  • B. Iochum
    • 2
  1. 1.Université de ProvenceMarseilleFrance
  2. 2.Centre de Physique ThéoriqueCNRSMarseilleFrance

Personalised recommendations