Advertisement

A Program System of Parallel Processes for Understanding Continuous Speech

  • H. Niemann
  • H.-W. Hein
Part of the Computing Supplementum book series (COMPUTING, volume 3)

Abstract

A Program System of Parallel Processes for Understanding Continuous Speech. A system concept is shown which enables several independent processes, each having specialized knowledge about one aspect of a complex real world pattern, to cooperate in parallel, analyzing and understanding this pattern automatically.

A software environment is introdueed, providing an experimenter with tools to define different system configurations and to develop reasonable control strategies for them.

Intended is a usage for the automatic understanding of continuously spoken german sentences. The principles of the various knowledge modules which will be needed for this pattern analysis task are given also.

Keywords

Speech Signal Parallel Process Automatic Speech Recognition Continuous Speech Speech Understanding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Ein Programmsystem von parallelen Prozessen zum Verständnis kontinuierlicher Sprache. Es wird ein Systemkonzept vorgestellt, bei dem mehrere unabhängige Prozesse parallel zusammenarbeiten können, um ein komplexes Muster der realen Welt automatisch zu analysieren und zu verstehen. Jeder Prozeß besitzt dazu spezielles Wissen über einen Aspekt des Musters.

Die Softwareumgebung, die es einem Experimentator erlaubt, unterschiedliche Konfigurationen festzulegen und geeignete Kontrollstrategien für diese zu entwickeln, wird beschrieben.

Da eine Verwendung für das automatische Verstehen fließend gesprochener deutscher Sätze vorgesehen ist, werden die Prinzipien der verschiedenen Wissensmodule, die man bei diesem Problem der Musteranalyse benötigt, ebenfalls dargelegt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chapanis, A.: Interactive human communication. Scient. American 232, 36–42 (1975).CrossRefGoogle Scholar
  2. [2]
    De Mori, R.: Recent advances in automatic speech recognition. Proc. 4. J. Conf. on Pattern Recognition, Kyoto, Japan, pp. 106–124 (1978).Google Scholar
  3. [3]
    Ainsworth, W. A., Green, P. D.: Current problems in automatic speech recognition. In: Pattern recognition: Ideas in practice (Batchelor, B. G., ed.), pp. 365–396. New York: Plenum Press 1978.Google Scholar
  4. [4]
    Bates, M.: The theory and practice of augmented transition network (ATN) grammars. In: Natural language communication with Computers (Lecture Notes in Computer Science, Vol. 63), (Goos, G., Hartmanis, J., ed.), pp. 191–259. Berlin-Heidelberg-New York: Springer 1978.CrossRefGoogle Scholar
  5. [5]
    Walker, D. E. (ed.): Understanding spoken language. New York: North-Holland 1978.Google Scholar
  6. [6]
    Fennell, R. D., Lesser, V. R.: Parallelism in artificial intelligence problem solving: A case study of HEARSAY-II. IEEE Transactions C-26, 98–111 (1977).Google Scholar
  7. [7]
    Klatt, D. H.: Review of the ARPA speech understanding project. J. Acoust. Soc. Am. 62, 1345–1366 (1977)CrossRefGoogle Scholar
  8. [8]
    Niemann, H.: Digital image analysis. In: Recent advances in digital image processing (Stucki, P., ed.), pp. 77–122. New York: Plenum Press 1979.CrossRefGoogle Scholar
  9. [9]
    Woods, W. A.: Shortfall and density scoring strategies for speech understanding control, Report No. 3303. Cambridge: Bolt Beranek & Newman Inc. 1976.Google Scholar
  10. [10]
    Date, C. J.: An introduction to database systems, 2nd ed. Reading, Mass.: Addison-Wesley 1977.MATHGoogle Scholar
  11. [11]
    Schafer, R. W., Rabiner, L. R.: Parametric representations of speech. In: Speech recognition (Reddy, D. R., ed.), pp. 99–150. New York: Academic Press 1975.Google Scholar
  12. [12]
    Makhoul, J.: Linear prediction in automatic speech recognition. In: Speech recognition (Reddy, D. R., ed.), pp. 183–220. New York: Academic Press 1975.Google Scholar
  13. [13]
    Forney, G. D.: The Viterbi algorithm. Proc. IEEE 61268–278 (1973).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Bobrow, D. G., et al.: GUS, a frame-driven dialog system. Artificial Intelligence 8, 155–173 (1977).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. Niemann
    • 1
  • H.-W. Hein
    • 1
  1. 1.Lehrstuhl für Informatik 5 (Mustererkennung)Universität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations